
A Log-Linear Model with Latent Features for Dyadic Prediction

Aditya Krishna Menon

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0404

akmenon@cs.ucsd.edu

Charles Elkan

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0404

elkan@cs.ucsd.edu

Abstract—In dyadic prediction, labels must be predicted
for pairs (dyads) whose members possess unique identifiers
and, sometimes, additional features called side-information.
Special cases of this problem include collaborative filtering
and link prediction. We present a new log-linear model for
dyadic prediction that is the first to satisfy several important
desiderata: (i) labels may be ordinal or nominal, (ii) side-
information can be easily exploited if present, (iii) with or
without side-information, latent features are inferred for dyad
members, (iv) the model is resistant to sample-selection bias,
(v) it can learn well-calibrated probabilities, and (vi) it can
scale to large datasets. To our knowledge, no existing method
satisfies all the above criteria. In particular, many methods
assume that the labels are binary or numerical, and cannot
use side-information. Experimental results show that the new
method is competitive with previous specialized methods for
collaborative filtering and link prediction. Other experimental
results demonstrate that the new method succeeds for dyadic
prediction tasks where previous methods cannot be used. In
particular, the new method predicts nominal labels accurately,
and by using side-information it solves the cold-start problem
in collaborative filtering.

Keywords-Dyadic prediction; collaborative filtering; link pre-
diction; log-linear model.

I. INTRODUCTION

In dyadic prediction, the training set consists of pairs of

objects {(ri, ci)}
n
i=1, called dyads, with associated labels

{yi}
n
i=1. The task is to predict labels for unobserved dyads,

that is for pairs (r′, c′) that do not appear in the training

set. In a well-studied special case of dyadic prediction, the

dyads are (user, item) pairs, and the labels are a user’s

numeric rating of an item, often on a scale from 1 to 5.

The task of predicting the ratings of unobserved (user, item)

pairs is collaborative filtering, where the ultimate goal is to

recommend to users new items they might like.

Existing methods for dyadic prediction are limited in

several ways. One common issue is that they assume the

observed labels have a numerical scale. This assumption is

reflected in the loss function used for training, often mean

absolute error or mean square error. But in many applications

of dyadic prediction, the outcomes are nominal, that is

discrete and unordered. For example, an online store may

have information about customers’ interactions with prod-

ucts, with possible outcomes including {viewed, purchased,

returned}. On such datasets, imposing a numerical or ordinal

structure is inappropriate. A dyadic prediction model should

be flexible enough to handle nominal labels.

Another issue is that many models cannot exploit addi-

tional attributes of dyad members, called side-information

or covariates. A model that only uses members’ unique

identifiers is limited in the cold-start setting, where the test

set contains a dyad (r′, c′) where at least one of r′ or c′

is not present in any training set dyad. An example of this

setting is predicting how a user will rate a movie that is yet

to be released, and thus has no existing ratings.

In this paper, we propose a new model that addresses

the above issues, and more. An appealing property of the

new model is its conceptual and technical simplicity: it is

a log-linear model where the log-odds are approximated by

a low-rank matrix. Based on this, the new model is named

LFL for latent feature log-linear.

II. EXISTING METHODS AND THEIR LIMITATIONS

In this section, we relate the dyadic prediction task

to matrix completion. We discuss six important desirable

properties for a dyadic prediction model, and explain how

no existing method possesses all these properties.

A. The dyadic prediction problem

In dyadic prediction, the training set is {((ri, ci), yi)}
n
i=1,

where the pairs (ri, ci) are called dyads. Usually, but not

necessarily, the only information available about each el-

ement in each pair is a unique identifier. the goal is to

predict the label y for an unobserved dyad (r′, c′). We

can interpret this task as a form of matrix completion by

associating the training set with a matrix M ∈ Y |R|×|C|,

where ri ∈ R, ci ∈ C, yi ∈ Y . Each row of M is associated

with some r ∈ R and each column with some c ∈ C, so

the training data is a subset of observed entries in M . The

task is to fill in the missing entries of M . Based on this

interpretation, we refer to ri as a row object and cj as a

column object.

The dyadic prediction framework encompasses many real-

world problems where the input is naturally modeled as

interactions between entities. Important examples include

recommending items to users, predicting links in a social

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDM.2010.148

364

network, predicting whether users will click on ads, and

predicting the contamination in food production plants [1].

In the absence of side-information, a powerful approach to

the problem is based on learning latent features. Ignoring

missing entries for the moment, and supposing that Y = R,

the classical way to learn latent features from M is the sin-

gular value decomposition (SVD) [2]. This expresses M as

the product of matrices U and V , which are representations

of the row and column objects in a latent feature space. In

the case of collaborative filtering, the latent space can be

interpreted as scores for user and item characteristics (e.g.

whether the item is a status symbol, whether the user likes

foreign films). In matrix completion we do not know the

entire matrix M , which means the SVD cannot be applied

as-is. In this setting we can restate the task as finding a low-

rank approximation that agrees with M only on its observed

entries; the hope is that with suitable priors on U, V , this

approximation will generalize to the missing entries as well.

Such latent feature approaches have been very successful in

real-world applications of dyadic prediction, in particular

collaborative filtering [3].

B. Desirable properties of a dyadic prediction model

As mentioned in the introduction, there are several

desiderata for a dyadic prediction model:

Agnostic to nature of labels. Labels in a dyadic pre-

diction task may be ordinal, for example star ratings for a

(user, movie) pair, or nominal, for example one of {viewed,

purchased, returned} for a (user, product) pair. Ideally, a

model should handle both types of labels.

Exploiting side-information. If a model cannot use side-

information, when it is provided, then the model is severely

limited in the aforementioned cold-start setting.

Learning latent features. It is desirable for a model

to induce latent features for dyad elements just from the

identities of row/column objects; otherwise, we are severely

limited when we have no side-information. Aside from

endowing the model with stronger predictive power, it also

helps one understand the data better. (See the experimental

results in Section V-D, for example, where we use the latent

features to cluster the data.)

Resisting sample selection bias. Sample selection bias

is the situation where the training and test sets follow

different distributions. This is manifested in movie rating

prediction for example, where users are generally more

likely to provide ratings for movies that they like. Sample

selection bias poses a challenge for generative models,

because they need to model the joint distribution of examples

and labels. A discriminative model, in contrast, only focuses

on conditional probabilities of labels, and so is inherently

robust against sample selection bias [4].

Calibration of probabilities. Often, a classifier is only a

sub-model in a larger framework. In this setting, having the

classifier output well-calibrated probabilities [5] rather than

just ranking scores helps one make decision-theoretically

optimal choices. For example, in online advertising, pub-

lishers would like to display ads that bring about the

maximum expected revenue. To estimate this revenue, one

needs accurate estimates of the probability that a user will

click on an ad [6].

Fast training. Large datasets are common for practical

applications of dyadic prediction such as collaborative fil-

tering, so scalable training algorithms are essential.

To the best of our knowledge, the log-linear model pro-

posed in this paper, which we call LFL, is the first method to

meet all the criteria above. We now briefly discuss existing

methods for dyadic prediction, pointing out which issues

they fail to address.

C. Existing dyadic prediction methods

We focus here on models for two well-studied special

cases of dyadic prediction, namely collaborative filtering

and link prediction. Note that the focus of this paper is

on models for the general dyadic prediction task; as such,

we are not interested in tuning a model to the specifics

of a collaborative filtering problem, which is the focus of

many published results in the literature. Nonetheless, it is

conceptually simple to incorporate many of the tricks for

collaborative filtering into the LFL model. This is discussed

further in Section IV-A.

Matrix factorization. The idea of learning latent features

through matrix factorization has been successful in collab-

orative filtering. A popular example of this is maximum

margin matrix factorization (MMMF) [7], where the idea

is to approximate the input matrix M (containing missing

entries) by a matrix X whose complexity is controlled by a

convex approximation to the rank:

min
X

∑

i,j∈I

ℓ(Xij ,Mij) + λ||X||Σ

where I is the set of observed entries in M , ℓ is a modified

hinge-loss, and || · ||Σ is the trace norm of a matrix (the sum

of its singular values, also known as the nuclear norm). Pe-

nalizing the trace norm favors matrices X that are explained

by a few latent factors i.e. if X = UTV for rank k matrices

U, V , then ||U ||2F + ||V ||2F is small. The above formulation

requires solving an SDP (semidefinite program) and so is

not scalable. A faster alternative is to learn directly U, V
with a gradient-based method [15], although this sacrifices

convexity. Probabilistic extensions of MMMF such as [8],

[16] give a Bayesian treatment of the problem, and obtain

higher accuracy. These were further extended in [10], which

interprets the problem in a Gaussian process framework to

learn a nonlinear matrix factorization. A related result is

[9], where the focus is on a nonparametric model with the

number of latent factors k determined automatically.

As noted earlier, a significant amount of research has fo-

cused on improving the performance of matrix factorization

365

Table I
SUMMARY OF VARIOUS METHODS IN THE LITERATURE IN TERMS OF MEETING THE SIX DESIDERATA FROM SECTION II-B.

Method Reference Nominal
labels?

Side-info? Latent
features?

Resists SS
bias?

Calibrated
probs?

Fast
training?

MMMF [7] No No Yes Yes No No
PMF [8] No No Yes No No No

NPCA [9] No No Yes No No No
GPMF [10] No Yes Yes No No Yes

BRISMF [11] No No Yes Yes No Yes
FactNgbr [12] No No Yes Yes No Yes

RBM [13] No No Yes No No No
IBP [14] No Yes Yes Yes Yes No

LFL This paper Yes Yes Yes Yes Yes Yes

methods for the collaborative filtering setting. One such line

of work has studied how to combine neighborhood models

with standard matrix factorization. A neighborhood model

is based on the idea that similar users tend to rate movies

similarly. These models are good at capturing local effects in

collaborative filtering data, and have been shown to improve

performance of standard matrix factorization models. Recent

models based on this hybrid approach are [11] and [12]. The

latter also gives a way to incorporate implicit feedback in

collaborative filtering, where we exploit information about

which movies a user rated, even if we do not know the

actual rating. However, it does not address the issue of

incorporating more general forms of side-information. We

note that it is conceptually simple to use neighborhood

information in the LFL model using techniques similar to

these papers; we emphasize once more that our goal is

to address a broader set of concerns than just improving

accuracy of collaborative filtering methods.

All matrix factorization methods assume that the input

labels are numerical. Most of them do not incorporate side-

information, although recent exceptions are [10], [17]; to

our knowledge the latter has not been tested extensively on

a number of datasets.

Boltzmann machines. Restricted Boltzmann machines

(RBMs) have enjoyed some success for collabora-

tive filtering [13]. The probability model is generative:

p(x, y, h;w) ∝ exp(Ψ(x, y, h)), where x, y are the inputs

and labels, h a vector of binary-valued hidden units, and Ψ
some linear function of its inputs. Since the RBM is a gener-

ative model, exact training is intractable; also, as mentioned

earlier, this makes it susceptible to sample-selection bias. A

discriminative form of the RBM was proposed in [18], but

it has not been applied to collaborative filtering. Further, to

our knowledge, RBM-based models have not been extended

to incorporate side-information, and have not been applied

to datasets with nominal labels.

Models that are mathematically similar to the discrim-

inative RBM have been successfully applied to structured

prediction problems [19]. Unlike our model, these methods

are not based on matrix factorization, and are not obviously

applicable to dyadic prediction tasks. A closer study of this

point would be valuable future research.

Link prediction models. In link prediction, the input

is the adjacency matrix M of a graph with some missing

entries, which we want to fill in. This is a dyadic prediction

problem where both objects in the dyad belong to the same

space, e.g. people in a social network. Additional (optional)

constraints are that the graph is undirected and unweighted

i.e. M is binary and symmetric. Two link prediction models

that are relevant for our work are [20] and [14]. [20] handles

the case of binary M using logistic regression, where the

log-odds are modeled by a low-rank matrix approximation.

This is similar to the model we propose, but our training pro-

cedure is considerably simpler than the MCMC scheme used

in the paper, and also our model addresses the general dyadic

prediction task, with binary link prediction as a special case.

[14] also uses logistic regression, but with two important

distinctions from [20]: (i) the matrix decomposition involves

binary matrices, indicating the presence of a particular latent

feature, and (ii) the decomposition is nonparametric, so the

number of latent factors need not be specified a priori.

Training in this model is involved, and it is not clear that it

scales to large datasets.

Summary. We close this section with Table I, which

summarizes various existing methods in the literature in

terms of whether they possess each of the six desiderata we

listed in Section II-B. We see that the LFL model proposed

in this paper is the first method that meets all six desiderata.

III. THE LATENT FEATURE LOG-LINEAR (LFL) MODEL

In this section, we describe a new log-linear model for

dyadic prediction. We then extend the model by adding latent

features, yielding the latent feature log-linear (LFL) model.

We explain how to make predictions with and train the LFL

model for both nominal and ordinal labels.

A. A simple log-linear model

Given an observation x ∈ X and label y ∈ Y , a log-linear

model represents the conditional distribution p(y|x) via

p(y|x;w) ∝ exp

[

∑

i

wifi(x, y)

]

.

366

Here, w is a vector of real-valued weights to be learned. The

functions fi : X × Y → R are called feature functions, and

measure interactions between the inputs and labels.

Recall that each example in a dyadic prediction task is

((r, c), y), where (r, c) is the dyad and y the label. We define

x = (r, c), and use r(x) and c(x) to denote the respective

elements in x. Suppose there is no side-information; then,

r, c are just indices into sets R, C denoting the space of

row and column objects respectively. We apply a log-linear

model for p(y|x;w) with three sets of feature functions:

• (∀r ∈ R, y′ ∈ Y) f
(1)
ry′ (x, y) = 1[r(x) = r, y = y′]

• (∀c ∈ C, y′ ∈ Y) f
(2)
cy′ (x, y) = 1[c(x) = c, y = y′]

• (∀y′ ∈ Y) f
(3)
y′ (x, y) = 1[y = y′]

where 1[·] denotes an indicator function. We can think of

each feature function as inducing a weight for each object-

label pair. Specifically, split the weight vector into three

components: α ∈ R
|R|×|Y|, β ∈ R

|C|×|Y| and γ ∈ R
|Y|.

Then, the corresponding log-linear model is

p(y|x;w) ∝ exp
[

αr(x)y + βc(x)y + γy
]

(1)

This model is conceptually simple, but limited in expres-

siveness: specifically, it only learns propensities of the row

and column objects towards a particular outcome. To see

this limitation, fix a row object r1 and consider dyads of the

form (r1, c). From Equation 1, for some fixed outcome y,

the ranking of all c’s in decreasing order of p(y|(r1, c);w)
depends only on βcy . That means we get the exact same

ranking of c’s for a different row object r2.

B. A richer latent feature model

To capture interactions between row and column objects,

we propose the following model:

p(y|x;w) ∝ exp

(

k
∑

k′=1

αy

r(x)k′
βy

c(x)k′

)

(2)

where k is a constant that is the number of latent factors

learned from the training data. (The γy term from the

previous model is dealt with in Section IV-A.) For each

outcome y, αy is a matrix whose entries represent weights

for each row object and one of k latent features, and

similarly for βy . So, we are learning tensors α ∈ R
|Y|×|R|×k

and β ∈ R
|Y|×|C|×k. It is easy to check that this model is

not subject to the aforementioned ranking limitation.

Before discussing the intuition for these weights, we take

care of a technical point to make further exposition clearer.

In multinomial logistic regression, it is standard to fix one

category to be the base, by fixing the weights for that

category to be 0. This defines a scale for the other categories’

weights, and thus improves the identifiability of the model.

Here, we fix the first outcome to be the base category: if

Y = {y0, y1, . . .}, then we make αy0 , βy0 ≡ 0.

Now we see why we call α, β latent weights. To do this,

focus on the case |Y| = 2 i.e. a logistic regression model.

Let the outcomes be y = 1 and y = 0 without loss of

generality. Following the above discussion, let y = 0 be the

base class. In a slight abuse of notation, let α, β denote the

matrices α1, β1. Then, in the LFL model the log-odds are

log
p(y = 1|x;w)

p(y = 0|x;w)
= αT

r(x)βc(x)

where αr(x) denotes row r(x) of matrix α, and similarly

for βc(x). Defining a matrix P with entries Prc = p(y =
1|(r, c);w) gives the decomposition P = σ(αTβ), where

σ(·) is the sigmoid function applied elementwise. That is,

we model the log-odds by a rank k matrix approximation,

where each dimension for α, β conceptually corresponds to

a latent feature. As a result, we call this model the latent

feature log-linear model or LFL. When |Y| > 2, for the base

class y = y0, we model the pairwise log-odds by a low-rank

approximation:

log
p(y|x;w)

p(y0|x;w)
= (αy

r(x))
Tβy

c(x).

Now suppose that we have side-information in the form of

a vector s(x) for a dyad x. Then, we augment the low-rank

approximation with a linear discriminator, yielding

p(y|x;w) ∝ exp
(

(αy

r(x))
Tβy

c(x) + (wy
s)

T s(x)
)

.

Here, ws represents the weights used for side-information.

The model can use either or both of latent features and

side-information to make predictions. The idea of extending

multinomial logistic regression to incorporate information

beyond the linear discriminator wTx has been studied in

random effects models in statistics, e.g. [21]. Ours is the

first contribution that applies a low-rank approximation of

the log-odds for dyadic prediction, with the explicit aim of

targeting both nominal and ordinal prediction tasks.

To complete the specification of the model, we now

address two important issues: how to make predictions using

the model, and how to train the model. The answers to both

these issues depend on the nature of the labels.

C. Making predictions

Let F (x;w) denote the model’s prediction for the

dyad x. A sensible choice for F (x;w) depends on the

whether the outcomes in Y are nominal or ordinal. The

mode argmaxy p(y|x;w) is the most reasonable choice

when the outcomes are nominal. The median F (x;w) =
median(p(y|x;w)) is sensible when the labels are ordinal.

If we further assume that the labels have a numeric structure,

then the mean E[y] =
∑

y yp(y|x;w) is a sensible alternative

to the median.

D. Objective function for training

When the y values are nominal, a sensible objective

function is the conditional log-likelihood (CLL) of the data.

367

Since we are learning a large number of weights, it is impor-

tant to regularize the objective function with an ℓ2 penalty.

Thus, the objective function we minimize is regularized

negative CLL, which for a training set {(xi, yi)}
n
i=1 is

fnom(w) =
λ

2
||w||2 −

n
∑

i=1

log p(yi|xi;w).

Since this objective function is differentiable, we can apply

stochastic gradient descent (SGD) for training, which makes

the model scalable to large datasets.

For numeric labels, one can train the model using fnom,

but this ignores the structure in the labels and reduces the

model’s predictive power. Instead, if we assume the labels

have a numeric structure, it is more sensible to minimize

the discrepancy between the true label and the model’s

prediction F (x;w). A simple measure of discrepancy often

used in collaborative filtering is the mean absolute error

(MAE), where the error for predicting the true label y as ŷ
is ℓ(y, ŷ) = |y− ŷ|. For this choice, the regularized objective

function is

ford(w) =
λ

2
||w||2 +

n
∑

i=1

|yi − F (xi;w)|.

If we use MAE as the training objective, ideally we would

like to use F (x;w) = median(p(y|x;w)) since the median is

the solution to argmint
∑

i |xi−t|. However, this makes the

objective non-differentiable, which means we cannot train

using SGD. The simplest recourse here is to instead use

F (x;w) = E[y], which is differentiable.

Note that MAE can be replaced with other loss functions,

such as MSE (mean squared error, defined as ℓ(y, ŷ) =
(y − ŷ)2), or even the modified hinge loss of MMMF [7];

this does not change the underlying model, only the objective

function. The choice of loss function is determined by two

factors, which can be at odds with each other. One point

is that it makes sense to use the same loss for training as

for testing: if test error is measured by MAE, then it is

sensible to optimize MAE during training. The second point

is that we would like to return well-calibrated probabilities.

If we train using a proper loss function, then it is guaranteed

that we obtain well-calibrated probability estimates [22].

Examples of proper losses include the previously discussed

CLL and MSE. MAE is not a proper loss function, so

if we optimize it on the training set, we need a post-

processing step to return calibrated probability estimates,

such as isotonic regression [23]. Therefore, the choice of

loss for ordinal labels potentially requires making a trade-

off between directly optimizing the test set objective and

automatically generating calibrated probabilities.

There are other options when modeling ordinal data with

a log-linear or logistic regression model, but these require

modifying the underlying probability distribution [24], [25].

the focus here is on using the same model as the nominal

case, but modifying the training procedure to exploit the

ordinal (or numeric) structure of labels.

E. Strengths and weaknesses of the LFL model

The LFL model meets all the goals for dyadic prediction

listed in Section II-B. First, it can handle both nominal and

ordinal Y , by changing the training objective. Second, it is

easy for the model to handle side-information when present,

which helps address the cold-start problem. Crucially, the

model does not assume that only side-information or only

unique row and column object identifiers are relevant: it can

make use of just one, or both of these pieces of information.

Third, by virtue of being a discriminative probabilistic

model, it can produce well-calibrated probabilities and is

resistant to sample-selection bias. Finally, the objective

function is differentiable, so one can use SGD for training,

which scales to large datasets.

However, unlike for the basic log-linear model, the LFL

objective function is not convex; it is only convex in α
with β fixed, and vice versa. (The same is true of all exist-

ing matrix factorization methods for collaborative filtering.)

Moreover, the experimental results below demonstrate that

it is easy to find good local optima for the LFL model.

Another observation is that a separate set of weights is

learned for each y ∈ Y . If |Y| is large, then we will

be learning many parameters, which increases the risk of

overfitting. In nominal settings where there is truly no order

to the various outcomes, then it is sensible to have separate

weights for each outcome. This is plausible even in the

ordinal setting: e.g., the characteristics that make a user rate

a movie 1 star may be quite different from those that make

the user rate it 5 stars. However, it is still desirable to exploit

the ordinal structure to reduce the number of parameters. We

address this issue in Section IV-C.

IV. EXTENSIONS TO THE LFL MODEL

We now explain some important variations of the new

latent feature model. Specifically, we discuss adding bias

weights, regularization, and reducing the number of param-

eters in the ordinal setting. We then show how one can apply

the model for the special case of link prediction.

A. Adding bias weights

In Equation 2, there is no explicit bias term γy . We

include biases by forcing one component of each of αy
r

and βy
c to have the constant value 1, for each y, r, c. This

is equivalent to having a separate bias for each row and

column object, and can be thought of as capturing baseline

effects, e.g. whether a user tends to give high ratings, and

whether a movie is popular. Note that in each vector αy
r , two

components are related to bias terms: one is the constant 1
and the other is the row bias. Therefore, henceforth, when

we speak of a rank k latent feature model, we mean one

368

trained with k general parameters plus these additional two

parameters.

The LFL model can incorporate other suggestions that

have been used in standard matrix factorization models. For

example, in the context of collaborative filtering, [8] suggests

imposing a prior on a user’s latent weight vector that takes

into account the identity of the movies she has rated.

B. Regularization

Earlier, we proposed regularization that penalizes all com-

ponents of w equally. But it is plausible that the row and

column weights have different penalties, meaning separate

regularization parameters λα, λβ . It is especially plausible

that the weights for side-information be penalized differ-

ently. Also, as suggested in [26], it can be beneficial to apply

the regularization inversely proportional to the (square root

of the) number of observed entries for a particular row or

column object, i.e. the number of times that row object r
or column object c appears as part of a dyad in the training

set. This ensures that the penalty for objects that appear

only infrequently is larger than that for those that appear

often, which is sensible because we expect to overfit more

for objects for which we have only limited data. We applied

all these extensions when training the LFL model.

C. Reducing parameters in the ordinal setting

The LFL model keeps a separate set of weights for each

y ∈ Y , but it is plausible that these weights share some

structure in the ordinal setting. One way to reduce the num-

ber of weights is to have a low-rank approximation of the

latent weights themselves. This is similar to the stereotype

model for multinomial logistic regression [24], but we apply

it to the latent weights rather than the discriminator w.

Essentially, we assume that for every label y the weights

can be decomposed as a linear combination of some set of

base weights that are independent of y. Specifically, for any

y ∈ Y , we assume there are ρ scalars φi such that

(αy)Tβy = φ1
y(α̃

1)T β̃1 + . . .+ φρ
y(α̃

ρ)T β̃ρ.

Here, the weights (α̃i, β̃i) are shared among all outcomes

y, and only the φi values vary. If ρ ≪ |Y|, this dramatically

reduces the number of parameters to be learnt.

D. Application to link prediction

In standard link prediction the row and column objects be-

long to the same space. Consider the setting where the input

graph is unweighted and undirected, so that the adjacency

matrix is symmetric and binary. To apply the LFL model,

we need to enforce symmetry: we need p(y = 1|(r, c);w) =
p(y = 1|(c, r);w). One way to achieve this is to maintain

just one set of weights α, for both the row and column

objects. Setting y = 0 to be the base class, we get the model

p(y = 1|x;w) ∝ exp(αT
r(x)αc(x)).

For a directed graph, it is no longer appropriate to have a

symmetric decomposition inside the exponent. There are at

least two options here. One is to keep three sets of weights:

one for the incoming edges, α, one for the outgoing edges,

β, and another for the global node information (i.e. weights

that depend only on the identity of the node), γ. Then, we

use the decomposition αTβ + γT γ. The other approach is

to use the decomposition αTΛα, where Λ is a full non-

symmetric matrix [27].

E. Multi-relational data

In an important extension of the basic dyadic prediction

task, there are a series of outcomes. For example, in link

prediction, there may be different types of links: “is-family-

member-of”, “is-colleague-of”, etc. This is not the same as

having nominal links, because every dyad can have many

links of different types, rather than just one link with many

possible outcomes. It is akin to multi-label prediction rather

than multi-class prediction. In this setting, we can extend

the LFL model to capture the structure underlying the

various relations. Suppose we have R binary relations, with

outcomes y1, . . . , yR. Then, for any t ∈ {1, . . . , R}, we can

model

p(yt = 1|(r, c);w) = σ(αT
r Λ

tβc).

That is, we share the row and column object weights among

all relations, but we give a different scaling factor depending

on the relation.

V. EXPERIMENTAL RESULTS

The experiments here demonstrate the flexibility of the

LFL model, and its competitiveness with state-of-the-art

methods on a range of different tasks. We present results

for four important regimes: nominal data, ordinal collabo-

rative filtering with and without side-information, and link

prediction. In the process, we show that the LFL model

scales to large datasets. We also present results on a matrix

completion task involving handwritten digits. We emphasize

that no existing dyadic prediction method is applicable for

all these problems.

In all experiments, we pick the regularization parameters

using three-fold cross-validation on the training set. We

use different regularization for side-information and latent

weights. We also report results for a varying number of

latent features, k. In general increasing k increases accuracy,

but there is a greater risk of overfitting. Accuracy measures

are chosen to be sensible for each of the regimes listed

above. In particular, we report MAE for ordinal prediction

tasks, and AUC for link prediction tasks. We report the

mean and standard deviation of test set performance from

five runs of the training algorithm, where each run uses

a different initialization of the weight vector. Different

initializations lead to local optima of differing quality, since

the optimization problem is nonconvex.

369

For the medium-sized datasets, we train using LBFGS

[28]. Unlike first-order gradient methods, this does not

require tuning of a learning rate, but at the price of higher

computational cost. To demonstrate that the LFL model is

scalable, results on large datasets are with stochastic gradient

descent (SGD) as the training optimizer.

For the collaborative filtering tasks, we compare the LFL

method to MMMF, which is representative of most matrix

factorization methods. We use the MATLAB code for this

provided by the author at http://people.csail.mit.edu/jrennie/

matlab/. Note that this code does not include the suggestions

in [26]. The results reported for all other methods are the

ones that appear in previously published experiments. All

experiments were run in MATLAB 2008b on a 2.67GHz

Core i7 machine with 8 GB of RAM.

A. Results on synthetic nominal data

We run experiments on a synthetic dataset to check that

we can learn from nominal data, and that it is possible to find

good local optima of the objective function despite its non-

convexity. Another question is how well a method for ordinal

labels like MMMF performs on this dataset. Intuitively,

because such a method imposes an artificial structure on

the outcomes, it will be difficult to learn a good model.

We constructed a matrix M ∈ R
n×n with entries in

{1, 2, 3}. These can be thought of as indices into a nominal

set such as {viewed, purchased, returned}; the numeric

encoding is just for convenience. We picked the entries of M
by sampling Mrc ∼ p(y|r, c) ∝ exp((αy

r)
Tβy

c), where there

are k = 5 latent factors for the α and β matrices. The entries

of α, β were drawn uniformly at random from the interval

[−3, 3]. We set some fraction of entries to be unobserved,

which were used for testing, and let the remaining entries

form the training set. The goal of training is to choose

α, β that maximize the log-likelihood. Two parameters that

influence the quality of the learned model are the size of

the matrix, n, and the retention rate, that is the fraction of

entries kept for training.

The simplest measure of quality of a model is 0-1 accu-

racy. But this is meaningful only given a base accuracy to

measure against. Since we know the underlying probability

distribution p(y|x;w), we can compute the Bayes error for

a single matrix entry as 1 −maxy p(y|r, c). A good model

should approach the mean Bayes error.

Results are presented in Table II. For varying choices of n
and the retention rate, the LFL model has high 0-1 accuracy.

The error rate is closest to the Bayes error when the training

set is large: this is intuitive, because we expect the learning

task to be simpler with more samples. Another promising

result is that the accuracy of the LFL model increases with

the size of the training data, despite the increase in missing

data. As expected, MMMF does significantly worse than the

LFL model, demonstrating that an ordinal encoding is not

sensible for this task.

Table II
0-1 ERROR OF RANK 5 MODELS ON SYNTHETIC NOMINAL DATASET.

n Bayes Retention LFL MMMF

80% 7.7% 52.2%

500 4.8% 50% 8.2% 53.0%

25% 12.0% 55.3%

80% 5.9% 48.9%

1000 4.8% 50% 6.3% 53.2%

25% 8.1% 54.4%

80% 5.5% 47.2%

1500 4.8% 50% 5.9% 47.3%

25% 7.0% 48.0%

B. Results on ordinal datasets

An important question is how the LFL model compares

with existing methods for the ordinal setting. We focus on

the canonical case of this problem, collaborative filtering. We

emphasize that the goal is not to be the single best method

for a collaborative filtering task, but rather to be competitive

with existing methods while being more general than them.

Results on bookcrossing. The bookcrossing dataset-

consists of 1, 149, 780 ratings given by 278, 858 users for

271, 379 books [29]. Following [30], we pre-process the

dataset to remove all ratings with the value 0, users with

fewer than 3 ratings, and books with fewer than 6 ratings.

This leaves 342, 464 ratings over 35, 689 users and 138, 660
books. Unlike [30], we did not use just the books with

Amazon reviews; we also did not use any side-information,

and only learned latent features.

Given the size of the dataset, we trained using SGD. We

could not run the MMMF code, as it required too much

memory. We performed three-fold cross-validation where

each fold contained 1/3 of each user’s ratings. The rank

5 LFL model attains an MAE of 1.0580 ± 0.0028, which

is only slightly worse than the reported MAE for the fLDA

method (1.0317) proposed in [30]. fLDA only uses side-

information for making predictions: this information is hard

to duplicate as it involves mining Amazon customer reviews.

It is possible that the LFL model would achieve higher

accuracy with this extra side-information. The training time

of fLDA is not reported in [30]; the LFL method processes

the large dataset efficiently, and trains in 10 minutes.

Results on 1M movielens. The 1M movielens dataset

consists of 1, 000, 209 ratings for 6040 users and 3900
movies. Following [7], we randomly selected 5000 users and

for each user, picked a random rating and put it in the test

set. The other ratings are the training set. We ended up with

a training set of 836, 865 examples, each a user-movie rating

dyad, and 5000 test examples. We trained the LFL model

using SGD on this dataset. Table III presents the MAE and

training time for the LFL model and MMMF for various

choices of latent factors k. We see that the LFL model

trains much faster than MMMF, while achieving competitive

accuracy. In particular, LFL results for ranks 1 and 5 are

statistically indistinguishable from MMMF results.

370

Table III
RESULTS ON THE 1M MOVIELENS DATASET.

Method k Test set MAE Train time

MMMF 1 0.6557± 0.0000 35 mins
LFL 1 0.6541 ± 0.0041 7 mins

MMMF 2 0.6397 ± 0.0009 40 mins
LFL 2 0.6446± 0.0035 7 mins

MMMF 5 0.6203 ± 0.0001 72 mins
LFL 5 0.6215± 0.0059 14 mins

C. Results in the cold-start setting

Here, we present results showing that the LFL model

is able to learn to use side-information, and make useful

predictions in the cold-start setting. We took the 100K

movielens dataset, and randomly discarded 50 users from

the training set. These people are cold-start users when they

appear in the test. In the experiments, we considered the

following scenarios: (i) the standard setting, where there are

no cold-start users or movies, (ii) there are cold-start users,

but movies are known, (iii) full cold-start, where both users

and movies are unobserved. For (ii), we took the test set for

(i) and then discarded all movies that occur in it from the

training set. The side-information we used was the user’s

age, gender and occupation, and the movie’s genre.

We compare to a baseline method of predicting the mean

from a latent feature model trained without side-information.

That is, for the dyad (u,m) where u was not present during

training, the prediction is 1
nm

∑

(u′,m)∈T F (u′,m), where

nm is the number of users in the training set T who have

rated m, and F (u′,m) is the standard latent feature based

prediction for dyad (u′,m). When both u,m are not present

in training, we use the mean predicted rating for the entire

training set.

When training with side-information, the following

heuristic helps in avoiding bad local optima: first train the

model without any side-information to learn latent weights.

Then, use this as initialization to the model with side-

information weights included, that is initialize the latent

weights for the second model to those learned by the first

one. For the second optimization, we obtained better results

when the latent weights were frozen. This is a form of block

coordinate descent, where we optimize over two groups of

variables by optimizing over each one in turn.

All models use rank k = 5 and are optimized with

LBFGS. Table IV summarizes the results. Learning with

side-information significantly improves accuracy in the cold-

start setting. Also, with side-information we do almost as

well in the cold-start and standard settings; by contrast, the

standard latent feature model does much worse in the cold-

start setting. Comfortingly, side-information gives better

MAE than the basic model when tested in the standard

setting, i.e. no cold-start users or movies. This means that,

as expected, taking side-information into account can give

slightly better predictions than just learning latent features.

Table IV
COLD-START RESULTS, RANK 5 MODEL.

Setting Baseline MAE Side-info MAE

(i) Standard 0.7162± 0.0059 0.7063 ± 0.0000
(ii) Cold-start 0.8039± 0.0000 0.7118 ± 0.0208
(iii) Full cold-start 0.9608± 0.0000 0.7451 ± 0.0196

D. Results on link prediction tasks

We use two datasets for the link prediction experiments.

The coauthor dataset [31] is a binary matrix indicating

whether two authors have written a paper for NIPS together.

The alyawarra dataset [32] contains kinship relations

between people of the Alyawarra tribe in Australia. For

both datasets, we use a random 80-20 train-test set split: this

means that for training, we assume that 20% of entries in

the matrix are missing, and we predict these at test time. We

report area under the ROC curve (AUC) as the performance

measure, since this is commonly used in the link prediction

literature. Because both datasets are symmetric, we use the

αTα decomposition discussed in Section IV-D.

Results on coauthor. Following [14], we focus on the

234 × 234 submatrix of authors who collaborated with the

most number of people. We compare our results to those

given in [14] for an Indian Buffet Process (IBP) model, the

infinite relational model (IRM), and the mixed membership

stochastic block model (MMSB). We also compare the LFL

method to MMMF, which is not explicitly designed for

link prediction–it does not exploit the fact that the row and

column spaces are the same–but helps gauge the improve-

ment that methods designed for link prediction provide over

collaborative filtering methods.

Results are shown in Table V. The MMMF method is

outperformed by all other methods, which suggests that

exploiting the structure in link prediction tasks is essential

to achieve good performance. (MMMF gives slightly worse

results, not shown, for ranks over 5, perhaps due to overfit-

ting.) For all ranks, the LFL model is more accurate than

the MMSB and IRM models, but the IBP method is slightly

better overall. It is important to note that the training/test

split often has a significant impact on the accuracy of a

learned model. We do not know the dataset splits used in

[14] for the MMSB, IRM, or IBP methods, so this issue

needs to be kept in mind when interpreting the results.

Table V
AUC OF ALTERNATIVE METHODS ON COAUTHOR DATASET.

Method k Test set AUC

MMSB Unknown 0.8705

IRM Unknown 0.8906

IBP 20 0.9509

MMMF 5 0.8193± 0.0132

LFL 5 0.9235± 0.0049

LFL 10 0.9290± 0.0165

LFL 20 0.9424± 0.0093

371

The learned weights for each author are useful for clus-

tering. We applied k-means clustering on the user weights

with 7 clusters, and sorted the authors according to the

learned clusters. Figure 1 shows the resulting coauthor

graph. Clearly the user weights have identified significant

cliques in the coauthor graph.

NIPS coauthors grouped into 7 clusters

Author ID

A
u

th
o

r
ID

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Figure 1. coauthor after clustering model output. Black/white entries
indicate the presence/absence of a link.

Results on alyawarra. It is not sensible to run MMMF

on this dataset, because the task is not binary, and it is not

sensible to impose an ordinal scale on the matrix entries.

We can view this dataset as multi-relational, so that each

possible kinship relation defines a separate matrix, or as

multi-category, where the number of classes is the number

of kinship relations. We chose the latter because there is

only one kinship relation observed between any two people.

The reported results on this dataset [14] use the multi-

relational viewpoint. With this choice, each relation can have

separate weights (a “single” model), or shared weights (a

“global” model). We ran our method for a number of ranks

k, with log-likelihood as the objective function. The results

in Table VI show that the rank 20 LFL model gives the best

results of all methods.

Table VI
AUC OF ALTERNATIVE METHODS ON ALYAWARRA DATASET.

Method k Test set AUC

MMSB global Unknown 0.8943

IRM global Unknown 0.9143

IBP global 9 0.9183

MMSB single Unknown 0.9005

IRM single Unknown 0.9310

IBP single 9 0.9443

LFL 5 0.9390± 0.0006

LFL 10 0.9469± 0.0013

LFL 20 0.9475 ± 0.0005

E. Results on matrix completion task

We ran an experiment on the usps dataset of handwritten

digits, following [33]. We pick 100 random images each

of digits 1, 2 or 3. The images are binarized so that the

pixel values are ±1. For 16 of these images, we occlude

their bottom half by setting the pixel values to be “missing.”

The goal is to fill in the missing entries, or equivalently, to

reconstruct the bottom half of the 16 partial images. This is a

dyadic prediction problem where each digit is a row object,

and each pixel position is a column object. We applied the

LFL model on this dataset with rank k = 3, optimizing

MAE using LBFGS. Results are shown in Figure 2. The top

row shows the original versions of the 16 occluded images,

the middle row shows the data as presented to the training

algorithm, and the last row shows the predictions made by

the LFL model. (For this row, even the top half is the model

prediction.) We see that the trained LFL model accurately

reconstructs most of the images. One exception is an image

whose true digit is 3, but which the LFL model reconstructs

as 1; this behavior is understandable, because there is not

enough information in the top half for even a human to see

the right answer.

VI. CONCLUSION

Existing methods for dyadic prediction are limited in one

or more ways, most commonly in that they assume the

labels lie on a binary or numerical scale, and cannot exploit

both dyad members’ unique identifiers and side-information.

An ideal model should overcome these limitations. Other

desirable properties are resistance to sample-selection bias

and the generation of well-calibrated probabilities. Last but

not least, given the size of datasets in real-world dyadic

prediction tasks like collaborative filtering, it is essential for

a model to be scalable. In this paper, we have presented a

latent feature log-linear model (LFL) that addresses all these

issues. The new model learns latent features based on dyad

identifiers, but can easily use side-information also when it is

available. We can apply it to large datasets using stochastic

gradient descent. It is a discriminative probabilistic method,

and so has resistance to sample-selection bias and produces

well-calibrated probabilities. Experiments show success in

learning from both nominal and ordinal labels, and that

the model can use dyad identifiers and side-information

to achieve competitive accuracy to existing methods for

collaborative filtering and link prediction.

REFERENCES

[1] A. D. Purnamrita Sarkar, Lujie Chen, “Dynamic network
model for predicting occurrences of salmonella at food facil-
ities,” in BioSecure 2008, vol. LNCS 5354, 2008, pp. 56–63.

[2] A. K. Menon and C. Elkan, “Fast algorithms for approximat-
ing the singular value decomposition,” To appear in ACM
Transactions of Knowledge and Data Discovery, 2010.

372

Figure 2. Top: Original images; Middle: Occluded images in training set; Bottom: Reconstruction using rank 3 model.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
no. 8, pp. 30–37, 2009.

[4] A. T. Smith and C. Elkan, “Making generative classifiers
robust to selection bias,” in KDD, 2007.

[5] B. Zadrozny and C. Elkan, “Obtaining calibrated probability
estimates from decision trees and naive Bayesian classifiers,”
in ICML ’01. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001, pp. 609–616.

[6] M. Richardson, E. Dominowska, and R. Ragno, “Predicting
clicks: Estimating the click-through rate for new ads,” in
WWW ’07, 2007, pp. 521–530.

[7] N. Srebro, J. D. M. Rennie, and T. Jaakkola, “Maximum-
margin matrix factorization,” in NIPS, 2004.

[8] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factor-
ization,” in NIPS ’07, 2007.

[9] K. Yu, S. Zhu, J. Lafferty, and Y. Gong, “Fast nonparametric
matrix factorization for large-scale collaborative filtering,” in
SIGIR ’09. New York, NY, USA: ACM, 2009, pp. 211–218.

[10] N. D. Lawrence and R. Urtasun, “Non-linear matrix factor-
ization with gaussian processes,” in Proceedings of the 26th
Annual International Conference on Machine Learning. New
York, NY, USA: ACM, 2009, pp. 601–608.

[11] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable
collaborative filtering approaches for large recommender sys-
tems,” JMLR, vol. 10, pp. 623–656, 2009.

[12] Y. Koren, “Factorization meets the neighborhood: A multi-
faceted collaborative filtering model,” in KDD ’08. New
York, NY, USA: ACM, 2008, pp. 426–434.

[13] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltz-
mann machines for collaborative filtering,” in ICML ’07.
New York, NY, USA: ACM, 2007, pp. 791–798.

[14] K. Miller, T. Griffiths, and M. Jordan, “Nonparametric latent
feature models for link prediction,” in Advances in Neural
Information Processing Systems 22, 2009, pp. 1276–1284.

[15] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix
factorization for collaborative prediction,” in ICML ’05.

[16] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo,” in ICML ’08.
New York, NY, USA: ACM, 2008, pp. 880–887.

[17] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert, “A new
approach to collaborative filtering: Operator estimation with
spectral regularization,” JMLR, vol. 10, pp. 803–826, 2009.

[18] H. Larochelle and Y. Bengio, “Classification using discrim-
inative restricted Boltzmann machines,” in ICML ’08, 2008,

pp. 536–543.
[19] L.-P. Morency, A. Quattoni, and T. Darrell, “Latent-dynamic

discriminative models for continuous gesture recognition,” in
CVPR, 2007.

[20] P. D. Hoff, “Multiplicative latent factor models for descrip-
tion and prediction of social networks,” Center for Statistics
and the Social Sciences, University of Washington-Seattle,
Working Paper no. 54, 2006.

[21] J. Hartzel, A. Agresti, and B. Caffo, “Multinomial logit
random effects models,” Statistical Modelling, vol. 1, pp. 81–
102, 2001.

[22] M. DeGroot and S. Fienberg, “The comparison and evaluation
of forecasters,” Statistician, vol. 32, pp. 12–22, 1982.

[23] B. Zadrozny and C. Elkan, “Obtaining calibrated probability
estimates from decision trees and naive Bayesian classifiers,”
in ICML ’01, 2001, pp. 609–616.

[24] J. Anderson, “Regression and ordered categorical variables,”
Journal of the Royal Statistical Society. Series B (Method-
ological), vol. 46, pp. 1–30, 1984.

[25] J. D. M. Rennie, “Loss functions for preference levels: Re-
gression with discrete ordered labels,” in Proceedings of the
IJCAI Multidisciplinary Workshop on Advances in Preference
Handling, 2005, pp. 180–186.

[26] M. Weimer, A. Karatzoglou, and A. J. Smola, “Improving
maximum margin matrix factorization,” in ECML/PKDD (1),
2008, p. 14.

[27] S. Zhu, K. Yu, Y. Chi, and Y. Gong, “Combining content and
link for classification using matrix factorization,” in SIGIR
’07. New York, NY, USA: ACM, 2007, pp. 487–494.

[28] D. C. Liu and J. Nocedal, “On the limited memory BFGS
method for large scale optimization,” Math. Program., vol. 45,
no. 3, pp. 503–528, 1989.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen,
“Improving recommendation lists through topic diversifica-
tion,” in WWW ’05, 2005.

[30] D. Agarwal and B.-C. Chen, “fLDA: Matrix factorization
through latent Dirichlet allocation,” in WSDM ’10. New
York, NY, USA: ACM, 2010, pp. 91–100.

[31] S. Roweis, “NIPS coauthor dataset,” http://www.cs.nyu.
edu/∼roweis/data.html, 2002.

[32] W. W. Denham, “Alyawarra dataset,” http://www1.aiatsis.gov.
au/exhibitions/AlyaWeb/public/about.html, 1971.

[33] E. Meeds, Z. Ghahramani, R. Neal, and S. Roweis, “Modeling
dyadic data with binary latent factors,” in NIPS, 2006, pp.
977–984.

373

