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ABSTRACT
Forecasting short term passenger demand for public transport is a
core problem in urban mobility. Typically, this is addressed using
Poisson regression or homogeneous Poisson processes. However,
such approaches have several limitations, including susceptibility
to noise at fine time granularities, and the inability to capture com-
plex non-stationary trends. In this paper, we show how such short
term demand can be accurately modelled with an inhomogeneous
Poisson process, using a neural network as the underlying intensity.
This choice of intensity subsumes existing models as special cases,
and is powerful enough to capture certain stylised facts of real-
world demand. Experiments on real-world bus arrival data from a
large metropolitan area in Australia validate our approach.
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1 INTRODUCTION
Public transport is a core ingredient of sustainable urban mobility
[18]. The long-term demand for such services requires modelling
of various socio-economic factors [4]. Our interest here is in the
short-term passenger demand, such as the number of passengers
expected to arrive at a bus stop within a small time window (e.g.
5–10 minutes). This time-varying short-term demand is crucial to
aid in the daily scheduling of services [10, 11, 16].

At first glance, this problem appears to admit a trivial solution:
one can discretise time into fixed buckets, and then estimate the av-
erage demand for that bucket from several days’ worth of historical
data. This approach is intuitive, has prior precedent [10, 11, 16], and
is largely unassailable when the buckets are sufficiently large (say
30 minutes). However, for smaller buckets, the approach is prone
to noise. Figure 1 provides an example of estimates of the mean
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and 95% confidence interval for a single bus stop, estimated on a
months’ worth of data (to be described shortly), using buckets of
varying granularity. Evidently, at 30 minute buckets, there is a clear
predictable pattern with modest variance; however, at 5 minute
buckets, there is significant noise, foiling this approach.

The above motivates approaches that can estimate the rate of
arrivals in small (possibly infinitesimal) time windows. This points
to the family of point process models [5], which have seen success
in spatial urban analytics problems such as modelling ambulance
demand [20] and accidents [7]. Closer to our temporal demand fore-
casting, Allende-Bustamante et al. [1] used a self-exciting (Hawkes)
process to model demand at a metro station, while Moreira-Matias
et al. [14] used an inhomogeneous Poisson process tomodel demand
for taxis. While effective, such approaches have some limitations;
for the former, it is difficult for Hawkes processes to capture cyclical
behaviour of a high followed by low demand, while for the latter,
the choice of simple intensity function (formalised shortly) prohibits
more fine-grained predictions.

This raises the motivating question for this work: can we design
a stochastic process model that accurately captures the charac-
teristics of short-term passenger demand? We answer this in the
affirmative via an inhomogeneous Poisson process with an inten-
sity function governed by a single-layer neural network. This choice
of intensity is general enough to encapsulate certain stylised facts
of transportation demand, such as nonlinear trend characteristics.
This theoretical flexibility is borne out in practice: we present exper-
iments on real-world bus arrival data from a large city in Australia
to validate our approach. In particular, we show it to be a viable
alternative to Poisson regression for short-term forecasts.

To make the above claims more precise, we first formalise the
underpinnings of point processes and Poisson regression.

2 BACKGROUND AND NOTATION
We begin with some relevant background and notation.

Poisson processes. Suppose we wish to estimate the number
of events occurring in a time interval. Consider the stochastic pro-
cess (Nt )t ≥0 where the random variables Nt count the number of
events that have occurred upto and including time t . This forms
an inhomogeneous Poisson process (IPP) with (locally integrable)
intensity function λ : R+ → R+ if [5]

• Nt − Ns ∼ Poisson(Λ(s, t)), where Λ(s, t) =
∫ t
s λ(x)dx

• Nt − Ns ⊥⊥ Nt ′ − Ns ′ for any s < t < s ′ < t ′.

The function Λ is known as the intensity measure. When λ(t) is a
constant, we have the homogeneous Poisson process (HPP).
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Figure 1: Examples of number of arrivals (blue: mean, red: 95% confidence interval) at various time resolutions for a single bus stop.

To use an IPP, one needs to specify a particular form for λ(t),
and then derive a means of estimating it from data. The former
requires domain-specific consideration, which for our problem is
deferred to §3. The latter may be done by maximum likelihood
estimation (MLE). Suppose our intensity is parameterised by some
θ ∈ Θ. Given event times T = {ti }Ni=1, for T

.
= tn , the negative

log-likelihood of θ is [5, Equation 2.1.9]

LIPP(θ ;T) =
N∑
i=1

− log λ(ti ;θ ) +
∫ T

0
λ(t ;θ ) dt . (1)

For a suitably differentiable parametrisation, one can estimate θ by
minimising Equation 1 using any gradient-based optimiser, such
as L-BFGS. The integral above – which is the expected number of
events in the entire time interval [0,T ] – usually does not have a
closed form, but may be approximated by quadrature [6].

Poisson regression. In its most general form, Poisson regres-
sion [12] involves predicting nonnegative integer targets Y ∈ N+
for instances X ∈ X in some measurable space X. This is done by
positing the existence of a measurable µ : X → R+ such that

Y | X = x ∼ Poisson(exp(µ(x))).

Given samples {(xi ,yi )}Ni=1, and assuming µ is parametrised by
some θ ∈ Θ, the negative log-likelihood of θ is

LPR(θ ;T) =
N∑
i=1

−yi · µ(xi ) + exp(µ(xi )).

One can use Poisson regression to model event times T as per the
previous section. The key is to discretise the time interval [0,T ]
into a number of fixed intervals (j · ∆, (j + 1) · ∆] for resolution
∆ ∈ (0, 1). The events can then be viewed as a sample {(xi ,yi )},
where xi simply denotes the interval under consideration, and yi
the number of events that occur in that interval. Under Poisson
regression, a nonparametric estimate of µ(x) would simply be the
number of events in the interval corresponding to x . A parametric
estimate of µ(x) can further be viewed as an approximation to the
IPP objective with piecewise constant intensity λ = exp ◦µ [2].

Other demandmodels. Time series models such as the Autore-
gressive Integrated Moving Average (ARIMA) have been used to
predict public transport demand [17]; these have the advantage of
simplicity, but require tuning a window size, and can be sensitive
to the choice of this parameter.

3 IPPS WITH NEURAL INTENSITY
The nature of public transportation demand is that it is time-varying.
More specifically, even a cursory visual inspection of passenger
arrival data over time (see Figure 1) reveals several regularities,
or stylised facts of passenger demand. For instance, we can see
clearly defined trends wherein arrivals peak around the morning
and evening, and subsequently decay. The precise nature of these
trends will of course vary amongst different bus stops, being in
turn determined by e.g. the schedule of buses serving that stop.

The challenge in applying IPPs to capture such characteristics
is in choosing a sufficiently flexible family of λ. Typical choices
for λ involve (exponentials of) polynomials or Fourier series [8, pg.
34]. While the latter can capture periodic, nonlinear trends, they
result in a highly non-convex likelihood; further, it is natural to ask
whether there are other means of capturing nonlinearity.

To this end, we formulate a flexible family of intensities in the
form of a one-layer neural network:

λ(t ;θ ) = д
(
a +

K∑
k=1

bk · f (ck · t + dk )
)
, (2)

where д(·), f (·) are non-negative activation functions, and K is
some number of hidden units. The parameters to estimate are θ =
{a, (bk , ck ,dk )Kk=1}; this estimation may be done by minimising
Equation 1. Intuitively, each term f (ck · t + dk ) may be seen as a
(learned) hidden representation of the input time. By choosing K
sufficiently large, we can model complex non-linear demand.

Recall that passenger demand has a strong cyclical component.
To encode this feature into our neural network, there are two
choices. The first is to use a periodic activation function, such as
f (z) = sin z. The second is to encode the periodicity explicitly into
the model, by working with the intensity λ̃(t) = λ(REM(t)), where
REM(t) computes the remainder of the time-stamp with respect to
some fixed offset, so that e.g. each day is assumed to have the same
intensity. We employed the latter as it was found to produce good
results, possibly owing to the mitigation of non-convexity.

Special cases. Equation 2 captures as special cases several ex-
isting approaches. First, the HPP model is recovered by letting
bk = ck = dk = 0, so that λ(t) is a constant. Second, for identity
activation and f (·) a suitable indicator function, we get a λ(t) that is
piecewise constant on intervals. In fact, the result is simply Poisson
regression on the resulting intervals. Third, whenд(y) = exp(y) and
f (z) = sin(z), we obtain the exponentiated Fourier series model.



A basis function view. We can view Equation 2 more generally
as an instance of the intensity family

λ(t ;θ ) = д
(
a +

K∑
k=1

bk · ϕk (t)
)
, (3)

whereϕk is a basis function. In this view, the use of a neural network
can be contrasted to the use of kernel methods to model λ(t), as per
the recent work of Flaxman et al. [9]: a kernel method can be seen
as using fixed basis functions, while a neural network adaptively
learns the basis functions from the data. An advantage of the neural
network approach, beyond increasedmodelling power, is scalability:
the bane of naïve kernel methods is their quadratic time complexity.
The random Fourier features approximation to kernel methods [15]
can be seen as a neural network with sin and cos activations, where
the weights from the input to hidden layer are clamped to suitably
distributed random values.

For ϕk (t) = exp
(
−bk · (t − ck )2

)
, Equation 3 also captures the

inhomogeneousmodel of Allende-Bustamante et al. [1] – indeed, for
this choice, we have a radial basis function network [3]. However,
they proposed to use EM to fit the model, while we directly optimise
the likelihood. If the basis functions are fixed, and one uses д(y) =
exp(y), this has the advantage of involving a convex optimisation.

Existing work. The idea of using neural network intensities
for general point processes is not new; several authors [13, 19]
have recently proposed the use of recurrent neural networks in
conjunction with self-exciting point processes. Inference in these
more complex models is much more involved, however. Further,
self-excitation is not clearly suited to model cyclical trends.

4 EXPERIMENTS
We now validate our approach on a (proprietary) real-world dataset.

4.1 Description of data
We use real-world bus stop arrival data from a large Australian
metropolitan area. The data contains the precise times that passen-
gers alight1 a bus at a particular stop (identified by a unique ID)
over the period of four weeks in 2017. We employ the data for the
100 bus stops that serve the majority of passengers. We exclude
weekends from the analysis, as these have qualitatively different
characteristics than weekdays.

4.2 Methods compared
Our baseline method is nonparametric Poisson regression, as sum-
marised in §2. Concretely, suppose we wish to estimate the number
of events occurring in some time interval. Suppose we partition
each day into intervals I1, . . . , IK , e.g. with a granularity of 5 min-
utes. Let us further assume that across days, the number of arrivals
in an interval Ij is governed by a Poisson random variable with
mean eµ j . Then, we can estimate the mean number of arrivals in
each interval, averaging the arrivals over days. Such a model has
been previously used to predict arrivals at bus stops [11].

We compare this method against the Poisson process in its homo-
geneous (HPP), and inhomogeneous versions (IPP) using different
activation functions: sigmoid f (z) = (1 + e−z )−1 (suffix Sig), and
1Strictly, we do not know exactly when passengers arrive to the bus stop; their alight-
ment time is an upper bound on this arrival time.

inverse square f (z) = (1+z2)−1 (suffix InvSq). For all IPP methods,
we set д(·) to be the identity activation and the number of hidden
units K = 2, as this was found to give reasonable performance. We
additionally experimented with fixed basis functions (per Equation
3), but omit details owing to space constraints.

4.3 Evaluation protocol
We compare variousmethods bymeans of howwell they can predict
future passenger arrivals at a bus stop. We use two weeks’ worth
of passenger arrival data to train the various models. These are
then used to make predictions of arrivals in the next two weeks.
Predictions are made at a 5 minute granularity; recall that for an
IPP, we predict the number of arrivals in a time interval (s, t] via∫ t
s λ(x)dx . This quantity is estimated by numerical quadrature.
For each prediction, we compute two error metrics: the mean

absolute error (MAE), and the mean square error (MSE). We fur-
ther compute the % improvement in these metrics of each method
over Poisson regression. Recall that we make predictions for 100
distinct bus stops. For each bus stop, we thus get MAE and MSE
improvement scores. We summarise the mean, and the 5% and 95%
quantile of these scores over all bus stops.

4.4 Results and discussion
We summarise our results by means of answers to central questions.

What improvement is offered over Poisson regression? Ta-
ble 1 confirms that all methods significantly improve upon Poisson
regression, which is reassuring. Of note is that the benefit is con-
sistent over all bus stops, as the 5% quantile improvement is still
significant, being on the order of 10%. Further, our IPP methods
improve slightly but consistently over the HPP method, showing
the benefit of capturing the nonlinear trend in demand.

Which bus stops see most improvement? Figure 2 shows
that in general, for bus stops that have only a few passengers, the
improvement offered by IPP over Poisson regression is significant.
This is intuitive, as when there are many passengers, we expect
even the 5 minute demand to be reasonably reliable to estimate
via Poisson regression. By contrast, with fewer passengers, data
sparsity hampers the effectiveness of this method, and calls for
parametric methods such as IPP.

What is the impact of time granularity? To further verify
our intuition from Figure 1 that Poisson regression is not suitable
at finer time granularities, we compare its performance to that
of the best performing IPP (with sigmoid activation) as the time
granularity is varied. We see from Figure 3 that at granularities
above 15 minutes, Poisson regression is comfortably superior in
terms of MAE; this is unsurprising, as at such granularity there
is sufficient data to reliably estimate the mean number of arrivals.
However, below this mark, the IPP is clearly superior.

How fast is estimation?An incontrovertible advantage of Pois-
son regression is its speed – on average over all bus stops, we find
that model estimation takes a mere 0.05 seconds. By contrast, our
IPP models take between 12 seconds to 25 seconds to estimate.
While significantly slower in relative terms, in absolute terms this
is still acceptable, and given the vast performance improvement re-
sulting from IPP, we believe the resulting tradeoff will be appealing
in practical urban mobility applications.



(a) MAE % improvement over Poisson regression

Method Mean 5% quantile 95% quantile

IPP-Sig 50.9 16.5 78.1
IPP-InvSq 49.7 15.8 77.7
HPP 49.5 15.3 77.5

(b) MSE % improvement over Poisson regression

Method Mean 5% quantile 95% quantile

IPP-Sig 62.9 33.4 85.4
IPP-InvSq 62.4 32.6 85.4
HPP 62.1 29.0 85.3

Table 1: Comparison of various methods to predict bus stop demand at 5 minute time windows.
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Figure 2: IPP performance improvement (mean and 95% C.I.) as a
function of passenger count at a bus stop.

Figure 3: Comparison of Poisson regression and IPP (mean and
95% C.I.) at varying time granularities.

5 CONCLUSION
We have shown how to forecast short term user demand for public
transport via a inhomogeneous Poisson process, using a neural
network as the underlying intensity. Compared to approaches such
as Poisson regression or homogeneous Poisson processes, this can
deal with noise inherent in fine time granularities, and can capture
the complex non-stationary trend of such demand. Experiments
on real-world bus arrival data from a large metropolitan area in
Australia validate our approach. In particular, we show benefits over
standard Poisson regression in performing short term predictions.

There are several directions for future work, such as employing
a stochastic intensity (known as a Cox process) to further capture
uncertainty, systematically exploring a suitable class of activations
for public transport data, and investigating alternate means of esti-
mating parameters for the non-convex likelihood function under a
neural network. More broadly, we hope to further study the use of
neural networks to model complex time series data.
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