
Practical Linear Models for Large-Scale One-Class Collaborative Filtering
Suvash Sedhain†‡, Hung Bui∗, Jaya Kawale ∗, Nikos Vlassis∗,

Branislav Kveton∗, Aditya Krishna Menon‡†, Trung Bui∗, Scott Sanner§
{†Australian National University, ‡Data61}, Canberra, ACT, Australia

∗ Adobe Research, San Jose, USA; § University of Toronto, Toronto, Canada
suvash.sedhain@anu.edu.au,{hubui,kawale,vlassis,kveton}@adobe.com
aditya.menon@nicta.com.au, bui@adobe.com, ssanner@mie.utoronto.ca

Abstract
Collaborative filtering has emerged as the de facto
approach to personalized recommendation prob-
lems. However, a scenario that has proven diffi-
cult in practice is the one-class collaborative fil-
tering case (OC-CF), where one has examples of
items that a user prefers, but no examples of items
they do not prefer. In such cases, it is desirable to
have recommendation algorithms that are person-
alized, learning-based, and highly scalable. Exist-
ing linear recommenders for OC-CF achieve good
performance in benchmarking tasks, but they in-
volve solving a large number of a regression sub-
problems, limiting their applicability to large-scale
problems. We show that it is possible to scale up
linear recommenders to big data by learning an OC-
CF model in a randomized low-dimensional em-
bedding of the user-item interaction matrix. Our
algorithm, Linear-FLow, achieves state-of-the-art
performance in a comprehensive set of experiments
on standard benchmarks as well as real data.

1 Introduction
Personalized recommendation systems are a core component
in many modern e-commerce services [Leavitt, 2006]. Col-
laborative filtering (CF) is the de-facto standard approach for
making recommendations based on information in a database
of item preferences from a population of users [Goldberg et
al., 1992; Sarwar et al., 2001]. Most of the work on CF has
considered the explicit feedback setting, where users express
both positive and negative preferences for items in terms of
ratings or likes/dislikes [Koren et al., 2009]. In contrast, in
the one-class collaborative filtering setting (OC-CF) [Pan et
al., 2008], we do not have explicit negative preference infor-
mation. For example, consider recommending items to users
of an e-commerce website based on their purchase history.
One can assume that a purchase indicates a positive prefer-
ence for an item. However, the lack of a purchase does not
necessarily indicate a negative preference; it may just be that
the user is unaware of the item.

In designing a real world recommender system there are
various factors to be considered [Adomavicius and Tuzhilin,
2005; Ricci et al., 2011]. First and foremost, a recommender

system should produce good recommendations which can be
quantified in terms of relevance. The relevance of a recom-
mender system is measured using evaluation metrics such as
precision@k, recall@k etc. Second, a recommender sys-
tem should be highly scalable. In modern day applications,
it is very common to have millions of users and items and
billions of recorded interactions. A model should be able to
handle the data in a computationally efficient manner as the
number of users and items grow to this scale. Third, recom-
mending similar items is very prevalent in real-world recom-
mender systems. For instance, Amazon.com shows product
suggestions to customers based on the items they are brows-
ing [Linden et al., 2003a]. Hence, a recommendation algo-
rithm should ideally produce item similarities. Also, inter-
pretability of the recommendation is very critical in persuad-
ing users. By explaining the recommendations, the system
becomes more transparent, builds users’ trust in the system
and convinces them to consume the recommended items. For
example, the “why this was recommended” feature on Net-
flix.com explains to users their recommendations by showing
them the similar movies that they liked in the past. A lack
of interpretability weakens the ability to persuade the users in
their decision making [Vig et al., 2009].

While there is a rich literature on OC-CF (discussed sub-
sequently), to our knowledge, all existing methods lack one
or more desiderata. Neighborhood-based methods [Sarwar
et al., 2001; Linden et al., 2003b] are scalable, incorporate
a similarity metric in the model and give explainable recom-
mendations. However, the relevance of their recommendation
is weaker as compared to other methods. Matrix factoriza-
tion models [Hu et al., 2008] optimize a non-convex objective
whose solution is sensitive to initialization and hyperparame-
ters. Matrix factorization models are not competitive in terms
of top-k ranking performance [Ning and Karypis, 2011; Sed-
hain et al., 2016]. Also, the recommendations are not explain-
able and there is no notion of similarity in the model. On the
other hand, Linear recommenders [Ning and Karypis, 2011;
Sedhain et al., 2016] are the state-of-the-art in terms of rele-
vance. Furthermore, the model explicitly learns a similarity
metric. Also, like neighborhood models, recommendations
from linear model are easily explainable. However, current
linear methods are computationally expensive which limits
their applicability to large scale real world problems.

In this paper we address the computational bottleneck of

Method Relevance Scalability Similarity Interpretability
Neighborhood × X X X
MF × X∗ × ×
Linear X × X X
Linear-FLow X X X X

Table 1: Comparison of recommendation methods for OC-CF. The ∗ for MF is added because weighted MF, WRMF, is relatively
expensive.

Table 2: Commonly used symbols.

Symbol Meaning Symbol Meaning
U Set of users R Purchase matrix
I Set of items R̂ Recommendation matrix
m Number of users R(u) Items purchased by u
n Number of items S Item similarity matrix

linear models, enabling them to scale up to large OC-CF
problems without compromising performance. Our method,
Linear-FLow (Fast Low Rank Linear Model), formulates OC-
CF as a regularized linear regression problem with a random-
ized SVD for fast dimensionality reduction. Although reg-
ularized regression and randomized SVD are not new ideas,
their combined use in the context of OC-CF is, to the best
of our knowledge, novel. Through extensive experiments
on known benchmarks and real-world datasets, we demon-
strate that Linear-FLow achieves state-of-the-art performance
as compared to other methods, with a significant reduction in
computational cost. Due to its scalability and performance,
Linear-FLow has all the desirable properties of a practical
recommender system. Table 1 summarizes the comparison
of the existing OC-CF methods with respect to Linear-FLow.

2 Background
Let U denote a set of users, and I a set of items, withm = |U|
and n = |I|. In OC-CF, we have a purchase1 matrix R ∈
{0, 1}m×n. We use Rui to refer to the purchase status for the
user u and item i. We use R:i to denote the indicator vector of
each users’ purchase of an item, and similarly Ru: to denote
the vector of a user’s preference for each item i. We denote
byR(u) the set of the items purchased by user u. The goal in
OC-CF is to learn a recommender, which for our purposes is
simply a matrix R̂ ∈ Rm×n. We call R̂ the recommendation
matrix. The notations are summarized in table 2.

In the rest of this section we review some existing ap-
proaches to OC-CF.

2.1 Neighbourhood methods
In (item-based) neighbourhood methods, we produce a rec-
ommendation matrix of the form

R̂ = RS (1)

where S ∈ Rn×n is some item-similarity matrix. Typically,
one uses a predefined matrix S that relies on R. A popular

1We use the word “purchase” simply for the purposes of exposi-
tion.

example is cosine similarity [Sarwar et al., 2001; Linden et
al., 2003b],

Si′i =
RT

:iR:i′

||R:i||2||R:i′ ||2
.

It is typical to sparsify S so that its columns only keep the
top-k similar items. Neighbourhood methods are attractive
for several reasons. They are simple to implement, efficient
and interpretable. However, they are unable to adapt to the
characteristics of the data as they rely on a fixed S that is
not learned from the new data [Koren, 2008]. Furthermore,
recommendation performance can be quite sensitive to the
choice of S.

2.2 Matrix Factorization
Matrix Factorization methods are the de facto approach to
collaborative filtering with explicit feedback. The basic
idea is to embed users and items into some shared latent
space, with the aim of inferring complex preference pro-
files for both users and items. Weighted matrix factorization
(WRMF) for one class collaborative filtering [Hu et al., 2008;
Pan and Scholz, 2009] optimizes

min
A,B

∑
u∈U,i∈I

Jui(Rui−AT
:uB:i)

2+
λ

2
(||A||2F + ||B||2F) (2)

where, A ∈ Rk×m, B ∈ Rk×n, and J ∈ Rm×n
+ is some

pre-defined weighting matrix and

Jui = JRui = 0K + αJRui > 0K (3)

where α assigns an importance weight to the observed inter-
action. WRMF uses Alternating Least Squares (ALS) method
for optimization. The solution for A and B in each step of
ALS is given by (4)

A:u = (BJuBT + λI)−1BJuRT
u:

B:i = (AJiAT + λI)−1AJiR:i

(4)

where, Ju ∈ Rn×n and Ji ∈ Rm×m are diagonal matrices
such that Ju

ij = Jui and Ji
uu = Jui. In each iteration of

ALS, due to the weighting, we need to compute the inverse
for each user and item as shown in (4). This makes WRMF
computationally expensive compared to unweighted matrix
factorization.

2.3 Linear Recommenders
Linear methods [Ning and Karypis, 2011; Sedhain et al.,
2016] learn the similarity metric from the data. SLIM [Ning

and Karypis, 2011] views the recommendation as learn-
ing item-item similarity and learns an item-similarity matrix
W ∈ Rn×n via

min
W∈C

||R−RW||2F +
λ

2
||W||2F + µ||W||1, (5)

where λ, µ > 0 are appropriate constants, and

C = {W ∈ Rn×n : diag(W) = 0,W ≥ 0}. (6)

Here, || · ||1 denotes the elementwise `1 norm of W so as
to encourage sparsity, and the constraint diag(W) = 0 pre-
vents a trivial solution of W = In×n. SLIM is equivalent to
an item-based neighbourhood approach where the similarity
matrix S = W is learned from the data. In a related linear
model for OC-CF [Sedhain et al., 2016], the authors report
very good performance, but the proposed method is compu-
tationally expensive, which restricts its applicability in real
world problems.

Linear methods are attractive for several reasons. They
have superior performance, and unlike neighborhood meth-
ods, they adapt with the data as the parameters are learned
from data itself. Furthermore, the recommendations are eas-
ily interpretable. However, linear methods can be computa-
tionally expensive as they require solving a large number of
regression subproblems with a big design matrix R. This can
scale quadratically with the order of R, or worse.

2.4 Randomized SVD
SVD is the archetypal matrix factorization algorithm and has
been widely used in machine learning for dimensionality re-
duction. However, SVD is computationally expensive and not
scalable to large scale datasets. It has been recently shown
that SVD can be significantly scaled up, at a negligible cost
in performance, by randomization [Halko et al., 2011]. We
will describe the randomized SVD algorithm in the next sec-
tion, in the context of the OC-CF problem.

Randomized SVD has been applied to matrix factorization
[Tang and Harrington, 2013] (but not in the OC-CF setting
that we are considering). The authors compute the rank-k
randomized SVD of the matrix R (Algorithm 1),

R ≈ PkΣkQT
k (7)

where, Pk ∈ Rm×k, Qk ∈ Rn×k and Σk ∈ Rk×k. Given the
truncated SVD solution, they initialize the item latent factor
with the SVD solution and solve

argmin
A

∥∥R−ATB
∥∥2
F
+ λ ‖A‖2F s.t. B = Σ

1
2

k QT
k (8)

Similarly, if the matrix A is fixed instead of the matrix B, the
objective becomes

argmin
B

∥∥R−ATB
∥∥2
F
+ λ ‖B‖2F s.t. A = PkΣ

1
2

k (9)

We refer to (9) and (8) as U-MF-RSVD and I-MF-RSVD re-
spectively. As we will see in the results, the performance of
these two models can vary significantly.

3 Large Scale Linear Methods for One-Class
Collaborative Filtering

Despite their superior performance, the applicability of Lin-
ear methods on real world large scale dataset are constrained
by their computational cost. Linear methods involve solving
a large number of regression subproblems on a huge design
matrix R making it extremely challenging on real world ap-
plications where the number of users and items is in millions.

Here we propose a model and an algorithm for scaling up
linear methods to large OC-CF problems. In particular, we
are seeking an approximation R ≈ RW that attempts to cap-
ture most of the row space of the matrix R through a matrix
W that is low-rank and has small Frobenius norm. The moti-
vation for such a double regularization is to better control the
generalization error of the model, an insight that was proven
correct by our experiments. Moreover, it turns out that there is
a natural and efficient way to compute such an approximate
decomposition of the matrix R by randomization [Halko et
al., 2011], which allows scaling to large problems.

Our model amounts to solving the following optimization
problem

argmin
rank(W)≤k

‖R−RW‖2F + λ ‖W‖2F (10)

where, typically, k � n. For λ = 0, the optimal solution is
given by the Eckart-Young theorem (see, e.g., [Halko et al.,
2011])

W = QkQT
k (11)

where Qk is an orthogonal matrix computed by a truncated
SVD as in Equation 7. Similarly, if we drop the low-rank
constraint in (10), the optimal matrix W is given by the solu-
tion of a standard regression problem

W = (RTR + λI)−1RTR (12)

which involves the inverse of the original matrix R and there-
fore does not scale to large problems.

However, under both a low-rank constraint and λ > 0
in (10), finding the optimal W involves solving a hard
nonconvex problem with no analytical solution in general.
Nonetheless, an analytical solution is possible for a certain
parametrization of W as we explain next. We first compute
an approximate orthogonal basis Qk of the row space of R,
i.e.,

R ≈ RQkQT
k (13)

using randomized SVD. In Algorithm 1, we outline the ran-
domized SVD algorithm (We refer to [Halko et al., 2011] for
more details.) Then we re-parametrize the matrix W as

W = QkY (14)

for some matrix Y. Note that through this parametrization
the rank of W is automatically controlled, no optimality is
lost when λ = 0, and the optimization problem (10) reads

argmin
Y

‖R−RQkY‖2F + λ ‖QkY‖2F (15)

Since Qk is orthogonal, we have ‖QkY‖F = ‖Y‖F ,
and (15) becomes

argmin
Y

‖R−RQkY‖2F + λ ‖Y‖2F (16)

The latter can be solved analytically to give

Y = (QT
k RTRQk + λI)−1QT

k RTR

Note that this inversion involves a k × k matrix, and hence it
is tractable.

The choice of W = QkY is motivated by the following
observation. When λ = 0, the solution to our problem is
W = QkQT

k . This is also the solution to the new formula-
tion of our problem for Y = QT

k . When λ is close to zero, we
believe that sufficiently good solutions lie close to the span of
Qk. Therefore, we choose W = QkY. We demonstrate
that this choice performs well empirically in the experimen-
tal section. Furthermore, Linear-FLow can be seen as an au-
toencoder collaborative filtering model [Sedhain et al., 2015]
with linear activation and Qk as input-hidden weights.

We refer to (15) as I-Linear-FLow as it corresponds to
item-item model. Similarly, we can define a user-user model,
U-Linear-FLow

argmin
Y

∥∥R−YPT
k R
∥∥2
F
+ λ ‖Y‖2F (17)

As we discussed earlier, recommending similar items is very
prevalent in real-world recommender systems. In I-Linear-
FLow model, the item-item similarity is explicitly given by
the matrix W = QkY.

Algorithm 1 Given R ∈ Rm×n, compute approximate rank-k
SVD; R ≈ PkΣkQk

1: procedure RSVD(R, k)
2: Draw n× k Gaussian random matrix Ω
3: Construct n× k sample matrix A = RΩ
4: Construct m× k orthonormal matrix Z, such that A = ZX
5: Constuct k × n matrix B = ZTR
6: Compute the SVD of B, B = P̂kΣkQk

7: Compute Pk = ZP̂k

8: return (Pk, Σk, Qk)
9: end procedure

4 Experiments and Evaluation
We now present an extensive set of experiments where we
compare the recommendation performance of the proposed
method and all the baselines described under Section 2 on
several real-world datasets.

4.1 Datasets
For quantitative evaluation, we used two publicly available
datasets and two proprietary datasets. In all of our datasets,
we remove users with fewer that 3 corresponding items and
vice-versa. Table 3 summarizes statistics of the 4 datasets and
they are described in details next.

ML10M The MovieLens 10M dataset2 is a standard
benchmark for collaborative filtering tasks. Following the

2
http://grouplens.org/datasets/movielens/

Table 3: Summary of datasets used in evaluation.

Dataset m n |Rui > 0|
ML10M 69,613 9,405 5,004,150
LASTFM 992 88,428 800,274
PROPRIETARY-1 26,928 14,399 120,268
PROPRIETARY-2 264,054 57,214 1,398,332

“Who Rated What” KDD Cup 2007 challenge [Bennett et al.,
2007], we created a binarized version of the dataset suitable
for evaluating implicit feedback methods. From the original
rating matrix R̃ ∈ {0, 1, . . . , 5}m×n, we created a binarized
preference matrix R with Rui = JR̃ui ≥ 4K.

LASTFM The LastFM dataset3 [Celma, 2008] contains the
play counts of ∼1000 users on ∼170,000 artists. As per
ML10M we binarized the raw play counts.

PROPRIETARY-1 & PROPRIETARY-2 are two real but
anonymized purchase datasets. PROPRIETARY-1 dataset
consists of∼27,000 users,∼14,000 items and∼120,000 item
purchases. Similarly, PROPRIETARY-2 dataset consists of
∼264,000 users, ∼57,000 items and ∼1 million item pur-
chases.

4.2 Evaluation Protocol
We split the datasets into random 90%-10% train-test set
and hold out 10% of the training set for hyperparamater
tuning. We report the mean test split performance, along
with standard errors corresponding to 95% confidence in-
tervals. To evaluate the performance of the various recom-
menders, we report precision@k and recall@k for k ∈
{3, 5, 10, 20} (averaged over test users), and mean average
precision (mAP@20).

4.3 Methods compared
We compared the proposed method to a number of baselines:
• User- and item-based nearest neighbour (U-KNN and I-

KNN). For each dataset, we use Jaccard and Cosine sim-
ilarity metric and picked the best performing one.
• PureSVD of [Cremonesi et al., 2010]. Instead of exact

SVD, we use randomized SVD for efficiency.
• Weighted matrix Factorization (WRMF) as defined in

Eq. (2).
• MF-RSVD of [Tang and Harrington, 2013]. We ran this

method with user and item based initialization, U-MF-
RSVD and I-MF-RSVD, as discussed in Eq. (9) and (8)
respectively.
• SLIM, as per Eq. (5). For computational convenience,

we used the SGDReg variant [Levy and Jack, 2013],
which is identical to SLIM except that the nonnegativ-
ity constraint is removed. We did not evaluate SLIM
with nonnegativity directly as [Levy and Jack, 2013] re-
ports superior performance to SLIM, and is considerably
faster to train.

We do not compare against LRec [Sedhain et al., 2016] due
to its memory complexity on a large dataset. For instance

3
http://ocelma.net/MusicRecommendationDataset

on the PROPRIETARY-2 dataset, LRec requires ∼260GB of
memory.

4.4 Performance Evaluation
Tables 4 – 7 summarize the results of our methods and the
various baselines. The results demonstrate that in terms of
the quality of recommendation, the linear methods (Linear-
FLow and SLIM) always outperform other methods in all
four datasets. Linear-FLow and SLIM perform equally well
and there is little separation between them in terms of the
quality of the recommendation. However, as we will show in
section 4.5, Linear-FLow is much more efficient than SLIM.
Also, unlike other methods, the performance of Linear-FLow
is not sensitive to the choice of user vs. item based formu-
lation. From these tables, we make the following additional
observations:
• Among the matrix factorization methods, those that use

Randomized SVD [Tang and Harrington, 2013] consis-
tently performed the best. This is possibly due to the
fact that SVD provides a good initialization whereas
matrix factorization optimizes a highly nonconvex bi-
linear objective and is sensitive to the initialization and
hyperparameters. In Table 4 – 6, we observe that the
performance of MF-RSVD varies significantly based on
whether we initialize user or item latent factors. Also,
the factorization methods do not directly provide item-
to-item or user-to-user similarity measures. Hence they
are not applicable when a recommendation of similar
items or users is needed.
• We observe that the neighborhood models yield inferior

results compared to the Linear models. Also, the per-
formance varies with the user and item based models.
While they perform competitively in the PROPRIETARY-
2 and PROPRIETARY-1 datasets, they perform poorly
in LASTFM and ML10M dataset. Hence, we conclude
that neighborhood methods are not consistent with their
performance.

4.5 Runtime Evaluation
To compare the training times of the various algorithms,
we choose PROPRIETARY-2 and ML10M , the two largest
datasets for analysis. We benchmarked the training time of
the algorithms by training the model on a workstation with
128 GB of main memory and Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60GHz with 32 cores. All of the methods exploit
multi-core enabled via numpy linear algebra library, whereas
SLIM and WRMF attains parallelism via multiprocessing.
For a fair comparison, we ran SLIM and WRMF in parallel
to use all available cores. In Table 8 we compare the runtime
of the proposed method with the baseline methods.

The results demonstrate that while Linear-FLow offers the
same quality of recommendation as SLIM, its training time
is an order of magnitude faster than SLIM. SLIM is com-
putationally expensive and is the slowest among the base-
lines. Neighborhood methods are computationally cheap as
they only involve sparse linear algebra, however as demon-
strated previously, their recommendation quality is not con-
sistent and lagging behind the other methods. For factoriza-

tion approaches, those that use randomized SVD similar com-
putational footprints as Linear-FLow while WRMF is much
more computationally expensive.

Table 8: Training times of various methods on
PROPRIETARY-2 and ML10M Dataset.

PROPRIETARY-2 ML10M
I-KNN 2.5 sec 10.7 sec
U-KNN 46.9 sec -
PureSVD 3 min 1 min 27 sec
WRMF 27 min 3 sec 12 min 38 sec
U-MF-SVD 3 min 10 sec 1 min 38 sec
I-MF-SVD 3 min 8 sec 1 min 39 sec
SLIM 32 min 37 sec 7 min 40 sec
U-LRec-Low 3 min 27 sec 1 min 44 sec
I-Lrec-Low 3 min 32 sec 1 min 42 sec

4.6 Qualitative Analysis of Learned Similarities
In this section, we provide a qualitative evaluation of the item-
item similarities learned by our I-Linear-FLow model. We
use PROPRIETARY-3 , a dataset from a major stock image
market site4. The data provides whether a given user has
clicked on a particular image category, and from these our
model can infer the similarity measure between the image
categories. Note that the similarity is inferred solely based on
the click patterns, without doing any analysis of the textual
content of the category names. We choose this dataset for the
qualitative evaluation mainly because the category names and
are much easier to interpret compared to the other datasets.

In Table 9, we show some examples5 of top-5 similar
items learned by I-Linear-FLow model. We observe that
the model discovers meaningful and explainable similarities,
hence making it applicable in similar item recommendations.

5 Conclusion
We proposed Linear-FLow, a fast low-dimensional regu-
larized linear model for One-Class Collaborative Filtering,
which addresses the computational bottleneck of other linear
models for this problem, enabling scaling up to large problem
instances while retaining the same performance. In our exper-
iments, we illustrated that the proposed method is computa-
tionally superior to the state of the art (an order of magnitude
faster than SLIM) and yields competitive performance. In fu-
ture work, we will explore the possibility of incorporating ad-
ditional user and item side-information to the model, and fur-
ther improving the computational and memory footprints by
exploring more efficient dimensionality reduction techniques.
The main computational bottleneck for Linear-FLow is cur-
rently in the computation of randomized SVD, which heavily
depends on the linear algebra library, and hence we expect
significant speedups by using a GPU back-end linear algebra
library [Voronin and Martinsson, 2015].

4The dataset sharing agreement with the provider restricts us from reporting the
statistics and quantitative results. Hence, we do not report summary statistics and quan-
titative results on this dataset

5Visit http://ssedhain.com/demos/Item-Item.html for interactive visualization

Table 4: Results on the PROPRIETARY-1 dataset. Reported numbers are the mean and standard errors across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20
I-KNN 0.0393 ± 0.0007 0.0291 ± 0.0005 0.0186 ± 0.0002 0.0115 ± 0.0002 0.0797 ± 0.0011 0.0973 ± 0.0015 0.1232 ± 0.0021 0.1521 ± 0.0028 0.0725 ± 0.0008
U-KNN 0.0514 ± 0.0008 0.0386 ± 0.0005 0.0249 ± 0.0003 0.0153 ± 0.0001 0.1068 ± 0.0035 0.1321 ± 0.0037 0.1679 ± 0.0029 0.2052 ± 0.0036 0.0969 ± 0.0033

PureSVD 0.0376 ± 0.0013 0.0267 ± 0.0009 0.0160 ± 0.0005 0.0094 ± 0.0003 0.0776 ± 0.0018 0.0906 ± 0.0018 0.1073 ± 0.0026 0.1247 ± 0.0030 0.0692 ± 0.0022
WRMF 0.0397 ± 0.0008 0.0293 ± 0.0013 0.0183 ± 0.0008 0.0113 ± 0.0004 0.0787 ± 0.0021 0.0955 ± 0.0047 0.1186 ± 0.0045 0.1467 ± 0.0037 0.0707 ± 0.0025
U-MF-RSVD 0.0503 ± 0.0007 0.0381 ± 0.0004 0.0247 ± 0.0003 0.0155 ± 0.0001 0.1003 ± 0.0024 0.1301 ± 0.0017 0.1693 ± 0.0032 0.2069 ± 0.0039 0.0961 ± 0.0026
I-MF-RSVD 0.0480 ± 0.0010 0.0360 ± 0.0008 0.0234 ± 0.0004 0.0144 ± 0.0002 0.0976 ± 0.0030 0.1211 ± 0.0033 0.1550 ± 0.0038 0.1886 ± 0.0037 0.0889 ± 0.0030

SLIM 0.0519 ± 0.0010 0.0395 ± 0.0004 0.0258 ± 0.0004 0.0160 ± 0.0002 0.1069 ± 0.0034 0.1341 ± 0.0026 0.1729 ± 0.0039 0.2117 ± 0.0033 0.0976 ± 0.0029
U-Linear-FLow 0.0518 ± 0.0013 0.0391 ± 0.0005 0.0259 ± 0.0004 0.0160 ± 0.0002 0.1060 ± 0.0035 0.1350 ± 0.0032 0.1711 ± 0.0026 0.2118 ± 0.0029 0.0970 ± 0.0030
I-Linear-FLow 0.0520 ± 0.0012 0.0398 ± 0.0004 0.0262 ± 0.0003 0.0162 ± 0.0002 0.1062 ± 0.0032 0.1362 ± 0.0026 0.1758 ± 0.0026 0.2145 ± 0.0033 0.0971 ± 0.0028

Table 5: Results on the PROPRIETARY-2 dataset. Reported numbers are the mean and standard errors across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20
I-KNN 0.0873 ± 0.0003 0.0641 ± 0.0002 0.0400 ± 2.4970× 10−5 0.0236 ± 2.2155× 10−5 0.1743 ± 0.0005 0.2097 ± 0.0007 0.2566 ± 0.0007 0.2982 ± 0.0008 0.1591 ± 0.0007
U-KNN 0.0836 ± 0.0005 0.0605 ± 0.0003 0.0365 ± 0.0002 0.0207 ± 7.6396× 10−5 0.1711 ± 0.0011 0.2029 ± 0.0013 0.2407 ± 0.0013 0.2695 ± 0.0014 0.1532 ± 0.0007

WRMF 0.0579 ± 0.0005 0.0437 ± 0.0004 0.0283 ± 0.0001 0.0175 ± 8.6682× 10−5 0.1145 ± 0.0013 0.1417 ± 0.0015 0.1801 ± 0.0012 0.2184 ± 0.0012 0.1053 ± 0.0011
PureSVD 0.0335 ± 0.0004 0.0244 ± 0.0002 0.0153 ± 0.0002 0.0094 ± 9.7863× 10−5 0.0686 ± 0.0006 0.0823 ± 0.0005 0.1018 ± 0.0009 0.1233 ± 0.0010 0.0624 ± 0.0004
U-MF-RSVD 0.0699 ± 0.0003 0.0502 ± 0.0002 0.0305 ± 6.9209× 10−5 0.0178 ± 2.4425× 10−5 0.1408 ± 0.0007 0.1660 ± 0.0008 0.1985 ± 0.0005 0.2282 ± 0.0004 0.1277 ± 0.0006
I-MF-RSVD 0.0880 ± 0.0003 0.0652 ± 0.0001 0.0408 ± 6.5965× 10−5 0.0242 ± 3.4697× 10−5 0.1720 ± 0.0008 0.2199 ± 0.0008 0.2685 ± 0.0010 0.3203 ± 0.0011 0.1582 ± 0.0005

SLIM 0.0893 ± 0.0004 0.0671 ± 0.0003 0.0433 ± 9.5600 × 10−5 0.0264 ± 4.3581 × 10−5 0.1796 ± 0.0010 0.2213 ± 0.0013 0.2790 ± 0.0012 0.3336 ± 0.0009 0.1654 ± 0.0006
U-Linear-FLow 0.0887 ± 0.0004 0.0666 ± 0.0002 0.0430 ± 8.6598× 10−5 0.0258 ± 4.0894× 10−5 0.1763 ± 0.0012 0.2214 ± 0.0010 0.2739 ± 0.0013 0.3289 ± 0.0010 0.1611 ± 0.0008
I-Linear-FLow 0.0885 ± 0.0003 0.0656 ± 0.0002 0.0429 ± 8.6598× 10−5 0.0256 ± 4.0894× 10−5 0.1783 ± 0.0012 0.2202 ± 0.0012 0.2719 ± 0.0010 0.3259 ± 0.0010 0.1598 ± 0.0006

Table 6: Results on the LASTFM dataset. Reported numbers are the mean and standard errors across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20
I-KNN 0.5904 ± 0.0068 0.5600 ± 0.0067 0.5068 ± 0.0053 0.4390 ± 0.0054 0.0187 ± 0.0004 0.0284 ± 0.0002 0.0497 ± 0.0007 0.0824 ± 0.0016 0.3280 ± 0.0055
U-KNN 0.5434 ± 0.0083 0.5127 ± 0.0038 0.4619 ± 0.0044 0.4009 ± 0.0028 0.0169 ± 0.0004 0.0260 ± 0.0011 0.0448 ± 0.0011 0.0747 ± 0.0014 0.2894 ± 0.0029

WRMF 0.6277 ± 0.0071 0.5899 ± 0.0049 0.5308 ± 0.0049 0.4577 ± 0.0032 0.0198 ± 0.0006 0.0300 ± 0.0009 0.0516 ± 0.0015 0.0842 ± 0.0013 0.3562 ± 0.0036
PureSVD 0.3993 ± 0.0121 0.3690 ± 0.0082 0.3321 ± 0.0069 0.2880 ± 0.0069 0.0128 ± 0.0003 0.0194 ± 0.0004 0.0338 ± 0.0006 0.0567 ± 0.0018 0.1723 ± 0.0065
U-MF-RSVD 0.5176 ± 0.0042 0.4865 ± 0.0068 0.4423 ± 0.0028 0.3859 ± 0.0038 0.0141 ± 0.0005 0.0217 ± 0.0008 0.0387 ± 0.0005 0.0653 ± 0.0013 0.2810 ± 0.0023
I-MF-RSVD 0.5780 ± 0.0063 0.5447 ± 0.0050 0.4901 ± 0.0011 0.4236 ± 0.0029 0.0190 ± 0.0008 0.0292 ± 0.0006 0.0496 ± 0.0011 0.0811 ± 0.0009 0.3146 ± 0.0020

SLIM 0.6319 ± 0.0069 0.6002 ± 0.0055 0.5384 ± 0.0048 0.4639 ± 0.0056 0.0223 ± 0.0006 0.0346 ± 0.0004 0.0592 ± 0.0007 0.0972 ± 0.0017 0.3587 ± 0.0065
U-Linear-FLow 0.6229 ± 0.0081 0.5912 ± 0.0067 0.5337 ± 0.0027 0.4627 ± 0.0020 0.0205 ± 0.0009 0.0315 ± 0.0014 0.0540 ± 0.0004 0.0881 ± 0.0010 0.3563 ± 0.0025
I-Linear-FLow 0.6229 ± 0.0103 0.5913 ± 0.0046 0.5337 ± 0.0021 0.4653 ± 0.0023 0.0203 ± 0.0011 0.0310 ± 0.0010 0.0529 ± 0.0006 0.0874 ± 0.0015 0.3615 ± 0.0014

Table 7: Results on the ML10M dataset. Reported numbers are the mean and standard errors across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20
I-KNN 0.1753 ± 0.0011 0.1506 ± 0.0009 0.1179 ± 0.0006 0.0883 ± 0.0003 0.0994 ± 0.0004 0.1393 ± 0.0009 0.2121 ± 0.0012 0.3070 ± 0.0012 0.1216 ± 0.0003
U-KNN Out of Memory
WRMF 0.1832 ± 0.0007 0.1561 ± 0.0006 0.1205 ± 0.0002 0.0889 ± 0.0002 0.1024 ± 0.0003 0.1428 ± 0.0008 0.2139 ± 0.0009 0.3061 ± 0.0010 0.1255 ± 0.0003
PureSVD 0.1216 ± 0.0013 0.1054 ± 0.0006 0.0836 ± 0.0005 0.0634 ± 0.0002 0.0730 ± 0.0014 0.1030 ± 0.0011 0.1572 ± 0.0009 0.2264 ± 0.0011 0.0836 ± 0.0010
U-MF-RSVD 0.2229 ± 0.0007 0.1895 ± 0.0007 0.1456 ± 0.0008 0.1069 ± 0.0004 0.1273 ± 0.0003 0.1755 ± 0.0005 0.2592 ± 0.0014 0.3656 ± 0.0018 0.1586 ± 0.0005
I-MF-RSVD 0.2232 ± 0.0009 0.1902 ± 0.0010 0.1461 ± 0.0005 0.1027 ± 0.0004 0.1246 ± 0.0007 0.1745 ± 0.0010 0.2602 ± 0.0008 0.3675 ± 0.0017 0.1590 ± 0.0007

SLIM 0.2208 ± 0.0011 0.1888 ± 0.0011 0.1464 ± 0.0004 0.1080 ± 0.0004 0.1258 ± 0.0003 0.1748 ± 0.0012 0.2611 ± 0.0009 0.3690 ± 0.0016 0.1579 ± 0.0007
U-Linear-FLow 0.2270 ± 0.0012 0.1927 ± 0.0009 0.1477 ± 0.0006 0.1083 ± 0.0004 0.1290 ± 0.0004 0.1777 ± 0.0008 0.2624 ± 0.0013 0.3701 ± 0.0016 0.1601 ± 0.0006
I-Linear-FLow 0.2242 ± 0.0009 0.1909 ± 0.0010 0.1468 ± 0.0005 0.1077 ± 0.0004 0.1276 ± 0.0007 0.1765 ± 0.0010 0.2609 ± 0.0008 0.3676 ± 0.0017 0.1592 ± 0.0007

Table 9: Top-5 similar items learned by I-Linear-FLow model.

Item Chemistry Chilling out Workers Unemployment Divorce and Conflict Museums

Similar items

Test and Analysis Beach Holidays Construction Job Search Depression Painting
Drug and Pills Tourism Teamwork Tax and Accounting Getting upset Statues
Health Care Relaxing Manufacturing Breaking the law Crying Artistic monuments
Scientists Hiking Service industry Money Loneliness Paris
Medical Equipments Consumer service Beaches Workers Rage Italy

Item Dance Vinegar Pearls Graduation Aging Homelessness

Similar items

Exercise Olive Oil Wealth High School Patients Depression
Running And Jumping Spice Wedding School Grand Parenting Loneliness
Disco And Clubs Salads Accessories Exams Disability Crying
Circus And Performing Garlic Gold Job Search Health Care Getting Upset
Gymnastics other Make Up E-Learning Doctors Risk And Danger

References
[Adomavicius and Tuzhilin, 2005] Gediminas Adomavicius

and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and
possible extensions. Knowledge and Data Engineering,
IEEE Transactions on, 17(6):734–749, 2005.

[Bennett et al., 2007] James Bennett, Charles Elkan, Bing
Liu, Padhraic Smyth, and Domonkos Tikk. KDD cup
and workshop 2007. SIGKDD Explorations Newsletter,
9(2):51–52, December 2007.

[Celma, 2008] Òscar. Celma. Music Recommendation and
Discovery in the Long Tail. PhD thesis, Universitat Pom-
peu Fabra, Barcelona, 2008.

[Cremonesi et al., 2010] Paolo Cremonesi, Yehuda Koren,
and Roberto Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In ACM Con-
ference on Recommender Systems (RecSys), RecSys ’10,
pages 39–46, New York, NY, USA, 2010. ACM.

[Goldberg et al., 1992] David Goldberg, David Nichols,
Brian M. Oki, and Douglas Terry. Using collaborative fil-

tering to weave an information tapestry. Communications
of the ACM, 35(12):61–70, December 1992.

[Halko et al., 2011] Nathan Halko, Per-Gunnar Martinsson,
and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate ma-
trix decompositions. SIAM review, 53(2):217–288, 2011.

[Hu et al., 2008] Yifan Hu, Yehuda Koren, and Chris Volin-
sky. Collaborative filtering for implicit feedback datasets.
In ICDM ’08, pages 263–272, Washington, DC, USA,
2008. IEEE Computer Society.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: A multifaceted collaborative filtering model. In
KDD ’08, pages 426–434, New York, NY, USA, 2008.
ACM.

[Leavitt, 2006] Neal Leavitt. Recommendation technology:
Will it boost e-commerce? Computer, 39(5):13–16, May
2006.

[Levy and Jack, 2013] Mark Levy and Kris Jack. Efficient
top-n recommendation by linear regression. In RecSys
Large Scale Recommender Systems Workshop, 2013.

[Linden et al., 2003a] Greg Linden, Brent Smith, and Jeremy
York. Amazon. com recommendations: Item-to-item col-
laborative filtering. Internet Computing, IEEE, 7(1):76–
80, 2003.

[Linden et al., 2003b] Greg Linden, Brent Smith, and
Jeremy York. Amazon.com recommendations: Item-to-
item collaborative filtering. IEEE Internet Computing,
7(1):76–80, January 2003.

[Ning and Karypis, 2011] X. Ning and G. Karypis. SLIM:
Sparse linear methods for top-n recommender systems. In
IEEE International Conference on Data Mining (ICDM).
IEEE, 2011.

[Pan and Scholz, 2009] Rong Pan and Martin Scholz. Mind
the gaps: Weighting the unknown in large-scale one-class
collaborative filtering. In KDD ’09, pages 667–676, New
York, NY, USA, 2009. ACM.

[Pan et al., 2008] Rong Pan, Yunhong Zhou, Bin Cao,
Nathan N. Liu, Rajan Lukose, Martin Scholz, and Qiang
Yang. One-class collaborative filtering. In IEEE Interna-
tional Conference on Data Mining (ICDM), pages 502–
511, Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

[Ricci et al., 2011] Francesco Ricci, Lior Rokach, and
Bracha Shapira. Introduction to recommender systems
handbook. Springer, 2011.

[Sarwar et al., 2001] Badrul Sarwar, George Karypis, Joseph
Konstan, and John Riedl. Item-based collaborative fil-
tering recommendation algorithms. In WWW ’01, pages
285–295, New York, NY, USA, 2001. ACM.

[Sedhain et al., 2015] Suvash Sedhain, Aditya Krishna
Menon, Scott Sanner, and Lexing Xie. Autorec: Autoen-
coders meet collaborative filtering. In Proceedings of

the 24th International Conference on World Wide Web,
WWW ’15 Companion, 2015.

[Sedhain et al., 2016] Suvash Sedhain, Aditya Menon, Scott
Sanner, and Darius Braziunas. On the effectiveness of
linear models for one-class collaborative filtering. Pro-
ceedings of the 30th Conference on Artificial Intelligence
(AAAI-16), 2016.

[Tang and Harrington, 2013] Lei Tang and Patrick Harring-
ton. Scaling matrix factorization for recommendation with
randomness. In Proceedings of the 22nd international con-
ference on World Wide Web companion, pages 39–40. In-
ternational World Wide Web Conferences Steering Com-
mittee, 2013.

[Vig et al., 2009] Jesse Vig, Shilad Sen, and John Riedl.
Tagsplanations: Explaining recommendations using tags.
In Proceedings of the 14th International Conference on In-
telligent User Interfaces, IUI ’09, pages 47–56, New York,
NY, USA, 2009. ACM.

