Linking losses for density ratio and class-probability estimation

Aditya Krishna Menon Cheng Soon Ong

NICTA and The Australian National University

Linking losses for density ratio and class-probability estimation

Aditya Krishna Menon Cheng Soon Ong

Data61 and The Australian National University

Class-probability estimation (CPE) From labelled instances

Class-probability estimation (CPE)

From labelled instances, estimate probability of instance being +'ve

• e.g. using logistic regression

Density ratio estimation (DRE)

Given samples from densities p, q

Density ratio estimation (DRE)

Given samples from densities p, q, estimate density ratio r = p/q

Application: covariate shift adaptation Marginal training distribution

Application: covariate shift adaptation Marginal training distribution \neq marginal test distribution

Application: covariate shift adaptation Marginal training distribution \neq marginal test distribution

Can overcome by reweighting training instances

- use ratio between test and test densities
- train e.g. weighted class-probability estimator

• existing DRE approaches \rightarrow implicitly performing CPE

- $\bullet~$ existing DRE approaches \rightarrow implicitly performing CPE
- CPE \rightarrow Bregman minimisation for DRE

- existing DRE approaches \rightarrow implicitly performing CPE
- $\bullet~\mbox{CPE} \rightarrow \mbox{Bregman}$ minimisation for DRE
- new application of DRE losses to "top ranking"

DRE and CPE: formally

Distributions for learning with binary labels Fix an instance space \mathcal{X} (e.g. \mathbb{R}^n)

Let \mathcal{D} be a distribution over $\mathfrak{X} \times \{\pm 1\}$, with $\mathbb{P}(\mathbf{Y} = 1) = \frac{1}{2}$ and

$$(\boldsymbol{P}(\boldsymbol{x}), \boldsymbol{Q}(\boldsymbol{x})) = (\mathbb{P}(\mathsf{X} = \boldsymbol{x} | \mathsf{Y} = 1), \mathbb{P}(\mathsf{X} = \boldsymbol{x} | \mathsf{Y} = -1))$$

Distributions for learning with binary labels Fix an instance space \mathcal{X} (e.g. \mathbb{R}^n)

Let \mathcal{D} be a distribution over $\mathfrak{X} \times \{\pm 1\}$, with $\mathbb{P}(\mathsf{Y} = 1) = \frac{1}{2}$ and

$$(P(x), Q(x)) = (\mathbb{P}(\mathsf{X} = x | \mathsf{Y} = 1), \mathbb{P}(\mathsf{X} = x | \mathsf{Y} = -1))$$
$$(M(x), \eta(x)) = (\mathbb{P}(\mathsf{X} = x), \mathbb{P}(\mathsf{Y} = 1 | \mathsf{X} = x))$$

Marginal and class-probability function

Scorers, losses, risks

A scorer is any $s \colon \mathcal{X} \to \mathbb{R}$

• e.g. linear scorer $s: x \mapsto \langle w, x \rangle$

Scorers, losses, risks

A scorer is any $s \colon \mathcal{X} \to \mathbb{R}$

• e.g. linear scorer $s: x \mapsto \langle w, x \rangle$

A loss is any $\ell \colon \{\pm 1\} \times \mathbb{R} \to \mathbb{R}_+$

• e.g. logistic loss ℓ : $(y, v) \mapsto \log(1 + e^{-yv})$

Scorers, losses, risks

A scorer is any $s \colon \mathcal{X} \to \mathbb{R}$

• e.g. linear scorer $s: x \mapsto \langle w, x \rangle$

A loss is any $\ell \colon \{\pm 1\} \times \mathbb{R} \to \mathbb{R}_+$

• e.g. logistic loss ℓ : $(y, v) \mapsto \log(1 + e^{-yv})$

The risk of scorer s wrt loss ℓ and distribution $\mathcal D$ is

 $\mathbb{L}(s; \mathcal{D}, \ell) = \mathbb{E}_{(\mathsf{X}, \mathsf{Y}) \sim \mathcal{D}} \left[\ell(\mathsf{Y}, s(\mathsf{X})) \right]$

average loss on a random sample

CPE versus DRE

Given samples $S \sim \mathcal{D}^N$, with $\mathcal{D} = (P, Q) = (M, \eta)$:

CPE versus DRE

Given samples $S \sim \mathcal{D}^N$, with $\mathcal{D} = (P, Q) = (M, \eta)$:

Class-probability estimation (CPE) Estimate η

class-probability function

CPE versus DRE

Given samples $S \sim \mathcal{D}^N$, with $\mathcal{D} = (P, Q) = (M, \eta)$:

Class-probability estimation (CPE) Estimate η

class-probability function

Density ratio estimation (DRE) Estimate r = p/q

class-conditional density ratio

CPE approaches: proper composite losses

For suitable $\mathbb{S}\subseteq \mathbb{R}^{\mathcal{X}},$ find

$$\operatorname*{argmin}_{s\in\mathbb{S}}\mathbb{L}(s;\mathcal{D},\ell)$$

where ℓ is such that, for some invertible $\Psi : [0,1] \to \mathbb{R}$,

$$\operatorname*{argmin}_{s\in\mathbb{R}^{\mathcal{X}}}\mathbb{L}(s;\mathcal{D},\ell)=\Psi\circ\eta$$

• estimate $\hat{\boldsymbol{\eta}} = \Psi^{-1} \circ s$

CPE approaches: proper composite losses

For suitable $\mathbb{S} \subseteq \mathbb{R}^{\mathcal{X}}$, find

$$\operatorname*{argmin}_{s\in\mathbb{S}}\mathbb{L}(s;\mathcal{D},\ell)$$

where ℓ is such that, for some invertible $\Psi : [0,1] \to \mathbb{R}$,

$$\operatorname*{argmin}_{s\in\mathbb{R}^{\mathcal{X}}}\mathbb{L}(s;\mathcal{D},\ell)=\Psi\circ\eta$$

• estimate
$$\hat{\boldsymbol{\eta}} = \Psi^{-1} \circ s$$

Such an ℓ is called strictly proper composite with link Ψ

Examples of proper composite losses

DRE approaches: divergence minimisation For suitable $\mathcal{S} \subseteq \mathbb{R}^{\mathcal{X}}$, find

KLIEP: (Sugiyama et al., 2008)

 $\operatorname*{argmin}_{s\in\mathbb{S}}\mathsf{KL}(p\|q\odot s)$

constrained KL minimisation

LSIF: (Kanamori et al., 2009)

$$\operatorname*{argmin}_{s\in\mathbb{S}} \mathbb{E}_{\mathsf{X}\sim Q} \left[(r(\mathsf{X}) - s(\mathsf{X}))^2 \right]$$

direct least squares minimisation

Story so far

Roadmap

We begin by showing existing DRE losses implicitly perform CPE

Existing DRE losses are proper composite

Existing DRE approaches Suppose $\mathcal{D} = (P, Q)$

KLIEP: (Sugiyama et al., 2008)

 $\operatorname*{argmin}_{s\in\mathbb{S}}\mathsf{KL}(p\|q\odot s)$

LSIF: (Kanamori et al., 2009) $\underset{s \in S}{\operatorname{argmin}} \mathbb{E}_{\mathsf{X} \sim \mathcal{Q}} \left[(r(\mathsf{X}) - s(\mathsf{X}))^2 \right]$ Existing DRE approaches as loss minimisation Suppose $\mathcal{D} = (P, Q)$

KLIEP: (Sugiyama et al., 2008)

$$\operatorname*{argmin}_{s \in \mathbb{S}} \mathbb{E}_{(\mathsf{X}, \mathsf{Y}) \sim \mathcal{D}} \left[\ell(\mathsf{Y}, s(\mathsf{X})) \right]$$

$$\ell(-1,v) = a \cdot v$$
 and $\ell(1,v) = -\log v$

for suitable a > 0

LSIF: (Kanamori et al., 2009)

$$\operatorname{argmin}_{s \in \mathcal{S}} \mathbb{E}_{(\mathsf{X},\mathsf{Y}) \sim \mathcal{D}} \left[\ell(\mathsf{Y}, s(\mathsf{X})) \right]$$
$$\ell(-1, v) = \frac{1}{2} \cdot v^2 \text{ and } \ell(1, v) = -v$$

Existing DRE approaches as loss minimisation Suppose $\mathcal{D} = (P, Q)$

KLIEP: (Sugiyama et al., 2008)

$$\operatorname*{argmin}_{s \in \mathbb{S}} \mathbb{E}_{(\mathsf{X}, \mathsf{Y}) \sim \mathcal{D}} \left[\ell(\mathsf{Y}, s(\mathsf{X})) \right]$$

$$\ell(-1,v) = a \cdot v$$
 and $\ell(1,v) = -\log v$

for suitable a > 0

LSIF: (Kanamori et al., 2009)

$$\operatorname{argmin}_{s \in \mathcal{S}} \mathbb{E}_{(\mathsf{X},\mathsf{Y}) \sim \mathcal{D}} \left[\ell(\mathsf{Y}, s(\mathsf{X})) \right]$$
$$\ell(-1, v) = \frac{1}{2} \cdot v^2 \text{ and } \ell(1, v) = -v$$

These are no ordinary losses

Existing DRE approaches as CPE

For $u \in [0,1]$, let

$$\Psi_{\mathsf{dr}} \colon u \mapsto \frac{u}{1-u}.$$

Lemma

The LSIF loss is strictly proper composite with link Ψ_{dr} . The KLIEP loss with a > 0 is strictly proper composite with link $a^{-1} \cdot \Psi_{dr}$.

Existing DRE approaches as CPE

For $u \in [0,1]$, let

$$\Psi_{\mathsf{dr}} \colon u \mapsto \frac{u}{1-u}.$$

Lemma

The LSIF loss is strictly proper composite with link Ψ_{dr} . The KLIEP loss with a > 0 is strictly proper composite with link $a^{-1} \cdot \Psi_{dr}$.

KLIEP and LSIF perform CPE in disguise!

Proof

For LSIF and KLIEP (with a = 1),

$$\frac{\ell'(1,v)}{\ell'(-1,v)} = -\frac{1}{v},$$

so that

Proof

For LSIF and KLIEP (with a = 1),

$$\frac{\ell'(1,v)}{\ell'(-1,v)} = -\frac{1}{v},$$

so that

$$f(v) = \frac{1}{1 - \frac{\ell'(1,v)}{\ell'(-1,v)}} = \frac{v}{1+v}$$
Proof

For LSIF and KLIEP (with a = 1),

$$\frac{\ell'(1,v)}{\ell'(-1,v)} = -\frac{1}{v},$$

so that

$$f(v) = \frac{1}{1 - \frac{\ell'(1,v)}{\ell'(-1,v)}}$$
$$= \frac{v}{1+v}$$
$$= \Psi_{dr}^{-1}(v).$$

Proof

For LSIF and KLIEP (with a = 1),

$$\frac{\ell'(1,v)}{\ell'(-1,v)} = -\frac{1}{v},$$

so that

$$f(v) = \frac{1}{1 - \frac{\ell'(1,v)}{\ell'(-1,v)}} \\ = \frac{v}{1 + v} \\ = \Psi_{dr}^{-1}(v).$$

Proper compositeness follows from (Reid and Williamson, 2010).

The link Ψ_{dr} is especially suitable for DRE...

Another view of Ψ_{dr}

Bayes' rule shows targets of DRE and CPE are linked:

$$(\forall x \in \mathfrak{X}) r(x) \doteq \frac{p(x)}{q(x)}$$

Bayes' rule shows targets of DRE and CPE are linked:

$$(\forall x \in \mathcal{X}) r(x) \doteq \frac{p(x)}{q(x)}$$
$$= \frac{\eta(x)}{1 - \eta(x)}$$

Bayes' rule shows targets of DRE and CPE are linked:

$$(\forall x \in \mathfrak{X}) r(x) \doteq \frac{p(x)}{q(x)}$$
$$= \frac{\eta(x)}{1 - \eta(x)}$$
$$= \Psi_{dr}(\eta(x))$$

Bayes' rule shows targets of DRE and CPE are linked:

$$(\forall x \in \mathfrak{X}) r(x) \doteq \frac{p(x)}{q(x)}$$
$$= \frac{\eta(x)}{1 - \eta(x)}$$
$$= \Psi_{dr}(\eta(x))$$

as is well known (Bickel et al, 2009)

Bayes' rule shows targets of DRE and CPE are linked:

$$(\forall x \in \mathfrak{X}) r(x) \doteq \frac{p(x)}{q(x)}$$
$$= \frac{\eta(x)}{1 - \eta(x)}$$
$$= \Psi_{dr}(\eta(x))$$

as is well known (Bickel et al, 2009)

KLIEP and LSIF apposite for DRE

• Optimal scorer is exactly $\Psi_{dr} \circ \eta = r$

Existing DRE losses are specific examples of CPE losses

Roadmap

Now consider using arbitrary CPE losses for DRE

CPE as Bregman minimisation

General CPE approach to DRE?

Suppose ℓ proper composite with link Ψ

Class-probability estimate $\hat{\boldsymbol{\eta}} = \Psi^{-1} \circ s$

• for logistic loss, $\hat{\boldsymbol{\eta}}(x) = 1/(1 + e^{-s(x)})$

General CPE approach to DRE?

Suppose ℓ proper composite with link Ψ

Class-probability estimate $\hat{\boldsymbol{\eta}} = \Psi^{-1} \circ s$

• for logistic loss, $\hat{\boldsymbol{\eta}}(x) = 1/(1 + e^{-s(x)})$

Density ratio estimate is naturally:

$$\hat{r}(x) \doteq \Psi_{\mathsf{dr}}(\hat{\boldsymbol{\eta}}(x)) = \frac{\hat{\boldsymbol{\eta}}(x)}{1 - \hat{\boldsymbol{\eta}}(x)}$$

• e.g. for logistic loss, $\hat{r}(x) = e^{s(x)}$

General CPE approach to DRE?

Suppose ℓ proper composite with link Ψ

Class-probability estimate $\hat{\boldsymbol{\eta}} = \Psi^{-1} \circ s$

• for logistic loss, $\hat{\boldsymbol{\eta}}(x) = 1/(1 + e^{-s(x)})$

Density ratio estimate is naturally:

$$\hat{r}(x) \doteq \Psi_{\mathsf{dr}}(\hat{\boldsymbol{\eta}}(x)) = \frac{\hat{\boldsymbol{\eta}}(x)}{1 - \hat{\boldsymbol{\eta}}(x)}.$$

• e.g. for logistic loss, $\hat{r}(x) = e^{s(x)}$

Intuitive, but what can we guarantee about this?

preceding analysis only asymptotic

For proper composite ℓ , the regret or excess risk of a scorer is

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{L}(s; \mathcal{D}, \ell) - \min_{s^* \in \mathbb{R}^{\mathcal{X}}} \mathbb{L}(s^*; \mathcal{D}, \ell)$$

For proper composite ℓ , the regret or excess risk of a scorer is

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{L}(s; \mathcal{D}, \ell) - \min_{s^* \in \mathbb{R}^{\mathcal{X}}} \mathbb{L}(s^*; \mathcal{D}, \ell)$$
$$= \mathbb{E}_{\mathsf{X} \sim M} \left[B_f(\boldsymbol{\eta}(\mathsf{X}), \hat{\boldsymbol{\eta}}(\mathsf{X})) \right]$$

for Bregman divergence B_f and loss-specific f

For proper composite ℓ , the regret or excess risk of a scorer is

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{L}(s; \mathcal{D}, \ell) - \min_{s^* \in \mathbb{R}^{\mathcal{X}}} \mathbb{L}(s^*; \mathcal{D}, \ell)$$
$$= \mathbb{E}_{\mathsf{X} \sim M} \left[B_f(\boldsymbol{\eta}(\mathsf{X}), \hat{\boldsymbol{\eta}}(\mathsf{X})) \right]$$

for Bregman divergence B_f and loss-specific f

• e.g. for logistic loss, regret is a KL projection

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{E}_{\mathsf{X} \sim M} \left[\mathsf{KL}(\boldsymbol{\eta}(\mathsf{X}) \| \hat{\boldsymbol{\eta}}(\mathsf{X})) \right]$$

For proper composite ℓ , the regret or excess risk of a scorer is

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{L}(s; \mathcal{D}, \ell) - \min_{s^* \in \mathbb{R}^{\mathcal{X}}} \mathbb{L}(s^*; \mathcal{D}, \ell)$$
$$= \mathbb{E}_{\mathsf{X} \sim M} \left[B_f(\boldsymbol{\eta}(\mathsf{X}), \hat{\boldsymbol{\eta}}(\mathsf{X})) \right]$$

for Bregman divergence B_f and loss-specific f

e.g. for logistic loss, regret is a KL projection

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \mathbb{E}_{\mathsf{X} \sim M} [\mathsf{KL}(\boldsymbol{\eta}(\mathsf{X}) \| \hat{\boldsymbol{\eta}}(\mathsf{X}))]$$

Does this imply a Bregman projection onto r?

The following lemma lets us make progress.

Lemma

Pick any convex and twice differentiable $f: [0,1] \rightarrow \mathbb{R}$. Then,

$$(\forall x, y \in [0,\infty)) B_f\left(\frac{x}{1+x}, \frac{y}{1+y}\right)$$

where f^{\otimes} : $z \mapsto (1+z) \cdot f\left(\frac{z}{1+z}\right)$.

The following lemma lets us make progress.

Lemma

Pick any convex and twice differentiable $f: [0,1] \rightarrow \mathbb{R}$. Then,

$$(\forall x, y \in [0,\infty)) B_f\left(\frac{x}{1+x}, \frac{y}{1+y}\right) = \frac{1}{1+x} \cdot B_{f^{\bigotimes}}(x,y),$$

where f^{\otimes} : $z \mapsto (1+z) \cdot f\left(\frac{z}{1+z}\right)$.

The following lemma lets us make progress.

Lemma

Pick any convex and twice differentiable $f: [0,1] \rightarrow \mathbb{R}$. Then,

$$(\forall x, y \in [0,\infty)) B_f\left(\frac{x}{1+x}, \frac{y}{1+y}\right) = \frac{1}{1+x} \cdot B_{f^{\bigotimes}}(x,y),$$

where f^{\otimes} : $z \mapsto (1+z) \cdot f\left(\frac{z}{1+z}\right)$.

 f^{\otimes} is closely related to the perspective transform

The following lemma lets us make progress.

Lemma

Pick any convex and twice differentiable $f: [0,1] \rightarrow \mathbb{R}$. Then,

$$(\forall x, y \in [0,\infty)) B_f\left(\frac{x}{1+x}, \frac{y}{1+y}\right) = \frac{1}{1+x} \cdot B_{f^{\bigotimes}}(x,y),$$

where f^{\otimes} : $z \mapsto (1+z) \cdot f\left(\frac{z}{1+z}\right)$.

 f^{\otimes} is closely related to the perspective transform

Unlike standard dual symmetry,

$$B_f(x,y) = B_{f^*}(f'(y),f'(x)),$$

order of *x* and *y* retained, and only *x* appears in extra scaling factor

By (Reid and Williamson 2009, Equation 12),

$$B_f(x,y) = \int_y^x (x-z) \cdot f''(z) \, dz.$$

Applying this to the LHS,

$$B_f\left(\frac{x}{1+x},\frac{y}{1+y}\right) = \int_{\frac{y}{1+y}}^{\frac{x}{1+x}} \left(\frac{x}{1+x}-z\right) \cdot f''(z) \, dz.$$

Employing the substitution $z = \frac{u}{1+u}$, with $dz = \frac{du}{(1+u)^2}$,

$$\mathsf{LHS} = \int_y^x \left(\frac{x}{1+x} - \frac{u}{1+u}\right) \cdot f''\left(\frac{u}{1+u}\right) \cdot \frac{1}{(1+u)^2} \, du$$

Employing the substitution $z = \frac{u}{1+u}$, with $dz = \frac{du}{(1+u)^2}$,

$$\mathsf{LHS} = \int_y^x \left(\frac{x}{1+x} - \frac{u}{1+u}\right) \cdot f''\left(\frac{u}{1+u}\right) \cdot \frac{1}{(1+u)^2} \, du$$
$$= \frac{1}{1+x} \cdot \int_y^x (x-u) \cdot f''\left(\frac{u}{1+u}\right) \cdot \frac{1}{(1+u)^3} \, du$$

Employing the substitution $z = \frac{u}{1+u}$, with $dz = \frac{du}{(1+u)^2}$,

$$\begin{aligned} \mathsf{LHS} &= \int_{y}^{x} \left(\frac{x}{1+x} - \frac{u}{1+u} \right) \cdot f'' \left(\frac{u}{1+u} \right) \cdot \frac{1}{(1+u)^2} \, du \\ &= \frac{1}{1+x} \cdot \int_{y}^{x} (x-u) \cdot f'' \left(\frac{u}{1+u} \right) \cdot \frac{1}{(1+u)^3} \, du \\ &= \frac{1}{1+x} \cdot B_{f^{\circledast}}(x,y), \end{aligned}$$

since by definition of f^{\otimes} ,

$$(f^{\otimes})''(z) = f''\left(\frac{z}{1+z}\right) \cdot \frac{1}{(1+z)^3}.$$

Employing the substitution $z = \frac{u}{1+u}$, with $dz = \frac{du}{(1+u)^2}$,

$$\begin{aligned} \mathsf{LHS} &= \int_{y}^{x} \left(\frac{x}{1+x} - \frac{u}{1+u} \right) \cdot f'' \left(\frac{u}{1+u} \right) \cdot \frac{1}{(1+u)^2} \, du \\ &= \frac{1}{1+x} \cdot \int_{y}^{x} (x-u) \cdot f'' \left(\frac{u}{1+u} \right) \cdot \frac{1}{(1+u)^3} \, du \\ &= \frac{1}{1+x} \cdot B_{f^{\circledast}}(x,y), \end{aligned}$$

since by definition of f^{\otimes} ,

$$(f^{\otimes})''(z) = f''\left(\frac{z}{1+z}\right) \cdot \frac{1}{(1+z)^3}.$$

Not obviously generalisable with another substitution

RHS does not remain a Bregman divergence

Implication for DRE via CPE

Identity is equivalently

$$B_f\left(\Psi_{\mathsf{dr}}^{-1}(x),\Psi_{\mathsf{dr}}^{-1}(y)\right) = \frac{1}{1+x} \cdot B_{f^{\otimes}}(x,y).$$

Implication for DRE via CPE Identity is equivalently

$$B_f\left(\Psi_{\mathsf{dr}}^{-1}(x),\Psi_{\mathsf{dr}}^{-1}(y)\right) = \frac{1}{1+x} \cdot B_{f^{\otimes}}(x,y).$$

Apply to x = r, so that $\Psi_{dr}^{-1}(x) = \eta$

Implication for DRE via CPE Identity is equivalently

$$B_f\left(\Psi_{\mathsf{dr}}^{-1}(x),\Psi_{\mathsf{dr}}^{-1}(y)\right) = \frac{1}{1+x} \cdot B_{f^{\otimes}}(x,y).$$

Apply to x = r, so that $\Psi_{dr}^{-1}(x) = \eta$

Lemma

Pick any strictly proper composite ℓ with f twice differentiable. Then, for any distribution $\mathcal{D} = (P, Q)$ and scorer $s \colon \mathcal{X} \to \mathbb{R}$,

$$\operatorname{reg}(s; \mathcal{D}, \ell) = \frac{1}{2} \cdot \mathbb{E}_{\mathsf{X} \sim Q} \left[B_{f^{\oplus}} \left(r(\mathsf{X}), \hat{r}(\mathsf{X}) \right) \right],$$

for $\hat{r} = \Psi_{dr} \circ \hat{\eta} = \Psi_{dr} \circ \Psi^{-1} \circ s$.

Justifies using CPE for DRE

concrete sense in which r̂ is a good estimate

Shown how to perform DRE with range of CPE losses

Final link is to use DRE losses for CPE problems

DRE for bipartite top ranking

Bipartite top ranking

Given $S \sim \mathcal{D}^N$ as before, learn scorer $s: \mathcal{X} \to \mathbb{R}$ with

Bipartite top ranking

Given $S \sim \mathcal{D}^N$ as before, learn scorer $s: \mathfrak{X} \to \mathbb{R}$ with

Bipartite ranking: maximal area under ROC curve

- rank average positives above negatives
- CPE is suitable (Kotlowski et al, 2010, Agarwal, 2014)

Bipartite top ranking

Given $S \sim \mathcal{D}^N$ as before, learn scorer $s: \mathfrak{X} \to \mathbb{R}$ with

Bipartite ranking: maximal area under ROC curve

- rank average positives above negatives
- CPE is suitable (Kotlowski et al, 2010, Agarwal, 2014)

Top ranking: maximal partial area under ROC curve

- rank top positives above negatives
- is CPE suitable?

CPE and weight functions

Any proper composite ℓ has weight function $w \colon [0,1] \to \mathbb{R}_*$

• large $w(c) \rightarrow$ more focus on $\eta \approx c$

Top ranking via LSIF

Carefully selected ℓ suitable for top ranking

• choose ℓ with w focussing on large values of η

Easy to check that for LSIF,

$$\ell(-1,v) = \frac{1}{2} \cdot v^2$$
 and $\ell(1,v) = -v$.

$$w(c) = \frac{1}{(1-c)^3}.$$

- focusses on $\eta pprox 1$
- appealing due to closed-form solution!

See paper for details

Conclusion

Formal links between (losses for) CPE and DRE

Future work

Finite sample analysis

understanding of when importance weighting doesn't help

Other applications of DRE losses?

• closed form solution for LSIF is appealing

Other applications for Bregman lemma?

Thanks!¹

¹Drop by the poster for more (Paper ID 152)