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Class-probability estimation (CPE)

From labelled instances
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Class-probability estimation (CPE)

From labelled instances, estimate probability of instance being +'ve

@ e.g. using logistic regression
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Density ratio estimation (DRE)

Given samples from densities p, g
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Density ratio estimation (DRE)

Given samples from densities p, g, estimate density ratio r = p/q
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Application: covariate shift adaptation
Marginal training distribution
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Marginal training distribution # marginal test distribution
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Application: covariate shift adaptation
Marginal training distribution # marginal test distribution

+I’I

Can overcome by reweighting training instances

@ use ratio between test and test densities
@ train e.g. weighted class-probability estimator
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This paper
Formal link between CPE and DRE

@ existing DRE approaches — implicitly performing CPE

Proper losses
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This paper
Formal link between CPE and DRE

@ existing DRE approaches — implicitly performing CPE
@ CPE — Bregman minimisation for DRE
@ new application of DRE losses to “top ranking”
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DRE and CPE: formally



Distributions for learning with binary labels
Fix an instance space X (e.g. R")

Let D be a distribution over X x {£1}, with P(Y = 1) = J and
(P(x),0(x)) = (P(X=x]Y=1),P(X=x|]Y =—1))

Class conditionals
1
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Distributions for learning with binary labels
Fix an instance space X (e.g. R")

Let D be a distribution over X x {£1}, with P(Y = 1) = J and
(P(x),0(x)) = (P(X =x]Y = 1), P(X = x|Y = —1))
(M(x),1n(x)) = (P(X =x), P(Y = 1]X = x))

Class conditionals Marginal and class-probability function
1

.8

-3 -2 -1 3

6/34



Scorers, losses, risks

A scorerisany s: X - R

@ e.g. linear scorer s: x — (w,x)



Scorers, losses, risks

A scorerisany s: X — R 4B
S [N
@ e.g. linear scorer s: x — (w,x) n ™ +ﬂ

g

Alossisany /: {1} xR —> R,

@ e.g. logistic loss ¢: (y,v) — log(1+e7")
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Scorers, losses, risks
. <+
A scorerisany s: X =+ R \ +B

R nl‘x\ +H

@ e.g. linear scorer s: x — (w,x)

Alossisany /: {1} xR —> R,

@ e.g. logistic loss ¢: (y,v) — log(1+e7")

The risk of scorer s wrt loss £ and distribution D is 'El
5 mE
L(s;D,€) = Ex y)~p [£(Y,5(X))] 2R g A

5 EUN
@ average loss on a random sample ﬂ ‘
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CPE versus DRE

Given samples S ~ DV, with D = (P,Q) = (M,1):
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CPE versus DRE

Given samples S ~ DV, with D = (P,Q) = (M,1):

Class-probability estimation (CPE)
Estimate

@ class-probability function
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CPE versus DRE

Given samples S ~ DV, with D = (P,Q) = (M,1):

Class-probability estimation (CPE)
Estimate

@ class-probability function

Density ratio estimation (DRE)
Estimate r=p/q

@ class-conditional density ratio




CPE approaches: proper composite losses

For suitable § C R¥, find

argminL(s; D, ()
58

where / is such that, for some invertible ¥ : [0, 1] — R,

argminlL(s; D, {) = Wor

seRX

@ estimate ) =¥ 'os



CPE approaches: proper composite losses

For suitable § C R¥, find

argminlL(s; D, ¢)
s€S

where / is such that, for some invertible ¥ : [0, 1] — R,

argminlL(s; D, {) = Wor

seRX

@ estimate ) =¥ los

Such an ¢ is called strictly proper composite with link ¥



Examples of proper composite losses

=3 33
2 2
1 1

-2 -1 0
v

1 2 = -2 -1 9 1 2

Logistic loss Exponential loss
Yy o(v) Ylivies o2v)
5/
4

-2 -1 g 1 2
Square hinge loss

Y-y min(max (0, (v+1)/2),1)

10/34



DRE approaches: divergence minimisation
For suitable § C R¥, find
KLIEP: (Sugiyama et al., 2008)

argminKL(p||g ®s)

s€S

@ constrained KL minimisation

LSIF: (Kanamori et al., 2009)

argminEy.o | (r(X) — s(X))?

sES

@ direct least squares minimisation
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Story so far
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Roadmap

We begin by showing existing DRE losses implicitly perform CPE

f Proper losses

E Logistic.
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Existing DRE losses are proper
composite



Existing DRE approaches
Suppose D = (P, Q)
KLIEP: (Sugiyama et al., 2008)

argminKL(p||g ®s)

s€§

LSIF: (Kanamori et al., 2009)

argminEy.o | (r(X) — S(X))z]

se8
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Existing DRE approaches as loss minimisation
Suppose D = (P, Q)
KLIEP: (Sugiyama et al., 2008)

argminEx v).p [((Y,s(X))]

SES
((—1,v)=a-vand ((1,v) = —logv

for suitable ¢ > 0

LSIF: (Kanamori et al., 2009)
argminEx vy [((Y,s(X))]

seS

1
0(—1,v) = i-vz and /(1,v) = —v

14/34



Existing DRE approaches as loss minimisation
Suppose D = (P, Q)

KLIEP: (Sugiyama et al., 2008)
argminEx v).p [((Y,s(X))]

SES
((—1,v)=a-vand ((1,v) = —logv
for suitable « > 0

LSIF: (Kanamori et al., 2009)
argminEx vy [((Y,s(X))]

seS

1
0(—1,v) = §-v2 and /(1,v) = —v

These are no ordinary losses
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Existing DRE approaches as CPE

Foru €[0,1], let

lPdr'u}_) .
1—u

Lemma
The LSIF loss is strictly proper composite with link ¥ 4,. The KLIEP
loss with a > 0 is strictly proper composite with link a=" - ¥ ;.
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Existing DRE approaches as CPE

Foru €[0,1], let

lPdr' u}_) .
1—u
Lemma

The LSIF loss is strictly proper composite with link ¥ 4,. The KLIEP
loss with a > 0 is strictly proper composite with link a=" - ¥ ;.

KLIEP and LSIF perform CPE in disguise!

15/34



Proof
For LSIF and KLIEP (with @ = 1),

7(1,v) 1

0(—1,v) v’

so that
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Proof
For LSIF and KLIEP (with @ = 1),

Ay) 1
O(—=1,v) v
so that
) = 1
1 7(—1,v)
v
14w
:‘Pgrl(v).

Proper compositeness follows from (Reid and Williamson, 2010).

The link Wy, is especially suitable for DRE...
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Another view of W,

Bayes’ rule shows targets of DRE and CPE are linked:

(Vx € X)r(x) = P
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Another view of W,

Bayes’ rule shows targets of DRE and CPE are linked:

(Vx € X)r(x) = P

T 1-n@)
— Wy (n(x))

as is well known (Bickel et al, 2009)
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Another view of W,

Bayes’ rule shows targets of DRE and CPE are linked:

(Vx € X)r(x) = P

T 1-n@)

= Yar (n(x))

as is well known (Bickel et al, 2009)

KLIEP and LSIF apposite for DRE

@ Optimal scorer is exactly Wgron =r

17/34



Story so far

Existing DRE losses are specific examples of CPE losses

f Proper losses .

_ Logistic. ) '
() e, | | (o2

[ KUEP | /

: L LsIF
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Roadmap

Now consider using arbitrary CPE losses for DRE

Logistic

| Exponential .. *

KLIEP /

LSIF

___________________
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CPE as Bregman minimisation
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General CPE approach to DRE?

Suppose ¢ proper composite with link ¥

Class-probability estimate ) = ¥ !os

@ for logistic loss, 7 (x) = 1/(1+e )
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General CPE approach to DRE?

Suppose ¢ proper composite with link ¥

Class-probability estimate ) = ¥ !os

@ for logistic loss, 7 (x) = 1/(1+e )

Density ratio estimate is naturally:

) = W (1(0) = 1o

1=7(x)

@ e.g. for logistic loss, #(x) = ¢*¥)
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General CPE approach to DRE?

Suppose ¢ proper composite with link ¥
Class-probability estimate /) =¥~ o

@ for logistic loss, 7 (x) = 1/(1+e )

Density ratio estimate is naturally:

) = W (1(0) = 1o

1=7(x)

@ e.g. for logistic loss, #(x) = ¢*¥)

Intuitive, but what can we guarantee about this?

@ preceding analysis only asymptotic

20/34



A Bregman minimisation view of CPE
For proper composite /, the regret or excess risk of a scorer is

reg(s;D,¢) =L(s;D,¢) — min L(s*;D,?)

s*eRX
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A Bregman minimisation view of CPE

For proper composite /, the regret or excess risk of a scorer is
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s*eRX

=Exm [Bf(n (X),7 (X))]

for Bregman divergence By and loss-specific f
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A Bregman minimisation view of CPE

For proper composite /, the regret or excess risk of a scorer is

reg(s;D,¢) =L(s;D,¢) — min L(s*;D,?)
s*eRX
= Exum [Br(11(X), 1(X))]
for Bregman divergence By and loss-specific f

@ e.g. for logistic loss, regret is a KL projection

reg(s; D, £) = Exy [KL(77 (X)|71 (X))]
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A Bregman minimisation view of CPE

For proper composite /, the regret or excess risk of a scorer is
reg(s;D,¢) =L(s;D,¢) — min L(s*;D,?)
s*eRX
= Exum [Br(11(X), 1(X))]
for Bregman divergence By and loss-specific f

@ e.g. for logistic loss, regret is a KL projection

reg(s; D, €) = Exy [KL(1 (X)[[71(X))]
Does this imply a Bregman projection onto ?

21/34



A Bregman identity

The following lemma lets us make progress.

Lemma
Pick any convex and twice differentiable f : [0,1] — R. Then,

v 0B ()

1+x 1+y

where f¥: z— (1+2)-f (%)
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A Bregman identity

The following lemma lets us make progress.

Lemma
Pick any convex and twice differentiable f : [0,1] — R. Then,

X y 1
0,))B = -B
(Vx,ye[ ) )) f<1+x, 1+y> 11 x f®(x,y),

where f¥: z— (1+2)-f (1%)-
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A Bregman identity

The following lemma lets us make progress.

Lemma
Pick any convex and twice differentiable f : [0,1] — R. Then,

X y 1
Vx,y € [0,00)) B - B
(3 € 0By (ot ) = B )

where f¥: z— (1+2)-f (1%)-

% is closely related to the perspective transform
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A Bregman identity

The following lemma lets us make progress.

Lemma
Pick any convex and twice differentiable f : [0,1] — R. Then,

X y 1
V. 0,))B = -B
( X,y € [ ) )) f <1+x7 1+y> 1+x f®(x7y)a

where f¥: z— (1+2)-f (1%)-

% is closely related to the perspective transform

Unlike standard dual symmetry,

Bf(x7y) =B (f/(y)vf/(x))a

order of x and y retained, and only x appears in extra scaling factor

22/34



Proof - |

By (Reid and Williamson 2009, Equation 12),

X

By(x,y) = /y (x—z)-f"(2)dz.

Applying this to the LHS,

17 X /!
Bf(lﬂ 1+y> /ly <1+x—z> f(z) dz.

+y

23/34



Proof - |l

Employing the substitution z = %, with dz =

du
(1+u)??

[ X u o u ' 1
LHS_/y <1+x l—i—u> ! <1+u> (1+u)2du
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du
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1 x a U 1
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Proof - |l

Employing the substitution z = %, with dz = (1+ 7

_ [ x u o[ ' 1
LHS_/y <1+x 1—i—u> f <1+u> (1+u)2du

1 x a U 1
1

=11 “Bro (x,y),

since by definition of f®,

o= (15) o3

l+z) (142z)

24/34



Proof - |l

Employing the substitution z = %, with dz = (1+ 7

rox u " u 1
= — . . d
LAS /y <1+x 1—i—u> f <1+u> (14u)? !

1 x a U 1
_1+x'/y (x=w)-f <1+u) ' (1+u)3du
1

=11 “Bro (x,y),

since by definition of f®,

o= (15) o3

l+z) (142z)

Not obviously generalisable with another substitution

@ RHS does not remain a Bregman divergence

24/34



Implication for DRE via CPE

Identity is equivalently

Bf <‘Pc;r1 (X)’IP(;I (y)> = %‘f—x 'Bf@ (x,y).
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Bf <1P(;r1 (X)’lp;} (y)> = IL—FX 'Bf@ (x,y).

Apply to x = r, so that ¥, (x) =1
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Implication for DRE via CPE

Identity is equivalently

_ _ 1
By (¥a' (0.9 0)) = 15 Bre (x)
Apply to x = r, so that ¥ ' (x) =7

Lemma

Pick any strictly proper composite ¢ with f twice differentiable.

Then, for any distribution D = (P,Q) and scorers: X — R,

reg(s; D, ¢) = % -Ex~g [Bre (r(X),#(X))],

for =Wy of) =W¥go¥ los.

Justifies using CPE for DRE

@ concrete sense in which 7 is a good estimate

25/34



Story so far

Shown how to perform DRE with range of CPE losses

[ Logistc |
. Exponential (Br¢gman
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LSIF |
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Roadmap

Final link is to use DRE losses for CPE problems

Logistic

Exponential ~(Brégman
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___________________
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DRE for bipartite top ranking



Bipartite top ranking

Given S ~ DV as before, learn scorer s: X — R with
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Bipartite top ranking

Given S ~ DV as before, learn scorer s: X — R with

Bipartite ranking: maximal area under ROC curve

@ rank average positives above negatives
@ CPE is suitable (Kotlowski et al, 2010, Agarwal, 2014)
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Bipartite top ranking

Given S ~ DV as before, learn scorer s: X — R with

Bipartite ranking: maximal area under ROC curve

@ rank average positives above negatives
@ CPE is suitable (Kotlowski et al, 2010, Agarwal, 2014)

Top ranking: maximal partial area under ROC curve

@ rank top positives above negatives
@ is CPE suitable?

28/34



CPE and weight functions

Any proper composite ¢ has weight function w: [0,1] — R,

@ large w(c) — more focus on n ~ ¢

8 &
= 9 g
B ) B J
2 2
0.2 0.4 06 0.8 02 0.4 0.6 0.8 1
c c
Logistic loss Exponential loss
1 _ 1
w(c) (= w(c) = T (=)
8
__ 6
H
4
2
0.2 0.4 0.6 0.8

Square hinge loss
w(c)=2
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Top ranking via LSIF

Carefully selected ¢ suitable for top ranking

@ choose ¢ with w focussing on large values of n

Easy to check that for LSIF, o=1,v) = % 2 and £(1,v) = —v.

@ focussesonn =1

@ appealing due to closed-form solution!

See paper for details
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Conclusion
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Summary

Formal links between (losses for) CPE and DRE

f Proper losses '
E Logistic Bi
" i regman
(0P it | savare Hinge | £ | ORE ]
;éh\( KLIEP | /
i LSIF ]
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Future work

Finite sample analysis

@ understanding of when importance weighting doesn’t help

Other applications of DRE losses?

@ closed form solution for LSIF is appealing

Other applications for Bregman lemma?
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Thanks!’

"Drop by the poster for more (Paper ID 152)
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