
A Machine Learning Framework for Programming by Example
Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, Adam Kalai

Motivation: text processing

In Programming by Example, a user
describes a task by providing an
example of its operation. We’ll focus
on text processing tasks, such as:

which is meant to express the string
transformation (or program)

A Hopkins
A Pacino
T Hanks
T Hanks
N Cage

A Hopkins (1)
A Pacino (1)
T Hanks (2)
N Cage (1)

Probability model

We use a log-linear model for the PCFG
probabilities. The model posits that the
probability of a grammar rule is
proportional to the reliability of all clues
that suggest that rule.

The parameters are estimated by
maximizing the log-likelihood of the
training data.

Pr[r|z; ✓] / exp

0

@
X

i:r2ci(z)

✓i

1

A

0

10

20

30

40

50

60

Inference timeout (secs)

T
e
st

 t
yp

e
 1

 e
rr

o
r

ra
te

 (
%

)

2−4 2−3 2−2 2−1 20 21 22 23 24

Baseline
Learning

1 2 3 4 5 6 7 8 9 N/A
0

50

100

150

200

Program depth

#
 o

f
in

st
a

n
ce

s

Baseline
Learning

Experimental results

Learning dramatically lowers the error
rate and inference time compared to
naïve search.

Further, learning is able to learn more
nested function compositions than the
naïve search.

Baseline inference time (secs)

L
e

a
rn

in
g

 in
fe

re
n

ce
 t

im
e

 (
se

cs
)

2−10 2−8 2−6 2−4 2−2 20 22 24
2−10

2−8

2−6

2−4

2−2

20

22

24

Experimental setup

We developed a prototype of our
learning approach, based on a library
of around 100 base subroutines and
around 100 clues.

We evaluated the learning method on
a corpus of 280 examples, largely
based on queries from Excel help
forums. Sample cases:

Input Output
Adam Ant\t1A St.
\t90113

90113

28/6/2010
June the 28th
2010

612 Australia
case 612: return
Australia;

x y

Clues

Clues connect features of the input to
the grammar rules they suggest may
be useful. This injects domain
knowledge into the problem.

Formally, a clue is a function that
takes as input the example (x,y), and
returns a subset of grammar rules.

String s in input but not
output?
Duplicates in input but
not output?
Numbers on each input
but not output line?

…

E à s
LIST à { E }
LIST à dedup(LIST)
LIST à count(LIST)

…

✓

PCFG representation

We define a PCFG where each rule
corresponds to a particular subroutine. A
program is a trace under the PCFG, viz.
composition of rules (i.e. subroutines).
The probability of a program for a given
input z = (x,y) thus depends on the
probabilities of its constituent rules:

Rule Prob.
LIST→split(x,DELIM) 0.3
LIST→concat(CAT,CAT,CAT) 0.3
LIST→dedup(LIST) 0.2
LIST→count(LIST,LIST) 0.2

Pr[f |z; ✓] =
Y

r2Rf

Pr[r|z; ✓]

f(x)

Q: Given (x, y), can we learn f?

A: Given a library of subroutines –
e.g. dedup, concat – we could
search over compositions of them.

Catch:
•  Naïve search is not scalable!
•  How to rank all consistent f’s?

f(x) = dedup(concat(x,” ”,
xxxxxconcat(“(”,count(x,x),“)”)))

Our approach

We propose an ML framework to
speed up search f by:
•  Representing a program as the

derivation of some PCFG
•  Defining clues that link features of

(x, y) to likely PCFG rules
•  Learning each clue’s reliability,

thus determining the PCFG
probabilities

In the above example, the most likely
grammar probabilities could be e.g.:

With these probabilities in hand, we
search over programs in order of
how their grammar probability i.e. the
most probable consistent f is chosen.

System usage

Once the system is trained, we may
apply it to a new input (x, y) as follows:

1.  Evaluate each clue on (x, y).
2.  Using the probability model, assign

probabilities to the grammar rules.
3.  Enumerate over programs in

decreasing order of probability, and
return the first consistent with (x,y).

