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Learning from positive and unlabelled data
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Paper summary

Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

@ can treat samples as if uncorrupted!

@ (Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al.,
2013), (duPlessis and Sugiyama, 2014) ...

This work: unified treatment via class-probability estimation

@ analysis for general class of corruptions
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Assumed corruption model
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Learning from binary labels: distributions

Fix instance space X (e.g. RY)
Underlying distribution D over X x {£1}

Constituent components of D:

(P(x),0(x),7) = (PX = x|Y = 1], P[X = x|Y = —1],P[Y = 1))
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Learning from binary labels: distributions

Fix instance space X (e.g. RY)
Underlying distribution D over X x {£1}

Constituent components of D:

(P[X = x|Y = 1],P[X = x|Y = —1],P[Y = 1))
(B[X = 2], P[Y = 1|X = x])

(P(x),0(x), )
(M (x), 7 (x))
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Learning from corrupted binary labels

S~p' ¢ VS~ D
nature \ corruptor learner
L 4

Samples from corrupted distribution D = (P, Q, )

Goal: good classification wrt (unobserved) distribution D
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Learning from corrupted binary labels

S~p' ¢ VS~ D
nature \ corruptor learner
L 4

Samples from corrupted distribution D = (P, Q, &), where

P=(1-a)-P+a-Q
0=pB-P+(1-P)-Q

and 7 is arbitrary

@ o,f are noise rates

@ mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
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Special cases

Label noise
Labels flipped w.p. p

PU learning
Observe M instead of O

7 = arbitrary
P=1-P+0-Q
o=M
=n-P+(1—-m)-Q
[ |
.
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D, D,
n(x) = ‘Poc,B,n:(n (x))

where ¢, g 1 is strictly monotone for fixed a, 3, 7.
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D, D,

1M(x) = Pa,p.x(1(x))

where ¢, g 5 is strictly monotone for fixed o, 3, 7.

Follows from Bayes’ rule:

1(x) T
-1k 1-7

X)

N

21/57



Corrupted class-probabilities
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where ¢, g 5 is strictly monotone for fixed o, 3, 7.

Follows from Bayes’ rule:
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Corrupted class-probabilities: special cases

Label noise

Nx)=(1-2p)-n(x)+p
p unknown

(Natarajan et al., 2013)

PU learning

7 unknown

(Ward et al., 2009)
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Roadmap

D ! V" D | class-prob »
nature ! corruptor ——| ©4SSP classifier
1 ) estimator

Kernel logistic regression
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Roadmap

Exploit monotone relationship between n and 1

___________

D ! ' D | class-prob | 7 »
nature ! corruptor | ¢SSP classifier 4
1 ] estimator .

Kernel logistic regression
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Classification with noise rates
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Class-probabilities and classification

Many classification measures optimised by sign(n(x) — 1)
@ O-1error —t=1
@ Balancederror - t=nx

@ F-score — optimal r depends on D
> (Lipton et al., 2014, Koyejo et al., 2014)
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Class-probabilities and classification

Many classification measures optimised by sign(n(x) — 1)
@ O-1error —t=1
@ Balancederror - t=nx

@ F-score — optimal r depends on D
> (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of 1!
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Corrupted class-probabilities and classification

By monotone relationship,

N >t <= N(x) > 9gpx(1)-

Threshold 7 at ¢, 5 () — optimal classification on D

Can translate into regret bound e.g. for 0-1 loss
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Story so far
Classification scheme requires:

@1
® 1

e o f,x

noise
oracle

___________

D ! D class-prob 1 i
nature 1 corruptor — 5 P classifier
1 ) estimator

S

sign(

=»

(x) = %,ﬁﬁ(t))
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Story so far
Classification scheme requires:

@ 7 — class-probability estimation
@ + — if unknown, alternate approach (see poster)

e o f,x

noise
oracle
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___________
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Story so far
Classification scheme requires:

@ 7 — class-probability estimation
@ + — if unknown, alternate approach (see poster)

@ «,f3,m — can we estimate these?

noise
estimator

D
nature ]
b

Kernel logistic regression
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Estimating noise rates: some bad news

7 strongly non-identifiable!

@ 7 allowed to be arbitrary (e.g. PU learning)
o, B non-identifiable without assumptions (Scott et al., 2013)

Can we estimate o, 3 under assumptions?
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Weak separability assumption

Assume that D is “weakly separable”:

min7 (x) =0
=1
max 7 (x)

@ i.e. 3 deterministically +'ve and -'ve instances

@ weaker than full separability
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Weak separability assumption

Assume that D is “weakly separable”:

min7 (x) =0
=1
max 1 (x)

@ i.e. 3 deterministically +'ve and -'ve instances

@ weaker than full separability

Assumed range of 1) constrains observed range of 7!
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Estimating noise rates

Proposition
Pick any weakly separable D. Then, for any D,

MNmin * (rlrnax - ﬁ') (1 - r’max) : (ﬁ' - nmin)
— = and B = —
T (nmax - rlmin) ﬁ (1 - 75) : (nmax - nmin)

o

where
Nmin = Minn (x)
xeX

Nmax = e 1(x)

o, B can be estimated from corrupted data alone
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Estimating noise rates:

Label noise
p = I— Nmax
= Mmin
_ T — Nmin
Nmax — MNmin

(Elkan and Noto, 2008),
(Liu and Tao, 2014)

special cases

PU learning
oa=0
p=n

_ l_nmax_ T
nmax 1_72'

c.f. mixture proportion estimate of (Scott et al., 2013)

In these cases, m can be estimated as well
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Story so far

Optimal classification in general requires o, 3,7

Range of 7

noise

estimator

=13

(=3
=

£l

D VTN | class-prob | 7 = oA

Kernel logistic regression
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Story so far

Optimal classification in general requires o, B,

@ when does ¢, s () not depend on a, 3, 7?

...........

o = Celasssm_':)alroob ! ign (i (x
! corruptor A n(n o pall
nature . ] i classifier sign( (x) = 9, 5 2(1))

Kernel logistic regression
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Classification without noise rates
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Balanced error (BER) of classifier

Balanced error (BER) of a classifier f: X — {£1} is:

FPRP (f) + FNRP(f)

BER?(f) = 5

for false positive and negative rates FPR? (), FNRP (f)

@ average classification performance on each class

@ optimal classifier is sign(n(x) — )

42/57



BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D, D, and classifier f: X — {&1},

)

BER(f) = (1 — o — B)-BERP(f) + 5
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D, D, and classifier f: X — {+1},

)

BER(f) = (1 — o — B)-BERP(f) + 5

BER-optimal classifiers on clean and corrupted coincide

o sign(n(x) - 1) = sign(ij(x) - 7)
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D, D, and classifier f: X — {+1},

)

BER(f) = (1 — o — B)-BERP(f) + 5

BER-optimal classifiers on clean and corrupted coincide

o sign(n(x) - 1) = sign(ij(x) - 7)

Minimise clean BER — don’t need to know corruption rates!

@ threshold on 7 does not need o, 3, @
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BER “immunity” & class-probability estimation

Trivially, we also have

regretfe (f) = (1 - — B) " -regretgeg (f).
i.e. good corrupted BER — good clean BER

@ can make regret2., () — 0 by class-probability estimation

Similar result for AUC (see poster)
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BER “immunity” under corruption: proof
From (Scott et al., 2013),

[FPRD(f) FNRb(f)]T:[FPRD(f) FNRD(f)]T'{l_[3 _a}

B 11—«
+[B o,
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BER “immunity” under corruption: proof

From (Scott et al., 2013),

[FPRD(f) FNRb(f)]T:[FPRD(f) FNRD(f)]T'{l__ﬁ[3 _a}

11—«
T
+[B a],
1. . 1-8 -«
and L] is an eigenvector of { B la}
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Are other measures “immune”?

BER is only (non-trivial) performance measure for which:
@ corrupted risk = affine transform of clean risk

» because of eigenvector interpretation

@ corrupted threshold is independent of a, 3,7

» because of nature of ¢, g 7
(see poster)

Other performance measures — need (one of) a, 3,7
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Experiments
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Experimental setup

Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

@ well-specified if D linearly separable:

N =o((wx) = nx) =a-o((w,x))+b

Evaluate:
@ reliability of noise estimates
@ BER performance on clean test set

» corrupted data used for training and validation

@ 0-1 performance on clean test set (see poster)
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Experimental results: noise rates

Estimated noise rates are generally reliable
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Experimental results: BER immunity
Generally, low observed degradation in BER

Dataset

Noise

1 - AUC (%)

BER (%)

segment

None

(p+7p—) = (01700)
(P+,Pf) = (01702)
(p+,p-) =(0.2,0.4)

0.00 £ 0.00
0.00 £ 0.00
0.02 £+ 0.01
0.03 +£ 0.01

0.00 £ 0.00
0.01 £0.00
0.90 £ 0.08
3.24 +0.20

spambase

None

(P+,Pf) = (01700)
(p+7p—) = (01702)
(P+,Pf) =(0.2,0.4)

2.49 £ 0.00
2.67 £ 0.02
3.01 £ 0.03
4.91 £+ 0.09

6.93 + 0.00
7.10 £ 0.03
7.66 = 0.05
10.52 + 0.13

mnist

None

(p+7p—) = (01700)
(P+,Pf) = (01702)
(p+,p-) =(0.2,0.4)

0.92 £ 0.00
0.95 £ 0.01
0.97 £+ 0.01
1.17 £0.02

3.63 £ 0.00
3.56 £ 0.01
3.63 £ 0.02
4.06 £ 0.03
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Conclusion
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Learning from corrupted binary labels

Monotone relationship 77(x) = ¢, g z(1(x)) facilitates:

Range of 1

noise
estimator

Omit for BER

5

D D _ fi
! . estimator

=

sign(

classifier

(x) = q)@,ﬁﬁ(t))

Kernel logistic regression
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Future work

Better noise estimators in special cases?

@ c.f. (Elkan and Noto, 2008) when D separable

Fusion with “loss transfer” (Natarajan et al., 2013) approach
@ assumes noise rates known

@ better for misspecified models?

» c.f. non-robustness of convex surrogate minimisation
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Thanks!’

Drop by the poster for more (Paper ID 69)
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