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Class-probability estimation (CPE)
From labelled instances

, estimate probability of instance being +’ve

e.g. using logistic regression
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Density ratio estimation (DRE)

Given samples from densities p,q

, estimate density ratio r = p/q
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Application: covariate shift adaptation
Marginal training distribution

6= marginal test distribution
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Can overcome by reweighting training instances

use ratio between test and test densities

train e.g. weighted class-probability estimator
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This paper
Formal link between CPE and DRE

existing DRE approaches→ implicitly performing CPE

CPE→ Bregman minimisation for DRE

new application of DRE losses to “top ranking”
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DRE and CPE: formally

5 / 34



Distributions for learning with binary labels
Fix an instance space X (e.g. Rn)

Let D be a distribution over X×{±1}, with P(Y = 1) = 1
2 and

(P(x),Q(x)) = (P(X = x|Y = 1),P(X = x|Y =−1))

(M(x),η(x)) = (P(X = x),P(Y = 1|X = x))

Class conditionals

Marginal and class-probability function
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Scorers, losses, risks

A scorer is any s : X→ R

e.g. linear scorer s : x 7→ 〈w,x〉
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A loss is any ` : {±1}×R→ R+

e.g. logistic loss ` : (y,v) 7→ log(1+ e−yv)
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The risk of scorer s wrt loss ` and distribution D is

L(s;D, `) = E(X,Y)∼D [`(Y,s(X))]

average loss on a random sample
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CPE versus DRE
Given samples S∼DN , with D= (P,Q) = (M,η):

Class-probability estimation (CPE)
Estimate η

class-probability function

+" +"

+"

+"#"

#"

#"
#" 0.6"

Density ratio estimation (DRE)
Estimate r = p/q

class-conditional density ratio
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CPE approaches: proper composite losses

For suitable S⊆ RX, find

argmin
s∈S

L(s;D, `)

where ` is such that, for some invertible Ψ : [0,1]→ R,

argmin
s∈RX

L(s;D, `) = Ψ◦η

estimate η̂ = Ψ−1 ◦ s

Such an ` is called strictly proper composite with link Ψ
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Examples of proper composite losses
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Square hinge loss
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DRE approaches: divergence minimisation
For suitable S⊆ RX, find

KLIEP: (Sugiyama et al., 2008)

argmin
s∈S

KL(p‖q� s)

constrained KL minimisation

LSIF: (Kanamori et al., 2009)

argmin
s∈S

EX∼Q

[
(r(X)− s(X))2

]
direct least squares minimisation

11 / 34



Story so far

We begin by showing existing DRE losses implicitly perform CPE
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Existing DRE losses are proper
composite

13 / 34



Existing DRE approaches
Suppose D= (P,Q)

KLIEP: (Sugiyama et al., 2008)

argmin
s∈S

KL(p‖q� s)

LSIF: (Kanamori et al., 2009)

argmin
s∈S

EX∼Q

[
(r(X)− s(X))2

]

These are no ordinary losses
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Existing DRE approaches as loss minimisation
Suppose D= (P,Q)

KLIEP: (Sugiyama et al., 2008)

argmin
s∈S

E(X,Y)∼D [`(Y,s(X))]

`(−1,v) = a · v and `(1,v) =− logv

for suitable a > 0

LSIF: (Kanamori et al., 2009)
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Existing DRE approaches as CPE

For u ∈ [0,1], let
Ψdr : u 7→ u

1−u
.

Lemma
The LSIF loss is strictly proper composite with link Ψdr. The KLIEP
loss with a > 0 is strictly proper composite with link a−1 ·Ψdr.

KLIEP and LSIF perform CPE in disguise!
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Proof
For LSIF and KLIEP (with a = 1),

`′(1,v)
`′(−1,v)

=−1
v
,

so that

f (v) =
1

1− `′(1,v)
`′(−1,v)

=
v

1+ v

= Ψ
−1
dr (v).

Proper compositeness follows from (Reid and Williamson, 2010).

The link Ψdr is especially suitable for DRE...
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Another view of Ψdr

Bayes’ rule shows targets of DRE and CPE are linked:

(∀x ∈ X)r(x) ·= p(x)
q(x)

=
η(x)

1−η(x)
= Ψdr (η(x))

as is well known (Bickel et al, 2009)

KLIEP and LSIF apposite for DRE

Optimal scorer is exactly Ψdr ◦η = r
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Story so far

Existing DRE losses are specific examples of CPE losses
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Roadmap

Now consider using arbitrary CPE losses for DRE
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CPE as Bregman minimisation
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General CPE approach to DRE?
Suppose ` proper composite with link Ψ

Class-probability estimate η̂ = Ψ−1 ◦ s

for logistic loss, η̂(x) = 1/(1+ e−s(x))

Density ratio estimate is naturally:

r̂(x) ·= Ψdr(η̂(x)) =
η̂(x)

1− η̂(x)
.

e.g. for logistic loss, r̂(x) = es(x)

Intuitive, but what can we guarantee about this?

preceding analysis only asymptotic
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A Bregman minimisation view of CPE

For proper composite `, the regret or excess risk of a scorer is

reg(s;D, `) = L(s;D, `)− min
s∗∈RX

L(s∗;D, `)

= EX∼M
[
Bf (η(X), η̂(X))

]
for Bregman divergence Bf and loss-specific f

e.g. for logistic loss, regret is a KL projection

reg(s;D, `) = EX∼M [KL(η(X)‖η̂(X))]

Does this imply a Bregman projection onto r?
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A Bregman identity
The following lemma lets us make progress.

Lemma
Pick any convex and twice differentiable f : [0,1]→ R. Then,

(∀x,y ∈ [0,∞))Bf

(
x

1+ x
,

y
1+ y

)
where f � : z 7→ (1+ z) · f

( z
1+z

)
.

f � is closely related to the perspective transform

Unlike standard dual symmetry,

Bf (x,y) = Bf ∗(f ′(y), f ′(x)),

order of x and y retained, and only x appears in extra scaling factor
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Proof - I

By (Reid and Williamson 2009, Equation 12),

Bf (x,y) =
∫ x

y
(x− z) · f ′′(z)dz.

Applying this to the LHS,

Bf

(
x

1+ x
,

y
1+ y

)
=
∫ x

1+x

y
1+y

(
x

1+ x
− z
)
· f ′′(z)dz.

23 / 34



Proof - II
Employing the substitution z = u

1+u , with dz = du
(1+u)2 ,

LHS =
∫ x

y

(
x

1+ x
− u

1+u

)
· f ′′
(

u
1+u

)
· 1
(1+u)2 du

=
1

1+ x
·
∫ x

y
(x−u) · f ′′

(
u

1+u

)
· 1
(1+u)3 du

=
1

1+ x
·Bf �(x,y),

since by definition of f �,

(f �)′′(z) = f ′′
(

z
1+ z

)
· 1
(1+ z)3 .

Not obviously generalisable with another substitution

RHS does not remain a Bregman divergence
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(f �)′′(z) = f ′′
(

z
1+ z

)
· 1
(1+ z)3 .

Not obviously generalisable with another substitution

RHS does not remain a Bregman divergence
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Proof - II
Employing the substitution z = u
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Implication for DRE via CPE
Identity is equivalently

Bf

(
Ψ
−1
dr (x),Ψ

−1
dr (y)

)
=

1
1+ x

·Bf �(x,y).

Apply to x = r, so that Ψ
−1
dr (x) = η

Lemma
Pick any strictly proper composite ` with f twice differentiable.
Then, for any distribution D= (P,Q) and scorer s : X→ R,

reg(s;D, `) =
1
2
·EX∼Q

[
Bf � (r(X), r̂(X))

]
,

for r̂ = Ψdr ◦ η̂ = Ψdr ◦Ψ−1 ◦ s.

Justifies using CPE for DRE

concrete sense in which r̂ is a good estimate
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Story so far

Shown how to perform DRE with range of CPE losses

CPE

Logistic
Exponential

Square Hinge

KLIEP
LSIF

Proper losses

DRE
Bregman

CPE

Logistic
Exponential

Square Hinge

KLIEP
LSIF

Proper losses

DRE
Bregman

?
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Roadmap

Final link is to use DRE losses for CPE problems

CPE
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DRE for bipartite top ranking
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Bipartite top ranking

Given S∼DN as before, learn scorer s : X→ R with

Bipartite ranking: maximal area under ROC curve

rank average positives above negatives

CPE is suitable (Kotlowski et al, 2010, Agarwal, 2014)

Top ranking: maximal partial area under ROC curve

rank top positives above negatives

is CPE suitable?
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CPE and weight functions
Any proper composite ` has weight function w : [0,1]→ R∗

large w(c)→ more focus on η ≈ c
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Top ranking via LSIF

Carefully selected ` suitable for top ranking

choose ` with w focussing on large values of η

Easy to check that for LSIF,

w(c) =
1

(1− c)3 .

focusses on η ≈ 1

appealing due to closed-form solution!

See paper for details

`(−1,v) =
1
2
· v2 and `(1,v) =−v.
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Conclusion
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Summary

Formal links between (losses for) CPE and DRE

CPE

Logistic
Exponential

Square Hinge

KLIEP
LSIF

Proper losses

DRE
Bregman

Ranking
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Future work

Finite sample analysis

understanding of when importance weighting doesn’t help

Other applications of DRE losses?

closed form solution for LSIF is appealing

Other applications for Bregman lemma?
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Thanks!1

1Drop by the poster for more (Paper ID 152)
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