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Abstract

Given a road network, a fundamental object of interest is the matrix of origin des-
tination (OD) flows. Estimation of this matrix involves at least three sub-problems: (i)
determining a suitable set of traffic analysis zones, (ii) the formulation of an optimisation
problem to determine the OD matrix, and (iii) a means of evaluating a candidate estimate
of the OD matrix. This paper describes a means of addressing each of these concerns
using machine learning. We propose to automatically uncover a set of fine-grained traffic
analysis zones based on observed link flows. We then employ appropriate regularisation
to encourage the estimation of a sparse OD matrix. We finally propose to evaluate a can-
didate OD matrix based on its predictive power on held out link flows. Analysis of our
approach on a real-world transport network reveals that it uncovers a set of detailed zones,
and a corresponding OD matrix that accurately predicts observed link flows.

Keywords: OD estimation, traffic analysis zones, sparsity
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1 Problem statement

Consider a directed graph G representing a road network, where the nodes in the graph rep-
resent traffic intersections, and the links represent road segments between intersections. We
denote the set of nodes by N and the set of links by L, and will often write G = (N,L). Sup-
pose also that there is a vector y ∈ N|L|+ , representing the count of steady-state traffic flow on
each road segment over some time period (e.g. the AM peak). The matrix of origin destina-
tion (OD) flows is a fundamental object of interest in the study of the network G (Ortuzar and
Willumnsen, 2011, Chapter 5). In principle, this is a |N| × |N| matrix which represents, for
any pair of nodes (v, v′) ∈ N ×N, the steady-state flow of traffic1 that begins at v and ends at
v′. In practice, one typically focusses on origins and destinations comprising an aggregation
of nodes2; specifically, we identify a special set of virtual nodes Z, which represent the focal
points of certain traffic analysis zones, and consider the |Z| × |Z| OD matrix, which we write
as X. Each virtual node is connected via a number of virtual links to nodes in N. The presence
of such a link originating from z represents that the corresponding non-virtual node belongs to
zone z; each z ∈ Z thus represents an aggregation of nodes in the original graph.

The OD matrix is a valuable tool for understanding and forecasting usage patterns of a network.
Given the OD matrix, one can then make forecasts about traffic flows on a different network
G′ = (N′,L′), under the assumption that the networks G and G′ possess commensurate OD
flows. For example, the network G′ might be identical to G, except that certain links are
removed; the forecast flows may then be used to assess the impact this change has on the
network. The predicted flows may be generated by any route assignment model, such as for
example one based on a user equilibrium assumption (Sheffi, 1985, Chapter 3).

This paper is concerned with the OD estimation problem. Here, the aim is to recover X given
the topology of the road network G, observed link flows y, and the definition of the traffic
analysis zones Z. Any attempt at OD estimation faces several entwined questions:

• how does one define the traffic analysis zones Z? As the choice of Z defines the precise
pairwise flows we are interested in estimating, it plays a crucial role in determining
whether the resulting OD matrix can be reliably estimated, and whether it is useful for
analysis and forecasting.

• given Z and link flows y, how does one estimate the OD matrix X? The OD matrix can
be understood as the solution to a potentially ill-posed linear system. Its estimation thus
requires some means of choosing amongst potentially multiple candidate OD matrices.

• given an estimate of the OD matrix, X̂, how does one evaluate its efficacy? As there
is typically no direct ground truth for the OD matrix, any analysis of the quality of its

1More generally, one may be interested in time-varying OD matrices. While the topic of considerable research
in its own right (Cascetta et al., 2013), we do not consider this problem here.

2While virtual nodes aggregate the original nodes in the graph, one still retains the original nodes for all
subsequent modelling and analysis. This is because the original nodes may be used as intermediate nodes for
travelling from one zone to another.
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estimate must rely on auxiliary measures.

In this paper, we explore techniques to answer all three questions. In a nutshell, we propose:

• the automated design of fine-grained traffic analysis zones, based on the intuition that a
good set of analysis zones has minimal intra-zonal flow (i.e. flows that begins and ends
at nodes within the same traffic analysis zone);

• an OD estimation procedure that encourages the estimation of sparse OD matrices,
which, in addition to mitigating issues of ill-posedness, are generally interpretable;

• the use of held-out flow predictions to evaluate efficacy of an estimated OD matrix X,
by viewing OD estimation as a type of general regression problem.

We evaluate our approach on a real-world network, and find that we can discover an intuitive
zoning of the network, and learn an OD matrix that reliably predicts link flows.

This paper is organised as follows. In §2, we discuss the above three challenges in more detail,
and describe prior work in the literature on addressing these challenges. Then, in §3, we detail
the elements of our solution, which attempt to employ machine learning to aid in solving the
estimation problem. We then evaluate our method on a real-world network in §4. We conclude
in §5 with some discussion on areas for future research.

2 Challenges of OD estimation

In this section, we review the challenges involved in each of the three items we described
earlier. We also discuss existing work that we are aware of to deal with these challenges.

2.1 Zoning

To appreciate the challenges inherent in the design of traffic analysis zones Z, it is first worth
noting the implications of two extreme choices of Z. Ideally one would like to set Z = N, so
that the OD matrix comprises flows between each pair of intersections. The drawback of this
choice is that, as shall be made precise in the next section, this potentially leads to a highly
ill-posed estimation for the OD matrix, as one needs to solve for |N|2 unknowns given only
|L| equations. A computational drawback is that at increasing level of granularity, estimating
|N|2 parameters may be infeasible on networks where |N| ≈ 1000.

Conversely, by choosing |Z| to be small, one mitigates ill-posedness, and there are no compu-
tational barriers. However, this comes at a significant expense: intra-zonal flows – i.e. flows
between any pair of nodes v, v′ that are in the same zone – are ignored. Assuming that the OD
matrix is to be used for forecasting under changes to the network, it is likely unacceptable to
ignore the impact of any change to high-volume links.
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Between these two extremes, then, one faces a tradeoff between statistical and predictive pre-
cision. The precise choice as to this tradeoff is often left as a specification for a domain expert
(Ortuzar and Willumnsen, 2011). There have been alternate proposals that attempt to make
the procedure more automated. A notable example is the work of Martı́nez et al. (2009), who
propose an optimisation framework that takes into account several desiderata for the design
of analysis zones, including the minimisation of intra-zonal flows as mentioned, but also the
geographic contiguity of the resulting partition of the road network. The framework relies on
the availability of a sufficiently detailed prior OD matrix derived from survey data, however.

2.2 OD estimation

Suppose we have fixed our traffic analysis zones Z, so that the OD matrix X ∈ N|Z|×|Z|+ . For
convenience, we shall interchangeably refer to the OD matrix by X and its vectorised form,
x = vec(X) ∈ N|Z|

2×1
+ . There are roughly three approaches to estimating the OD matrix

(Cascetta, 1984):

• The simplest is direct sample estimation, wherein surveys or interviews are conducted to
determine common origin-destination pairs for individuals. Aggregating these responses
gives estimates of the OD matrix cells.

• Survey information is often incomplete, and thus may provide no (or highly biased)
information about certain OD pairs. Inferences can nonetheless be made by performing
model estimation, wherein a particular model is assumed to relate OD flow to several
explanatory variables, such as the mean income of residents with a zone. A well-known
instance of this approach is the gravity model (Ortuzar and Willumnsen, 2011, pg. 182),
(Zhang et al., 2003).

• Survey information is often based on small samples, and thus unreliable. A richer class
of techniques are those based on estimation from loop counts (Willumsen, 1981). Loop
counts embed information about OD and route choices, and are typically more plen-
tiful and reliable than survey data. These are sometimes referred to as structured and
unstructured methods, or parameter calibration and matrix estimation methods respec-
tively (Tamin and Willumsen, 1989).

We will focus on the latter class of methods, noting that they may be extended to exploit survey
information if it is available. Examples of methods that exploit link counts include those based
on maximum entropy modelling (Van-Zuylen and Willumsen, 1980), maximum likelihood
estimation (Spiess, 1987), and Bayesian inference (Maher, 1983). A basic fact that underlies
these approaches is that the OD matrix x is related to the link flows y via the flow-conservation
equation,

Ax = y, (1)

where A ∈ [0, 1]|L|×|Z|
2 is the assignment map, whose entries denote the probability of a

particular link being used for travel between an OD pair. Estimating the OD matrix is thus

5



equivalent to solving this linear system. There are at least two challenges with doing so. First,
as noted in the previous section, the linear system is ostensibly strongly ill-posed or undeter-
mined: we have |Z|2 unknowns and |L| equations. This means there may not be a unique x
satisfying Equation 1. Second, in congested scenarios, the assignment map A itself depends
on the optimal OD matrix, for example based on an equilibrium assignment. Therefore, the
design matrix must itself be estimated from the link flows.

A strategy to mitigate ill-posedness is to inject some prior or domain knowledge into the esti-
mation problem. Typically, this is done by relying on prior OD estimates collected e.g. from a
survey. Suppose xold denotes this prior estimate of the OD matrix. Then, the generalised least
squares estimator (Cascetta and Nguyen, 1988) aims to find

min
x�0

(Ax− y)TW−1(Ax− y) + (x− xold)TV−1(x− xold), (2)

where W,V are appropriate covariance matrices for the distributions of the prior Pr[x] and
likelihood Pr[y|x; A] respectively. If one ignores the nonnegativity constraint, the above ad-
mits a closed-form solution. When interpreted from a Bayesian perspective, one may also
obtain an estimate of the posterior covariance of the OD matrix (Cascetta and Nguyen, 1988).

A strategy to overcome the fact that A itself depends on X is to cast the problem in the
framework of bilevel programming (Yang et al., 1992). Practically, what this amounts to is the
alternating solution of the linear system with respect to X, and an appropriate objective for A
that loads X onto the network. The latter may be cast as an convex problem for a range of
equilibrium based assignments, such as a deterministic user equilibrium (Sheffi, 1985).

Some comments on the ill-posedness of Equation 1 are appropriate. First, ill-posedness is
guaranteed if there is some x � 0 such that Ax = 0; this is because x can then be added
onto any candidate solution to Equation 1 without affecting the flow estimates. Second, the
non negativity constraint on x cannot be ignored in assessing the uniqueness of the linear
system: Wang and Tang (2009); Wang et al. (2011) have shown that when there exists a sparse
solution to the system, it may be the only solution. Bierlaire (2002) proposed a surrogate
measure of the degree of ill-posedness of the system, taking this fact into account. Third, a
pleasant consequence of using a prior OD matrix xold is that the objective corresponding to e.g.
Equation 2 is strictly convex (assuming the diagonal entries of V are positive), meaning that
there will in fact be a unique solution: amongst all OD matrices that have the same predicted
link flows, we seek the one that is closest to the given prior OD matrix. Fourth, the system is
potentially well-posed if one considers correlations in flows across multiple days. For example,
Vardi (1996) showed that under mild assumptions, the OD matrix is identifiable for Poission
models. Hazelton (2001) showed that second-order information present due to temporal trends
may also induce identifiability.

2.3 Evaluation

Perhaps the ideal means of assessing the quality of OD estimates is in the ability to accurately
forecast traffic flows under a changed network G′ with commensurate demands; however, ma-
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jor network changes of this type are not common, making it difficult to acquire the necessary
data. Consequently, much prior work on OD estimation evaluates the efficacy of the estimation
procedure by applying it to a synthetic network where the ground-truth OD is known. While
sensible, it is of interest to be able to compare different OD estimates on a real network where
the ground-truth is of course unknown. The challenge is determining a suitable auxiliary mea-
sure of quality. We are not aware of much work that directly addresses this issue. A natural
idea is to assess its predictive power in forecasting link flows at future time periods, but the
ill-posedness issue arises: suppose the flow-conservation equation (Equation 1) is ill-posed, so
that Ax1 = Ax2 for some x1 6= x2. Then several OD matrices will yield exactly the same link
flows. An alternative is to resort to interpretability, but this may be difficult to achieve with
more fine-grained estimates.

3 Metholodogy

We are now in a position to describe our methodology, beginning with our scheme for the
automated design of traffic analysis zones.

3.1 Zoning

Our design of traffic analysis zones hinges on a few simple observations that are worth explicat-
ing. First, as noted previously, while a per-node zoning scheme (Z = N) poses statistical and
computational challenges, it is the gold standard in terms of modelling capability; any other
zoning scheme necessarily contains no more information, by virtue of aggregation. Therefore,
the per-node zoning serves as a useful starting point from which to begin any attempt at zoning.

Second, it is not necessary to associate every node v ∈ N with a traffic analysis zone. Crucially,
this does not preclude any links involving them being a component of the paths between some
origin-destination pair. Consider a network with a single source and sink node, and several
intermediate nodes. Here, only the source and sink need be designated as belonging to a zone;
the other nodes may safely be omitted from the zoning analysis.

Third, as our primary interest is in the use of the OD matrix to forecast the effect of changes
to the network, our primary concern is the minimisation of intra-zonal flow3. This means that,
minimally, we require that for the high volume links at some suitable threshold τ ,

LHV
τ = {e ∈ L : ye ≥ τ},

the majority of node pairs relying on these links must not be assigned to the same zone.

Based on this, we consider a simple zoning scheme that is derived from an initial per-node
zoning. Performing a basic route assignment with such a zoning allows us to study the likely

3There may of course be other desiderata or constraints when constructing a zoning, for example, respecting
suburban or demographic divisions. We do not directly consider these in this paper, as our goal is simply to be
able to accurately forecast flows.
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explanations for traffic on each high volume link in LHV
τ . Our intuition is that if a pair of nodes

is seen to rely on several such high volume links, then they likely4 represent areas of interest.
Thus, assigning each of these nodes into a separate zone encourages appropriate assignment
of flow for the high volume links. Roughly, the resulting zones represent dominant regions of
in- and/or out-flow.

In detail, we perform zoning as follows.

1. First, employ a per-node zoning scheme, and assign traffic onto the corresponding net-
work using an appropriate route assignment algorithm. Following our earlier discussion,
one simple option is to employ a deterministic user-equilibrium assignment. The result
of the route assignment is an assignment map A ∈ [0, 1]|L|×|N|

2 .

2. The matrix A encodes, for each link, the OD pairs that rely on it for travel. Given a link
e ∈ L, and a suitable parameter δ ∈ [0, 1], let

Pδ(e) = {(v, v′) ∈ N ×N : Ae(v,v′) ≥ δ}

denote the pairs of nodes that rely on that link e for travel with probability at least δ.

3. As we have the observed link flows y, we can compute LHV
τ for an appropriate threshold

τ . We then count, for each pair of nodes (v, v′), the number of high volume links that
are relied on for travel with probability bigger than δ:

c(v, v′) =
∑
e∈LHV

τ

J(v, v′) ∈ Pδ(e)K. (3)

4. We finally ensure that for each high volume link e ∈ LHV
τ , there is at least one OD pair

in Pe that is selected for our final zoning. We do this by scanning through all the high
volume links, and collecting the OD pair in Pe which has the highest count given by
Equation 3. That is, beginning with an empty set of OD pairs P = ∅, we update for each
e via

P← P ∪

{
Argmax
(v,v′)∈Pδ(e)

c(v, v′)

}
.

We then simply assign each node in P to a separate zone.

Some comments are in order. First, the route assignment in step (1) requires an initial OD
estimate; if this is present, it may be used. In our experiments, we did not have access to a
per-node OD matrix. Therefore, we simply employed a uniform OD matrix over the sites;
while not ideal, we found this to provide good results on the real-world network we have
experimented with. Second, the choice of τ determines our tolerance for potentially missing

4We say “likely” because our routing assignment with a per-node zoning will have to rely on a rough estimate
of the OD matrix at this granularity. Bias in this matrix may be reflected in the corresponding routing.

8



out flow on certain links. The choice of δ similarly determines how crucial a particular OD
pair is to explaining traffic on a link. While there is the potential for automated setting of these
parameters in turn, we simply experimented with a few values to determine which minimised
the amount of intra-zonal flow, as well as the number of zones itself.

3.2 OD estimation

Having defined a set of fine-grained traffic analysis zones, we turn to the problem of estimating
the OD matrix x. Our basic idea is that for a fine-grained zoning, the underlying OD matrix
should be sparse: for most OD pairs, there should be exactly zero flow between that pair. This
is because our intuition is that the traffic observed in the network should largely be the result of
the travel between a small subset of the |Z|2 candidate pairs, which e.g. reflects that during the
AM peak, we expect there to be a few popular destinations (corresponding to office locations,
parking lots, and so on), with most other zones seeing minimal in-flow. We may similarly
expect most origins of flow in a business district to come from the boundaries of the network
(corresponding to suburbs and residential areas).

The question then is how we can achieve the sparsity in the OD matrix. Following the GLS
objective (Equation 2), we will consider an objective of the form

min
x�0

(Ax− y)TW−1(Ax− y) + Ω(X). (4)

Here, W is a diagonal matrix whose entries are of the form

(∀e ∈ L) Wee = yβe

for some β ∈ R+. This represents non-isotropic noise in the observed link flows, with higher
link flows (corresponding to more heavily used roads) subject to higher errors. When β = 1,
this is seen to mimic a Poisson model. Further, Ω denotes our generic regulariser, which is of
the form

Ω(X) = λ1||x||1 + λ2(x− xold)TV−1(x− xold). (5)

Here, xold is a prior OD matrix, derived for example from survey data. The matrix V is
diagonal matrix, with entries of the form

(∀z ∈ Z) Vzz′ = (Xold
zz′)

α

for some α ∈ R+. We shall refer to the term (x − xold)TV−1(x − xold) as an `2 regulariser,
as it is a weighted version of the `2 norm of x− xold.

The term ||x||1 =
∑|Z|

i,j=1 |Xij| encodes the belief that the true OD matrix is sparse. The
intuition for such a term inducing sparsity follows by interpreting it as a convex relaxation to
the `0 “norm”, which is exactly the number of non zeros in x. We shall refer to this term as
an `1 regulariser. The use of `1 regularisation to discover sparse solutions has seen wide use
in compressed sensing (Donoho, 2006) and in applications of the Lasso algorithm (Tibshirani,
1996).
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It is worth noting that for the case where λ1 = 0, our objective exactly matches the classical
one considered by generalised least squares (GLS) estimators of the OD, or equivalently ap-
propriately set-up probabilistic models for the likelihood and prior. For λ1 > 0, λ2 > 0, the
regulariser can be seen as a variant of the elastic net (Zou and Hastie, 2005).

The idea of using `1 regularisation for problems involving OD estimation is not new. It has
been proposed previously in at least Chawla et al. (2012); Mardani and Giannakis (2013);
Sanandaji and Varaiya (2014), albeit with slightly different contexts and motivations: the for-
mer two works are concerned with robustness to anomalies, and the latter with sparsity in path
flows. However, these works do not explicitly consider constraint that our OD matrix elements
must be nonnegative. While this constraint seems innocuous, it has some important implica-
tions. First, it has been recently observed that a non negativity constraint by itself may induce
sparse solutions (Slawski and Hein, 2012; Meinshausen, 2013). The reason for this is a cer-
tain “self-regularising” property of the design matrix, which in our case is the assignment map
A. Indeed, Meinshausen (2013) observed in synthetic experiments on network tomography
that non negativity is robust as a regulariser. This fact suggests that it is not a priori obvi-
ous that the flow conservation equation (Equation 1) is ill-posed; the non negativity constraint
may sufficiently regularise the system so as to guarantee uniqueness (Wang and Tang, 2009).
Minimally, by acting as a regulariser, it may encourage the estimation of OD matrices that are
useful predictors under changes to the network.

Second, the non-negativity of x allows us to simplify the regulariser to

Ω(X) = λ11
Tx + λ2||x− xold||22.

The objective now becomes differentiable everywhere, allowing for the easy application of
gradient-based methods. We experimented with the LBFGS-B optimiser (Zhu et al., 1997),
which performs quasi-Newton minimisation while respecting the constraint {x � 0}. Other
approaches are of course possible, including the use of the general purpose quadratic program-
ming solvers, or more general convex optimisation solvers such as the CVX toolbox (Grant and
Boyd, 2014, 2008).

3.3 Evaluation

Treating OD estimation for fixed A as a type of regression problem, a natural strategy to
evaluate an OD matrix is based on prediction on flows that are held-out during the estimation
procedure. This follows the general procedure for evaluating any model estimated from data
(Hastie et al., 2009, Chapter 7). The idea is as follows:

1. partition the set of links L into two sets, L1 and L2

2. estimate the OD matrix based only on link flows from L1

3. evaluate the predictive performance only on link flows from L2.
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This process may be repeated many times. The average of the performance computed in step
(3) may be taken as an estimate of the predictive power of the estimated OD matrix x̂.

Formally, step (2) is equivalent to solving our objective in Equation 4 with the vector ỹ, defined
as

ỹe =

{
ye if e ∈ L1

0 else,

and the matrix Ã, defined as

Ãep =

{
Aep if e ∈ L1

0 else.

Put plainly, we simply ignore the links in L2 when estimating the OD matrix x. Once we
have an estimate x̂, we may of course compute the predicted flows on links in L2 via the full
assignment map A. Step (3) then requires that we summarise the fidelity of the predictions on
these links alone.

A few comments are in order. First, the partitioning of the links into the two sets is independent
of the zoning procedure. A simple strategy is to just perform a random partition. Second, it is
essential that step (3) operate only on links in L2: as the links in L1 were used to estimate x̂,
the performance on these links is a highly biased estimate of the true predictive performance
of x̂. Third, the splitting is only performed for the OD estimation. It does not mean that the
links are physically removed, and in particular, they are still a part of the assignment procedure
employed to find the assignment map A. The value of this split is that we can then evaluate
the predictive performance of X on the second, or held-out, set of links.

A subtlety is that because of the risk of ill-posedness, it may well be that there are multiple OD
matrices that have identical performance on held-out links as well. However, as we encourage
agreement with the prior OD matrix, xold, and further regularise the matrix to possess sparsity
(which is an application of our domain knowledge), we believe that good held-out performance
of such a regularised estimate is indicative of reliable estimation. In our experiments, we shall
further study the interpretability of the matrix, as well as perform a case-study on real link
flows.

4 Evaluation on real-world traffic network

We now present results confirming the efficacy of our approach.

4.1 Description of data

We conduct experiments on traffic counts obtained for an urban area during a two-week pe-
riod in 2012. The data comprises observations for 155 intersections and 310 road segments
connecting them, during the period of 7AM - 10AM.
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One challenge with the data is the lack of a suitable prior OD matrix. Existing public survey
data only provides a limited number of samples, which is insufficiently reliable to use as a
benchmark. In our experience, even simple smoothing models, such as the gravity model, do
not offer significant improvement in the performance of these estimates. Therefore, we chose
to use a naı̈ve uniform prior xold as our prior OD matrix. All entries in this matrix are equal to
T
|Z|2 , with T being the total number of trips in the network. The number T was chosen based on
domain knowledge; this initial guess may of course be refined with techniques such as bilevel
programming.

4.2 Experimental aims

In brief, the aims of our experimental study are:

• To assess the quality of the zoning induced by our approach described in §3.1. In par-
ticular, we assess how successful this approach is in attaining our goal of minimising
intra-zonal flow, and how it compares to a manually defined zoning based on domain
knowledge.

• To determine the impact that enforcing of the nonnegativity constraint has on the quality
of the OD estimates, in terms of predictive power, as well as sparsity of the resulting
solution. We further aim to assess how adding `2 and `1 regularisation affect these
properties.

• To determine the value of assessing OD estimates using held-out flows, by for example
demonstrating that it rejects estimates that grossly overfit to the observed link flows.

We thus vary three knobs, and report results for each ensuing combination:

• For the Zoning, we report results on both a manual, coarse-grained zoning determined
by a domain expert, and the fine-grained zoning determined by our approach (§3.1).

• For the Learner, we either simply report the prior OD matrix (“None”), minimise the
objective in Equation 4 without a nonnegativity constraint (“GLS”), or minimise the
objective in Equation 4 with the non negativity constraint (“NN-GLS”). For GLS, the
final solution is thresholded at 0.

• For the Regulariser Ω, we test no regularisation (λ1 = λ2 = 0 in Equation 5), `2 regu-
larisation to the prior OD matrix (λ1 = 0, λ2 > 0), `1 regularisation to induce sparsity
(λ1 > 0, λ2 = 0), and a combination of `1 and `2 regularisation (λ1, λ2 > 0).

We now describe the results of our zoning scheme.
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FIGURE 1: Visualisation of results automated zoning procedure. The red (large) dots denote nodes
assigned to a separate zone, and the blue (small) dots denote all other nodes. (The node layout corre-
sponds to geographic location. Precise coordinates are omitted for data confidentiality reasons.)

4.3 Zoning results

The manual zoning of the network performed by a domain expert comprises a total of 22
zones. (We call this zoning “coarse-grained” to contrast it with the automated zoning we shall
subsequently investigate.) The design of these zones is guided by geographic contiguity, and
domain knowledge as to certain popular regions of interest in the network. While the result
is an intuitive partition of the network, it suffers from the problem of missing the flows on
certain high volume links. This is illustrated in Figure 2a, which compares the predicted and
true flows on each link.

We applied our zoning procedure specified in §3.1, with parameters τ = 1000 and δ = 1. This
gave a reasonable tradeoff between maximising inter-zonal flow while minimising the number
of zones returned. Our procedure resulted in a total of 42 zones, which is only moderately
higher than the coarse zoning (though the quadratic growth in OD pairs means it corresponds
to 400 extra parameters to be estimated). Recall that our zones comprise individual nodes in
the network. Figure 1 shows an overlay of these “node zones” (red) and the standard nodes
(blue). This evinces one intuitive property of the zoning, namely, they provide a good coverage
of the boundary of the network. We shall now see that the zoning also helps improve prediction
of link flows by OD estimation.

4.4 Held-out prediction results

We now report results on the quality of various OD estimation schemes. Following our dis-
cussion in §3.3, we report held-out link flow performance of the OD estimates derived from
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each method. As performance measures, we report the RMSE, MAE, and Spearman’s ρ of our
predicted link flows ŷ against the true link flows y. These are defined as

RMSE(y, ŷ) =

√
1

|L|
∑
e

(ye − ŷe)2

MAE(y, ŷ) =
1

|L|
∑
e

|ye − ŷe|

ρ(y, ŷ) = 1− 6

∑
e(re − r̂e)

2

|L|(|L|2 − 1)
,

where r, r̂ represent the ranks of the links according to the flows y, ŷ. We normalise the
RMSE and MAE metrics based on that of the trivial baseline ȳ which predicts the mean and
median respectively of the observed link flows, i.e. we report RMSE(y,ŷ)

RMSE(y,ȳ)
. (This is akin to the

standard R2 coefficient of determination, which reports normalised mean squared errors.) Any
method must thus attain a normalised score of less than 1 to be considered useful. We call
these normalised scores the NRMSE and NMAE respectively.

Table 1 summarises these performance measures from 5 independent trials of partitioning the
links. Overall, we find that

• simply relying on the prior OD matrix performs poorly in terms of RMSE and MAE,
indicating the value of doing some form of optimisation based on link flows.

• our fine-grained zoning results in superior held-out predictions compared to the manu-
ally defined, coarse-grained zoning. This is unsurprising, as the latter is simply unable
to offer reasonable predictions for intra-zonal flows. (Observe that when the Learner
is “None”, it is expected for the fine-grained zoning to perform worse than the coarse-
grained counterpart, as a uniform distribution in the former is likely highly biased.)

• imposing a nonnegative constraint on the OD matrix during estimation has a non-trivial
impact on performance: we find that NN-GLS outperforms plain GLS for both the
coarse- and fine-grained zoning, when both do not employ any additional regulariser.

• NN-GLS by itself is competitive with GLS and `1 regularisation for the fine-grained
zoning. We shall subsequently see that this is also true in terms of the sparsity of the
solutions.

• `2 and `1 regularisation generally improve performance when used with GLS, with `2
being slightly more useful, by virtue of shrinking towards prior estimates of the OD.
Their combination yields commensurate performance to either regulariser individually.
Employing `1 regularisation has the advantage of improving sparsity of the resulting
solution, as we shall see.

Figure 2 shows a scatterplot of the predicted versus true link flows with both the coarse- and
fine-grained zoning after performing NN-GLS with `1, `2 regularisation. As expected, the fine-
grained zoning results in a better fit to the link flows. Also of interest is the fact that there are
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FIGURE 2: Scatter plot of predicted versus true link flows. (The axes’ scales are unlabelled for data
confidentiality reasons.)

certain links with a moderate amount of flow (≈ 2500) that are missed by the coarse-grained
zoning; these are a result of intra-zonal flows that cannot be captured by the manually defined
zones.

It is of interest to study the sparsity of the estimates resulting from the various methods. For the
fine-grained zoning, we find that GLS with `2 regularisation, while accurate in terms of predic-
tive power, has 73% of entries with flow greater than 0. By contrast, GLS with `1 regularisation
reduces this to 17%. Of interest then is that NN-GLS, with no regularisation, produces an even
sparser OD matrix, with only 14% of entries greater than 1; this is consistent with the theoreti-
cal findings of (Slawski and Hein, 2012; Meinshausen, 2013) that non negativity may by itself
induce sparsity. Adding `1 and `2 brings the sparsity level up to 22%, which is expected as
the `2 regularisation encourages estimates towards the (nonzero) prior OD. Figure 3 visualises
the OD matrix for each of these approaches, where each figure is simply a heatmap of the
estimated flows between each OD pair. We see that in general, some dominant entries are dis-
covered by all approaches. However, GLS with `2 regularisation is notable in inducing many
small, but non-zero estimates.

5 Conclusion

This work proposed a strategy for the estimation of a sparse, fine-grained OD matrix. In
particular, we proposed a scheme for constructing a fine-grained zoning, based on the intuition
that we wish to consider OD pairs that explain traffic on high-volume links. We then discussed
how to encourage the estimation of a sparse OD matrix, using `1 regularisation. We also noted
the non-trivial role that nonnegativity may play in the sparsity of OD estimates. We finally
discussed how held-out link flow prediction can be used to assess the quality of OD estimates.
Experimental results on a real-world network show encouraging results for our approach.

There are several avenues for future work. One is to do with the use of bilevel programming
to estimate the OD matrix, which we expect will improve performance. A distinct approach
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(a) GLS with `2. (b) GLS with `1.

(c) NN-GLS. (d) NN-GLS with `1, `2.

FIGURE 3: OD matrix estimates for various approaches. (Best viewed in colour.)

is to directly estimate path flows. This brings a different set of advantages and disadvantages:
one the one hand, one does not need to rely on an alternating optimisation, but on the other
hand, one has to estimate a potentially exponential number of variables. The latter fact makes
sparsity inducing regularisers a natural candidate, and indeed this has been explored in very
recent work (Sanandaji and Varaiya, 2014). It is of interest to see whether the trace norm
regulariser may also be used to improve results, as explored in (Mardani and Giannakis, 2013).
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TABLE 1: Held-out flow prediction results of various zoning schemes and learners. The reported
numbers are the mean and standard deviation over 5 independent trials. Lower values of the NRMSE
and NMAE are better; higher values of ρ are better.

Zoning Learner Ω NRMSE NMAE ρ

Coarse None NA 2.3096 ± 0.1875 2.1436 ± 0.1914 0.6532 ± 0.0338

Coarse GLS None 2.3497 ± 1.1177 1.7862 ± 0.7042 0.2913 ± 0.1137

Coarse GLS `2 0.7636 ± 0.0463 0.6479 ± 0.0581 0.7228 ± 0.0249

Coarse GLS `1 0.7860 ± 0.0453 0.6733 ± 0.0231 0.6898 ± 0.0317

Coarse GLS `1, `2 0.7653 ± 0.0208 0.6506 ± 0.0290 0.7149 ± 0.0152

Coarse NN-GLS None 1.2243 ± 0.4844 0.8605 ± 0.1530 0.5116 ± 0.1070

Coarse NN-GLS `2 0.7775 ± 0.0691 0.6542 ± 0.0389 0.6938 ± 0.0551

Coarse NN-GLS `1 0.8113 ± 0.0541 0.6948 ± 0.0269 0.6695 ± 0.0392

Coarse NN-GLS `1, `2 0.7999 ± 0.0798 0.6775 ± 0.0602 0.6702 ± 0.0734

Fine None NA 3.7891 ± 0.6495 3.6545 ± 0.7878 0.3526 ± 0.1090

Fine GLS None 0.7606 ± 0.0751 0.6416 ± 0.0252 0.7390 ± 0.0610

Fine GLS `2 0.6687 ± 0.0361 0.5796 ± 0.0475 0.7674 ± 0.0303

Fine GLS `1 0.6750 ± 0.0516 0.5722 ± 0.0462 0.7777 ± 0.0378

Fine GLS `1, `2 0.6896 ± 0.0661 0.5814 ± 0.0710 0.7581 ± 0.0542

Fine NN-GLS None 0.6940 ± 0.0552 0.5867 ± 0.0134 0.7585 ± 0.0408

Fine NN-GLS `2 0.6542 ± 0.0380 0.5584 ± 0.0402 0.7836 ± 0.0300

Fine NN-GLS `1 0.6805 ± 0.0322 0.5684 ± 0.0277 0.7787 ± 0.0352

Fine NN-GLS `1, `2 0.6631 ± 0.0376 0.5575 ± 0.0366 0.7804 ± 0.0289
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