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Overview of talk

Propose a new problem, dyadic label prediction, and explain its
importance

I Within-network classification is a special case

Show how to learn supervised latent features to solve the dyadic
label prediction problem

Compare different approaches to the problem from different
communities

Highlight remaining challenges
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The dyadic prediction problem

Supervised learning:

Labeled examples (xi, yi)→ Predict label of unseen example x′

Dyadic prediction:

Labeled dyads ((ri, ci), yi)→ Predict label of unseen dyad (r′, c′)

Labels describe interactions between pairs of entities
I Example: (user, movie) dyads with a label denoting the rating

(collaborative filtering)
I Example: (user, user) dyads with a label denoting whether the

two users are friends (link prediction)
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Dyadic prediction as matrix completion

Imagine a matrix X ∈ Xm×n, with rows indexed by ri and
columns by ci
The space X = X ′ ∪ {?}

I Entries with value “?” are missing

The dyadic prediction problem is to predict the value of the
missing entries

Henceforth call the ri row objects, the ci column objects

5 / 44



Dyadic prediction and link prediction

Consider a graph where only some edges are observed.

Link prediction means predicting the presence/absence of edges

There is a two-way reduction between the problems
I Link prediction is dyadic prediction on an adjacency matrix
I Dyadic prediction is link prediction on a bipartite graph with

nodes for the rows and columns

Can apply link prediction methods for dyadic prediction,
and vice versa

I Will be necessary when comparing methods later in the talk
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Latent feature methods for dyadic prediction

Common strategy for dyadic prediction: learn latent features

Simplest form: X ≈ UV T

I U ∈ Rm×k

I V ∈ Rn×k

I k � min(m,n) is the number of latent features

Learn U, V by optimizing (nonconvex) objective

||X − UV T ||2O +
λU
2
||U ||2F +

λV
2
||V ||2F

where || · ||2O is the Frobenius norm over non-missing entries

Can be thought of as a form of regularized SVD
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Label prediction for dyads

Want to predict labels for individual row/column entities:

Labeled dyads ((ri, ci), yi)
+

Labeled entities (ri, y
r
i )
→ Predict label of unseen entity r′

Optionally, predict labels for dyads too

Attach labels to row objects only, without loss of generality

Let yri ∈ {0, 1}L to allow multi-label prediction
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Dyadic label prediction as matrix completion

New problem is also a form of matrix completion

Input is standard dyadic prediction matrix X ∈ Xm×n

and matrix Y ∈ Ym×L

Each column of Y is one tag

As before, let Y = {0, 1} ∪ {?} where “?” means missing

Y can have any pattern of missing entries

Goal is to fill in missing entries of Y

Optionally, fill in missing entries of X, if any
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Important real-world applications

Predict if users in a collaborative filtering population will
respond to an ad campaign

Score suspiciousness of users in a social network,
e.g. probability to be a terrorist

Predict which strains of bacteria will appear in food processing
plants [2]
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Dyadic label prediction and supervised learning

An extension of transductive supervised learning:

We predict labels for individual examples, but:
I Explicit features (side information) for examples may be absent
I Relationship information between examples is known via the X

matrix
I Relationship information may have missing data
I Optionally, predict relationship information also
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Within-network classification

Consider G = (V,E), where nodes V ′ ⊆ V have labels

Predicting labels for nodes in V \V ′ is called
within network classification

An instance of dyadic label prediction:
X is the adjacency matrix of G, while Y consists of node labels
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Why is the dyadic interpretation useful?

We can let edges E be partially observed, combining link
prediction with label prediction

Can use existing methods for dyadic prediction for
within-network classification

I Exploit advantages of dyadic prediction methods such as ability
to use side information

I Learn latent features
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Latent feature approach to dyadic label prediction

Given features for row objects, predicting labels in Y is standard
supervised learning

But we don’t have such features?
I Can learn them using a latent feature approach
I Model X ≈ UV T and think of U as a feature representation for

row objects

Given U , learn a weight matrix W via ridge regression:

min
W
||Y − UW T ||2F +

λW
2
||W ||2F
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The SocDim approach

SocDim method for within-network classification on G [3]

I Compute modularity matrix from adjacency matrix X:

Q(X) = X − 1

2|E|
ddT

where d is vector of node degrees
I Latent features are eigenvectors of Q(X)
I Use latent features in standard supervised learning to predict Y

Special case of our approach: G undirected, no missing edges, Y
not multilabel, U unsupervised
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Supervised latent feature approach

We learn U to jointly model the data and label matrices,
yielding supervised latent features:

min
U,V,W

||X−UV T ||2F +||Y −UWT ||2F +
1

2
(λU ||U ||2F +λV ||V ||2F +λW ||W ||2F ).

Equivalent to

min
U,V,W

||[XY ]− U [V ;W ]T ||2F +
1

2
(λU ||U ||2F + λV ||V ||2F + λW ||W ||2F )

Intuition: treat the tags as new movies
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Why not use the reduction?

If goal is predicting labels, reconstructing X is less important
So, weight the “label movies” with a tradeoff parameter µ:

min
U,V,W

||X−UV T ||2F +µ||Y −UWT ||2F +
1

2
(λU ||U ||2F +λV ||V ||2F +λW ||W ||2F )

Assuming no missing entries in X, essentially supervised matrix
factorization (SMF) method [4]

I SMF was designed for directed graphs, unlike SocDim
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From SMF to dyadic prediction

Move from SMF approach to one based on dyadic prediction

Obtain important advantages
I Deal with missing data in X
I Allow arbitrary missingness in Y , including partially observed

rows

Specifically, use LFL approach [1]
I Exploit side-information about the row objects
I Predict calibrated probabilities for tags
I Handle nominal and ordinal tags
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Latent feature log-linear (LFL) model

Assume discrete entries in input matrix X, say {1, . . . , R}
Per row and per column, have a latent feature vector for each
outcome: U r

i and V r
j

Posit log-linear probability model

p(Xij = r|U, V ) =
exp (U r

i )TV r
j∑

r′ exp (U r′
i )TV r′

j
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LFL inference and training

Model is

p(Xij = r|U, V ) =
exp (U r

i )TV r
j∑

r′ exp (U r′
i )TV r′

j

For nominal outcomes, predict argmax p(r|U, V )

For ordinal outcomes, predict
∑

r rp(r|U, V )

Optimize MSE for ordinal outcomes

Optimize log-likelihood for nominal outcomes;
get well-calibrated predictions
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Incorporating side-information

Known features can be highly predictive for matrix entries

They are essential to solve cold start problems, where there are
no existing observations for a row/column

Let ai and bj denote covariates for rows and columns respectively

Extended model is

p(Xij = r|U, V ) ∝ exp( (U r
i )TV r

j + (wr)T
[
ai bj

]
).

Weight vector wr says how side-information predicts outcome r
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Extending LFL to graphs

Consider the following generalization of the LFL model:

p(Xij = r|U, V,Λ) ∝ exp (U r
i )TΛijV

r
j .

Constrain latent features depending on nature of the graph:
I If rows and columns are distinct sets of entities, let Λ = I
I For asymmetric graphs, set V = U and let Λ be unconstrained
I For symmetric graphs, set V = U and Λ = I
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Using the LFL model for label prediction

Idea: Fill in missing entries in X and also missing tags in Y

Combined regularized optimization is

min
U,V,W

||X − E(X)||2O +
1

2

(∑
r

λU ||U r||2F + λV ||V r||2F

)
+

∑
(i,l)∈O

eYil(W
T
l Ui)

1 + eW
T
l Ui

+
λW
2
||W ||2F

If entries in X are ordinal then

E(X)ij =
∑
r

r · p(Xij = r|U, V )
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Summary of methods

Three previously unrelated approaches to label prediction:
I SocDim
I SMF
I LFL

They haven’t been compared before

How do they differ?
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Comparison of approaches

Properties of the methods:

Item SocDim SMF LFL
Supervised latent features? No Yes Yes
Asymmetric graphs? No Yes Yes
Handles missing data? No No Yes
Finds latent features of? Modularity Data Data
Single minimum? Yes No No

Many differences arise as a result of the objective function being
optimized
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Alternative objective functions

Compare objective functions for a shared special case:
I Since SocDim and SMF operate natively on graphs,

assume X is a graph
I Assume no missing data in X, for fairness to SocDim and SMF
I Assume graph is undirected, as SocDim does
I Don’t learn latent features in a supervised manner,

for fairness to SocDim
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Comparing objective functions
SocDim: if Q denotes the modularity matrix, then

min
U,Λ diagonal

||Q(X)− UΛUT ||2F

Supervised matrix factorization:

min
U,Λ
||X − UΛUT ||2F +

λU
2
||U ||2F +

λΛ

2
||Λ||2F

LFL: denoting σ(x) = 1/(1 + e−x),

min
U
||X − σ(UUT )||2F +

λU
2
||U ||2F

In general:

min
U,Λ
||f(X)− g(U,Λ)||2F +

λU
2
||U ||2F +

λΛ

2
||Λ||2F
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SocDim versus LFL

SocDim transforms the input X but LFL transforms the estimate

Transforming the estimate ensures [0, 1] predictions

Transforming the input is analogous to spectral clustering:
I The graph Laplacian normalizes nodes wrt their degrees

Does the input transformation make a difference?

Does SocDim perform similarly using the Laplacian instead of
modularity?
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SocDim versus SMF

Without supervised features or missing data, two differences:
I SocDim uses modularity matrix, while SMF uses data matrix
I SocDim has closed form solution, while SMF does not
I SocDim is immune to local optima

Global optimum may offset issue that SocDim is unsupervised
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Questions for empirical study

Do supervised latent features help?

Does immunity to local optima help?

Which data transform is best? Does it matter?
I Can using the Laplacian matrix with SocDim improve

performance?
I Can using the modularity or Laplacian matrix with SMF

improve performance?

Can näıve approaches to missing edges succeed?
I Just impute row/column averages for missing entries?
I If so, then SocDim and SMF can be applied to more problems
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Datasets

blogcatalog: Fully observed links between 2500 bloggers in a
directory. Labels are users’ interests, divided into 39 categories
(multilabel problem)

senator: “Yea” or “Nay” votes of 101 U.S. senators on 315
bills. Label is Republican or Democrat

usps: Binarized grayscale 16× 16 images of handwritten digits.
We occlude some pixels, so X has missing entries. Labels are
the true digits.

I Shows how dyadic label prediction can solve a difficult version
of a standard supervised learning task
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Accuracy measures

For senator and usps binary tasks, 0-1 error

For blogcatalog multi-label task, F1-micro and F1-macro
scores

I Given true tags yil and predictions ŷil

micro = 2

∑
i,l yilŷil∑

i,l yil + ŷil

macro =
2

L

∑
l

∑
i yilŷil∑

i yil + ŷil

10-fold cross-validation
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F1-micro results on blogcatalog

Left to right: adjacency matrix, modularity, Laplacian

Blue training, red test. Higher is better

SMF is best. Raw data matrix is as good modularity

All methods overfit, despite `2 regularization
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F1-macro results on blogcatalog

Left to right: adjacency matrix, modularity, Laplacian

Blue training, red test. Higher is better

SMF is also best. Raw data matrix is best

All methods overfit
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Results on senator

Left to right: adjacency matrix, modularity, Laplacian

Blue training, red test. Lower is better.

LFL is best

Other two methods overfit badly
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Results on usps

Left to right: adjacency matrix, modularity, Laplacian

Blue training, red test. Lower is better.

SocDim is best, despite ignoring missing values

Raw data matrix is best
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Conclusions

Unified label prediction, within-network prediction,

Unified collaborative filtering with cold start and link prediction
with side-information

Unified label prediction and within-network prediction,

Showed how to use supervised latent features to predict labels
and links

Experiments show that good regularization is an open problem
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