On the Effectiveness of Linear Models for One-Class Collaborative Filtering

Suvash Sedhain^{1,2}, Aditya Menon^{2,1}, **Scott Sanner^{3,1}**, Darius Braziunas⁴

> Australian National University¹ NICTA² Oregon State University³ Rakuten Kobo Inc ⁴

Recommender Systems

- Recommender Systems
 - Objective: Present personalized items to users

- Collaborative filtering
 - De-facto method for multiuser recommender systems
 - Find people like you and leverage their preferences
 - One-class: only observe positive feedback

Sneak Peak: Model Proposal

- Personalized user focused linear model
- Convex
- Embarrassingly parallel
 - Each user trained individually

State-of-the-art Collaborative Filtering

- Neighborhood methods
- Matrix Factorization
- SLIM (Sparse Linear Method)

Nearest Neighbors: A Matrix View

- { Jaccard, Cosine} similarity S_I used in practice
- Keep only top k similarities
- Simple, but learning is limited

Factorization Model

Works well in general, but non-convex!

SLIM

- Effectively trying to learn item-to-item similarities
- Not user-focused, complicated optimization

Recommender Systems Desiderata

- Learning based
- Convex objective
- User focused
- Parallelizable

Comparison of recommendation methods for OC-CF

Method	Reference	Learning?	Convex?	User-focussed?	Embarrasingly Parallelisable
U-KNN	(Herlocker et al., 1999)	X	NA	\checkmark	\checkmark
I-KNN	(Sarwar et al., 2001)	×	NA	×	\checkmark
PureSVD	(Cremonesi, Koren, and Turrin, 2010)	\checkmark	\checkmark^*	\checkmark	×
WRMF	(Pan et al., 2008)	\checkmark	X	\checkmark	X
LogisticMF	(Johnson, 2014)	\checkmark	×	\checkmark	X
BPR	(Rendle et al., 2009)	\checkmark	×	\checkmark^*	×
SLIM	(Ning and Karypis, 2011)	\checkmark	\checkmark	×	\checkmark
LRec	This paper	\checkmark	\checkmark	\checkmark	\checkmark

Outline

- Problem statement
- Background
- LRec Model
- Experiments
- Results
- Summary

LRec R Recommendation for · · 🚯 A. Each item is a training 1 0 1 1 instance 1 0 0 0 0 Can be interpreted as A MARK 1 1 1 learning user-user 1 Х affinities s d 0 1 0 **Regularizer prevents** from the trivial solution . R. 1 0 $\mathbf{y}^{(u)}$ $\mathbf{X} = \mathbf{R}^T$ W^{u1} $\min_{\mathbf{W}} \sum \sum \ell(\mathbf{y}_i^{(u)}, \mathbf{X}_i; \mathbf{w}^{(u)}) + \Omega(\mathbf{W}),$ Recommendation $u \in \mathcal{U} \ i \in \mathcal{I}$ Any loss function Squared $\Omega(\mathbf{W}) = rac{\lambda}{2} ||\mathbf{W}||_F^2$ Logistic Learning a model per user

Properties of LRec

- User focused
 - Recommendation as learning a model per user
- Convex objective
 - Guarantees optimal solution for the formulation
- Embarrassingly parallel
 - Each model is completely independent of other

Relationship with Existing Models

LRec

$$\min_{\mathbf{W}} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} \ell(\mathbf{y}_i^{(u)}, \mathbf{X}_{i:} \mathbf{w}^{(u)}) + \Omega(\mathbf{W}),$$

- User focused

- L2 penalty
- Optimization
 - L2 loss
 - Logistic Loss : Liblinear
 - (dual iff #users >> #items)

SLIM

$$\min_{\mathbf{W}\in\mathcal{C}} \sum_{i\in\mathcal{I}} \sum_{u\in\mathcal{U}} \ell(\mathbf{y}_u^{(i)}, \mathbf{X}_{u:}^{(i)} \mathbf{w}^{(i)}) + \Omega(\mathbf{W}),$$
$$\min_{\mathbf{W}\in\mathcal{C}} ||\mathbf{R} - \mathbf{R}\mathbf{W}||_F^2 + \frac{\lambda}{2} ||\mathbf{W}||_F^2 + \mu ||\mathbf{W}||_1$$
$$C = \{\mathbf{W}\in\mathbb{R}^{n\times n} : \operatorname{diag}(\mathbf{W}) = 0, \mathbf{W} \ge 0\}$$

- Item focused
- Elastic-net penalty + non-negativity constraints
- Optimization:
 - Coordinate descent
 - Levy et.al. relaxed the non-negativity constraints; optimization via SGD Truncated Gradient

Relationship with Existing Models

LRec

- Learns weight matrix via
 classification/regression problem
 - can be interpreted as learning useruser similarities

Neighborhood models

• Computes similarities using predefined similarity metrics(eg: Cosine, Jaccard)

Relationship with Existing Models

LRec

- Learns weight matrix via
 classification/regression problem
 - can be interpreted as learning useruser similarities

- Convex objective
- Full rank
- Embarrassingly parallel

Matrix Factorization

- $\min_{\theta} \sum_{u \in \mathcal{U}, i \in \mathcal{I}} \mathbf{J}_{ui} \cdot (\mathbf{R}_{ui} A_u^T B_i)^2 + \frac{\lambda}{2} \cdot (||\mathbf{A}||_F^2 + ||\mathbf{B}||_F^2)$
 - If $\mathbf{J}_{ui} = 1$ $\mathbf{B} = (\mathbf{A}\mathbf{A}^T + \lambda \mathbf{I})^{-1}\mathbf{A}\mathbf{R}$
 - Recommendation $\hat{\mathbf{R}} = \mathbf{S}\mathbf{R}$ Where, $\mathbf{S} = \mathbf{A}^T(\mathbf{A}\mathbf{A}^T + \lambda\mathbf{I})^{-1}\mathbf{A}$
 - Non Convex objective
 - Low rank
 - Parallelism via distributed communication

Other Advantages of LRec

- Efficient hyper-parameter tuning for ranking
 - Validate on small subset of users
- Model can be fine-tuned per user

Other Advantages of LRec: Incorporating Side Information

• Can easily incorporate abundant item-side information

Outline

- Problem statement
- Background
- LRec Model
- Experiment & Results
- Summary

Dataset Description and Evaluation

- Movielens 1M (ML1M)
- Kobo
- Last FM (LASTFM)
- Million Song Dataset (MSD)

Dataset	m	n	$ \mathbf{R}_{ui} > 0 $
ML1M	6,038	3,533	575,281
Ково	38,868	170,394	89,815
LastFM	992	107,398	821,011
MSD	1,019,318	384,546	48,373,586

- 10 random train-test split
 - 80%-20% split
 - For MSD, we evaluate on random 500 users
- Error bars => 95% confidence interval

Evaluation Metrics

- precision@k
- mean Average Precision@100

Experiment Setup

- Baselines
 - Most Popular
 - Neighborhood
 - User KNN (U-KNN)
 - Item KNN (I-KNN)
 - Matrix Factorization
 - PureSVD
 - WRMF
 - LogisticMF
 - Bayesian Personalized Ranking (BPR)

- SLIM
- LREC
 - Elastic Net Lrec + Non-Negativity
 (Lrec + Sq + L₁+ NN)
 - Squared Loss LRec (Lrec + Sq)
 - Logistic Loss LRec (LRec)

Results

Evaluation of mAP@100

Results

Precision@20 on ML1M and LastFM dataset

Results

Precision@20 on Kobo and LastFM dataset

Performance Evaluation

Users segmented by the number of observation

% improvement over WRMF on ML1M dataset

Case Study

Recommendation from WRMF vs LRec

Preferred training movies	WRMF recommendations	LRec recommendations	Preferred test movies	
• Day the Earth Stood Still, The	• Planet of the Apes	• Them!	• Blob, The	
• Forbidden Planet	• Thing, The	• Godzilla (Gojira)	• Them!	
• Kronos	• Night of the Living Dead	• Blob, The	• It Came from Outer Space	
• Tarantula	• Star Trek: The Wrath of Khan	• 20,000 Leagues Under the Sea		
• Thing From Another World, The	• Fly, The	• Soylent Green		
• War of the Worlds, The	• Alien	• Village of the Damned		
• It Came from Beneath the Sea	• Dark City	• Metropolis		
• Invasion of the Body Snatchers	• Star Trek IV: The Voyage Home	• Quatermass and the Pit		
• Earth Vs. the Flying Saucers • 2001: A Space Odyssey • If		• It Came from Outer Space		
• It Conquered the World	• Gattaca	• Plan 9 from Outer Space		

LRec is more personalized

Summary

- LRec
 - Personalized user focused linear recommender
 - Convex objective
 - Embarrassingly parallel
- Future work
 - Further scale LRec
 - Computational
 - Memory footprint

Thanks