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Motivation: text processing 
 
In Programming by Example, a user 
describes a task by providing an 
example of its operation. We’ll focus 
on text processing tasks, such as: 
 
 
 
 
 
 
 
which is meant to express the string 
transformation (or program) 
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Probability model 
 
We use a log-linear model for the PCFG 
probabilities. The model posits that the 
probability of a grammar rule is 
proportional to the reliability of all clues 
that suggest that rule. 
 
 
 
 
The parameters  are estimated by 
maximizing the log-likelihood of the 
training data. 
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Experimental results 
 
Learning dramatically lowers the error 
rate and inference time compared to 
naïve search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Further, learning is able to learn more 
nested function compositions than the 
naïve search. 
 

Baseline inference time (secs)

L
e

a
rn

in
g

 in
fe

re
n

ce
 t

im
e

 (
se

cs
)

2−10 2−8 2−6 2−4 2−2 20 22 24 
2−10 

2−8 

2−6 

2−4 

2−2 

20 

22 

24 

Experimental setup 
 
We developed a prototype of our 
learning approach, based on a library 
of around 100 base subroutines and 
around 100 clues. 
 
We evaluated the learning method on 
a corpus of 280 examples, largely 
based on queries from Excel help 
forums. Sample cases: 
 
 
 
Input Output 
Adam Ant\t1A St.
\t90113  

90113 

28/6/2010 
June the 28th 
2010  

612 Australia 
case 612: return 
Australia;  

x y

Clues 
 
Clues connect features of the input to 
the grammar rules they suggest may 
be useful. This injects domain 
knowledge into the problem. 
 
 
 
 
 
 
 
Formally, a clue is a function that 
takes as input the example (x,y), and 
returns a subset of grammar rules. 
 

String s in input but not 
output? 
Duplicates in input but 
not output? 
Numbers on each input 
but not output line? 

… 

E à s 
LIST à { E } 
LIST à dedup(LIST) 
LIST à count(LIST) 

… 

✓

PCFG representation 
 
We define a PCFG where each rule 
corresponds to a particular subroutine. A 
program is a trace under the PCFG, viz. 
composition of rules (i.e. subroutines). 
The probability of a program for a given 
input z = (x,y) thus depends on the 
probabilities of its constituent rules: 
 
 

Rule Prob. 
LIST→split(x,DELIM) 0.3 
LIST→concat(CAT,CAT,CAT) 0.3 
LIST→dedup(LIST) 0.2 
LIST→count(LIST,LIST) 0.2 

Pr[f |z; ✓] =
Y

r2Rf
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f(x)

Q: Given (x, y), can we learn f? 
 
A: Given a library of subroutines – 
e.g. dedup, concat – we could 
search over compositions of them. 
 
Catch: 
•  Naïve search is not scalable! 
•  How to rank all consistent f’s? 

f(x) = dedup(concat(x,” ”,          
xxxxxconcat(“(”,count(x,x),“)”))) 

Our approach 
 
We propose an ML framework to 
speed up search f by: 
•  Representing a program as the 

derivation of some PCFG 
•  Defining clues that link features of 

(x, y) to likely PCFG rules 
•  Learning each clue’s reliability, 

thus determining the PCFG 
probabilities 

 
In the above example, the most likely 
grammar probabilities could be e.g.: 
 
 
 
 
 
 
 
With these probabilities in hand, we 
search over programs in order of 
how their grammar probability i.e. the 
most probable consistent f is chosen. 

System usage 
 
Once the system is trained, we may 
apply it to a new input (x, y) as follows: 
 
1.  Evaluate each clue on (x, y). 
2.  Using the probability model, assign 

probabilities to the grammar rules. 
3.  Enumerate over programs in 

decreasing order of probability, and 
return the first consistent with (x,y). 

 


