Learning from Corrupted Binary Labels via Class-Probability Estimation

> Aditya Krishna Menon Brendan van Rooyen Cheng Soon Ong Robert C. Williamson

National ICT Australia and The Australian National University

Learning from noisy labels

Learning from positive and unlabelled data

Goal: good classification wrt distribution D

Learning from corrupted labels

Goal: good classification wrt (unobserved) distribution D

Can we learn a good classifier from corrupted samples?

Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

- can treat samples as if uncorrupted!
- (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al., 2013), (duPlessis and Sugiyama, 2014) ...

Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

- can treat samples as if uncorrupted!
- (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al., 2013), (duPlessis and Sugiyama, 2014) ...

This work: unified treatment via class-probability estimation

• analysis for general class of corruptions

Assumed corruption model

Learning from binary labels: distributions

Fix instance space \mathcal{X} (e.g. \mathbb{R}^N)

Underlying distribution D over $\mathfrak{X} \times \{\pm 1\}$

Constituent components of *D*:

$$(\mathbf{P}(x), \mathbf{Q}(x), \pi) = (\mathbb{P}[\mathsf{X} = x | \mathsf{Y} = 1], \mathbb{P}[\mathsf{X} = x | \mathsf{Y} = -1], \mathbb{P}[\mathsf{Y} = 1])$$

Learning from binary labels: distributions

Fix instance space \mathcal{X} (e.g. \mathbb{R}^N)

Underlying distribution D over $\mathfrak{X} \times \{\pm 1\}$

Constituent components of D:

$$\begin{aligned} (\boldsymbol{P}(x), \boldsymbol{Q}(x), \boldsymbol{\pi}) &= (\mathbb{P}[\mathsf{X} = x | \mathsf{Y} = 1], \mathbb{P}[\mathsf{X} = x | \mathsf{Y} = -1], \mathbb{P}[\mathsf{Y} = 1]) \\ (\boldsymbol{M}(x), \boldsymbol{\eta}(x)) &= (\mathbb{P}[\mathsf{X} = x], \mathbb{P}[\mathsf{Y} = 1 | \mathsf{X} = x]) \end{aligned}$$

Learning from corrupted binary labels

Samples from corrupted distribution $\bar{D} = (\bar{P}, \bar{Q}, \bar{\pi})$

Goal: good classification wrt (unobserved) distribution D

Learning from corrupted binary labels

Samples from corrupted distribution $\overline{D} = (\overline{P}, \overline{Q}, \overline{\pi})$, where

$$\bar{P} = (1 - \alpha) \cdot P + \alpha \cdot Q$$
$$\bar{Q} = \beta \cdot P + (1 - \beta) \cdot Q$$

and $\bar{\pi}$ is arbitrary

- α, β are noise rates
- mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D

Special cases

Label noise

Labels flipped w.p. p

$$\bar{\pi} = (1 - 2\rho) \cdot \pi + \rho$$

$$\alpha = \bar{\pi}^{-1} \cdot (1 - \pi) \cdot \rho$$

$$\boldsymbol{\beta} = (1 - \bar{\boldsymbol{\pi}})^{-1} \cdot \boldsymbol{\pi} \cdot \boldsymbol{\rho}$$

PU learning Observe *M* instead of *Q*

 $ar{\pi}=$ arbitrary

$$\begin{split} \bar{P} &= 1 \cdot P + 0 \cdot Q \\ \bar{Q} &= M \\ &= \pi \cdot P + (1 - \pi) \cdot Q \end{split}$$

Structure of corrupted class-probabilities underpins analysis

Structure of corrupted class-probabilities underpins analysis

Proposition For any D, \overline{D} ,

$$\bar{\boldsymbol{\eta}}(\boldsymbol{x}) = \boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\pi}}(\boldsymbol{\eta}(\boldsymbol{x}))$$

where $\phi_{\alpha,\beta,\pi}$ is strictly monotone for fixed α,β,π .

Structure of corrupted class-probabilities underpins analysis

Proposition For any D, \overline{D} ,

$$\bar{\boldsymbol{\eta}}(\boldsymbol{x}) = \boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\pi}}(\boldsymbol{\eta}(\boldsymbol{x}))$$

where $\phi_{\alpha,\beta,\pi}$ is strictly monotone for fixed α,β,π .

Follows from Bayes' rule:

$$\frac{\bar{\eta}(x)}{1-\bar{\eta}(x)} = \frac{\bar{\pi}}{1-\bar{\pi}} \cdot \frac{\bar{P}(x)}{\bar{Q}(x)}$$

Structure of corrupted class-probabilities underpins analysis

Proposition For any D, \overline{D} ,

$$\bar{\boldsymbol{\eta}}(\boldsymbol{x}) = \boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\pi}}(\boldsymbol{\eta}(\boldsymbol{x}))$$

where $\phi_{\alpha,\beta,\pi}$ is strictly monotone for fixed α,β,π .

Follows from Bayes' rule:

$$\frac{\bar{\eta}(x)}{1-\bar{\eta}(x)} = \frac{\bar{\pi}}{1-\bar{\pi}} \cdot \frac{\bar{P}(x)}{\bar{Q}(x)} = \frac{\bar{\pi}}{1-\bar{\pi}} \cdot \frac{(1-\alpha) \cdot \frac{P(x)}{Q(x)} + \alpha}{\beta \cdot \frac{P(x)}{Q(x)} + (1-\beta)}.$$

Corrupted class-probabilities: special cases

Label noise

$$\bar{\boldsymbol{\eta}}(x) = (1 - 2\boldsymbol{\rho}) \cdot \boldsymbol{\eta}(x) + \boldsymbol{\rho}$$

µ
unknown

(Natarajan et al., 2013)

PU learning

$$\bar{\boldsymbol{\eta}}(x) = rac{\pi \cdot \boldsymbol{\eta}(x)}{\pi \cdot \boldsymbol{\eta}(x) + (1 - \pi) \cdot \bar{\pi}}$$

 π unknown

(Ward et al., 2009)

Roadmap

Kernel logistic regression

Exploit monotone relationship between η and $\bar{\eta}$

Kernel logistic regression

Classification with noise rates

Class-probabilities and classification

Many classification measures optimised by $sign(\eta(x) - t)$

- 0-1 error $\rightarrow t = \frac{1}{2}$
- Balanced error $\rightarrow t = \pi$
- F-score \rightarrow optimal *t* depends on *D*
 - (Lipton et al., 2014, Koyejo et al., 2014)

Class-probabilities and classification

Many classification measures optimised by $sign(\eta(x) - t)$

- 0-1 error $\rightarrow t = \frac{1}{2}$
- Balanced error $\rightarrow t = \pi$
- F-score \rightarrow optimal *t* depends on *D*
 - (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of $\bar{\eta}$!

Corrupted class-probabilities and classification

By monotone relationship,

$$\eta(x) > t \iff \bar{\eta}(x) > \phi_{\alpha,\beta,\pi}(t).$$

Threshold $\bar{\eta}$ at $\phi_{\alpha,\beta,\pi}(t) \rightarrow$ optimal classification on D

Can translate into regret bound e.g. for 0-1 loss

Classification scheme requires:

• η

t

• α, β, π

Classification scheme requires:

• $ar\eta o$ class-probability estimation

t

• α, β, π

Kernel logistic regression

Classification scheme requires:

- $ar\eta o$ class-probability estimation
- $t \rightarrow$ if unknown, alternate approach (see poster)
- α, β, π

Kernel logistic regression

Classification scheme requires:

- $ar\eta o$ class-probability estimation
- $t \rightarrow$ if unknown, alternate approach (see poster)
- $\alpha, \beta, \pi \rightarrow$ can we estimate these?

Kernel logistic regression

Estimating noise rates: some bad news

 π strongly non-identifiable!

• $\bar{\pi}$ allowed to be arbitrary (e.g. PU learning)

 α,β non-identifiable without assumptions (Scott et al., 2013)

Can we estimate α, β under assumptions?

Weak separability assumption

Assume that *D* is "weakly separable":

$$\min_{x \in \mathcal{X}} \eta(x) = 0$$
$$\max_{x \in \mathcal{X}} \eta(x) = 1$$

- i.e. ∃ deterministically +'ve and -'ve instances
- weaker than full separability

Weak separability assumption

Assume that *D* is "weakly separable":

$$\min_{x \in \mathcal{X}} \eta(x) = 0$$
$$\max_{x \in \mathcal{X}} \eta(x) = 1$$

- i.e. ∃ deterministically +'ve and -'ve instances
- weaker than full separability

Assumed range of η constrains observed range of $\bar{\eta}$!

Estimating noise rates

Proposition

Pick any weakly separable D. Then, for any \overline{D} ,

$$\alpha = \frac{\eta_{\min} \cdot (\eta_{\max} - \bar{\pi})}{\bar{\pi} \cdot (\eta_{\max} - \eta_{\min})} \text{ and } \beta = \frac{(1 - \eta_{\max}) \cdot (\bar{\pi} - \eta_{\min})}{(1 - \bar{\pi}) \cdot (\eta_{\max} - \eta_{\min})}$$

where

$$\eta_{\min} = \min_{x \in \mathcal{X}} \bar{\eta}(x)$$
$$\eta_{\max} = \max_{x \in \mathcal{Y}} \bar{\eta}(x)$$

lpha,eta can be estimated from corrupted data alone

Estimating noise rates: special cases

Label noise

PU learning

$$\begin{split} \rho &= 1 - \eta_{\max} & \alpha &= 0 \\ &= \eta_{\min} & \beta &= \pi \\ \pi &= \frac{\bar{\pi} - \eta_{\min}}{\eta_{\max} - \eta_{\min}} & = \frac{1 - \eta_{\max}}{\eta_{\max}} \cdot \frac{\bar{\pi}}{1 - \bar{\pi}} \end{split}$$

(Elkan and Noto, 2008), (Liu and Tao, 2014)

c.f. mixture proportion estimate of (Scott et al., 2013)

In these cases, π can be estimated as well

Optimal classification in general requires α, β, π

Kernel logistic regression

Optimal classification in general requires α, β, π

• when does $\phi_{\alpha,\beta,\pi}(t)$ not depend on α,β,π ?

Classification without noise rates

Balanced error (BER) of classifier

Balanced error (BER) of a classifier $f: \mathcal{X} \to \{\pm 1\}$ is:

$$\mathrm{BER}^D(f) = \frac{\mathrm{FPR}^D(f) + \mathrm{FNR}^D(f)}{2}$$

for false positive and negative rates $FPR^{D}(f)$, $FNR^{D}(f)$

- average classification performance on each class
- optimal classifier is $sign(\eta(x) \pi)$

BER "immunity" under corruption Proposition (c.f. (Zhang and Lee, 2008)) For any D, \overline{D} , and classifier $f: \mathcal{X} \to \{\pm 1\}$,

$$\operatorname{BER}^{\overline{D}}(f) = (1 - \alpha - \beta) \cdot \operatorname{BER}^{D}(f) + \frac{\alpha + \beta}{2}$$

BER "immunity" under corruption Proposition (c.f. (Zhang and Lee, 2008)) For any D, \overline{D} , and classifier $f: \mathcal{X} \to \{\pm 1\}$,

$$\operatorname{BER}^{\overline{D}}(f) = (1 - \alpha - \beta) \cdot \operatorname{BER}^{D}(f) + \frac{\alpha + \beta}{2}$$

BER-optimal classifiers on clean and corrupted coincide

•
$$\operatorname{sign}(\eta(x) - \pi) = \operatorname{sign}(\bar{\eta}(x) - \bar{\pi})$$

BER "immunity" under corruption Proposition (c.f. (Zhang and Lee, 2008)) For any D, \overline{D} , and classifier $f: \mathcal{X} \to \{\pm 1\}$, $\alpha + \beta$

$$\operatorname{BER}^{\overline{D}}(f) = (1 - \alpha - \beta) \cdot \operatorname{BER}^{D}(f) + \frac{\alpha + \beta}{2}$$

BER-optimal classifiers on clean and corrupted coincide

•
$$\operatorname{sign}(\eta(x) - \pi) = \operatorname{sign}(\bar{\eta}(x) - \bar{\pi})$$

Minimise clean BER \rightarrow don't need to know corruption rates!

• threshold on $\bar{\eta}$ does not need $lpha, eta, \pi$

BER "immunity" & class-probability estimation

Trivially, we also have

regret_{BER}^{*D*}(*f*) =
$$(1 - \alpha - \beta)^{-1} \cdot \text{regret}_{BER}^{\overline{D}}(f)$$
.

- i.e. good corrupted BER \implies good clean BER
 - $\bullet~{\rm can}~{\rm make}~{\rm regret}_{\rm BER}^{\bar{D}}(f) \rightarrow 0$ by class-probability estimation

Similar result for AUC (see poster)

BER "immunity" under corruption: proof

From (Scott et al., 2013),

$$\begin{bmatrix} \operatorname{FPR}^{\overline{D}}(f) & \operatorname{FNR}^{\overline{D}}(f) \end{bmatrix}^T = \begin{bmatrix} \operatorname{FPR}^{D}(f) & \operatorname{FNR}^{D}(f) \end{bmatrix}^T \cdot \begin{bmatrix} 1 - \beta & -\alpha \\ -\beta & 1 - \alpha \end{bmatrix} \\ + \begin{bmatrix} \beta & \alpha \end{bmatrix}^T,$$

BER "immunity" under corruption: proof

From (Scott et al., 2013),

$$\begin{bmatrix} \operatorname{FPR}^{\overline{D}}(f) & \operatorname{FNR}^{\overline{D}}(f) \end{bmatrix}^{T} = \begin{bmatrix} \operatorname{FPR}^{D}(f) & \operatorname{FNR}^{D}(f) \end{bmatrix}^{T} \cdot \begin{bmatrix} 1 - \beta & -\alpha \\ -\beta & 1 - \alpha \end{bmatrix} \\ + \begin{bmatrix} \beta & \alpha \end{bmatrix}^{T},$$

and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 - \beta & -\alpha \\ -\beta & 1 - \alpha \end{bmatrix}$

Are other measures "immune"?

BER is only (non-trivial) performance measure for which:

- corrupted risk = affine transform of clean risk
 - because of eigenvector interpretation
- corrupted threshold is independent of α, β, π
 - because of nature of $\phi_{\alpha,\beta,\pi}$

(see poster)

Other performance measures ightarrow need (one of) $lpha,eta,\pi$

Experiments

Experimental setup

Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

• well-specified if *D* linearly separable:

$$\eta(x) = \sigma(\langle w, x \rangle) \implies \overline{\eta}(x) = a \cdot \sigma(\langle w, x \rangle) + b$$

Evaluate:

- reliability of noise estimates
- BER performance on clean test set
 - corrupted data used for training and validation
- 0-1 performance on clean test set (see poster)

Experimental results: noise rates

Estimated noise rates are generally reliable

Experimental results: BER immunity

Generally, low observed degradation in BER

Dataset	Noise	1 - AUC (%)	BER (%)
segment	None	0.00 ± 0.00	0.00 ± 0.00
	$(\rho_+, \rho) = (0.1, 0.0)$	0.00 ± 0.00	0.01 ± 0.00
	$(\rho_+, \rho) = (0.1, 0.2)$	$\textbf{0.02} \pm \textbf{0.01}$	$\textbf{0.90} \pm \textbf{0.08}$
	$(\rho_+,\rho)=(0.2,0.4)$	0.03 ± 0.01	$\textbf{3.24} \pm \textbf{0.20}$
spambase	None	$\textbf{2.49} \pm \textbf{0.00}$	$\textbf{6.93} \pm \textbf{0.00}$
	$(\rho_+, \rho) = (0.1, 0.0)$	$\textbf{2.67} \pm \textbf{0.02}$	$\textbf{7.10} \pm \textbf{0.03}$
	$(\rho_+, \rho) = (0.1, 0.2)$	$\textbf{3.01} \pm \textbf{0.03}$	$\textbf{7.66} \pm \textbf{0.05}$
	$(\rho_+,\rho)=(0.2,0.4)$	4.91 ± 0.09	10.52 ± 0.13
mnist	None	$\textbf{0.92} \pm \textbf{0.00}$	$\textbf{3.63} \pm \textbf{0.00}$
	$(\rho_+, \rho) = (0.1, 0.0)$	$\textbf{0.95} \pm \textbf{0.01}$	$\textbf{3.56} \pm \textbf{0.01}$
	$(\rho_+, \rho) = (0.1, 0.2)$	$\textbf{0.97} \pm \textbf{0.01}$	$\textbf{3.63} \pm \textbf{0.02}$
	$(\rho_+, \rho) = (0.2, 0.4)$	1.17 ± 0.02	$\textbf{4.06} \pm \textbf{0.03}$

Conclusion

Learning from corrupted binary labels

Monotone relationship $\bar{\eta}(x) = \phi_{\alpha,\beta,\pi}(\eta(x))$ facilitates:

Future work

Better noise estimators in special cases?

• c.f. (Elkan and Noto, 2008) when D separable

Fusion with "loss transfer" (Natarajan et al., 2013) approach

- assumes noise rates known
- better for misspecified models?
 - c.f. non-robustness of convex surrogate minimisation

Thanks!¹

¹Drop by the poster for more (Paper ID 69)