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Learning from binary labels
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Learning from noisy labels
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Learning from positive and unlabelled data
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Learning from binary labels
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Goal: good classification wrt distribution D
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Learning from corrupted labels
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Goal: good classification wrt (unobserved) distribution D
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Paper summary

Can we learn a good classifier from corrupted samples?

Prior work: in special cases (with a rich enough model), yes!

can treat samples as if uncorrupted!

(Elkan and Noto, 2008), (Zhang and Lee, 2008), (Natarajan et al.,
2013), (duPlessis and Sugiyama, 2014) ...

This work: unified treatment via class-probability estimation

analysis for general class of corruptions
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Assumed corruption model
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Learning from binary labels: distributions

Fix instance space X (e.g. RN)

Underlying distribution D over X⇥{±1}

Constituent components of D:

(P(x),Q(x),p) = (P[X = x|Y = 1],P[X = x|Y =�1],P[Y = 1])

(M(x),h(x)) = (P[X = x],P[Y = 1|X = x])

14 / 57



Learning from binary labels: distributions

Fix instance space X (e.g. RN)

Underlying distribution D over X⇥{±1}

Constituent components of D:

(P(x),Q(x),p) = (P[X = x|Y = 1],P[X = x|Y =�1],P[Y = 1])

(M(x),h(x)) = (P[X = x],P[Y = 1|X = x])

15 / 57



Learning from corrupted binary labels

nature corruptor learner
S ⇠ D

n S ⇠ D

n

Samples from corrupted distribution D = (P,Q,p)

, where

P = (1�a) ·P+a ·Q

Q = b ·P+(1�b ) ·Q
and p is arbitrary

a,b are noise rates

mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
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Special cases
Label noise PU learning
Labels flipped w.p. r Observe M instead of Q

p = (1�2r) ·p +r p = arbitrary

a = p�1 · (1�p) ·r P = 1 ·P+0 ·Q

b = (1�p)�1 ·p ·r
Q = M

= p ·P+(1�p) ·Q
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D,D,

h(x) = fa,b ,p(h(x))

where fa,b ,p is strictly monotone for fixed a,b ,p .

Follows from Bayes’ rule:

h(x)

1�h(x)
=

p
1�p

· P(x)

Q(x)

=
p

1�p
·
(1�a) · P(x)

Q(x) +a

b · P(x)
Q(x) + (1�b )

.
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Corrupted class-probabilities: special cases

Label noise PU learning

h(x) = (1�2r) ·h(x)+r h(x) = p·h(x)
p·h(x)+(1�p)·p

r unknown p unknown

(Natarajan et al., 2013) (Ward et al., 2009)
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Roadmap

Exploit monotone relationship between h and h

nature corruptor class-prob
estimator

classifier

nature corruptor class-prob
estimator

classifier

D D

ˆh

?

Kernel logistic regression
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Classification with noise rates
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Class-probabilities and classification

Many classification measures optimised by sign(h(x)� t)

0-1 error ! t = 1

2

Balanced error ! t = p

F-score ! optimal t depends on D

I (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of h!
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Corrupted class-probabilities and classification

By monotone relationship,

h(x)> t () h(x)> fa,b ,p(t).

Threshold h at fa,b ,p(t)! optimal classification on D

Can translate into regret bound e.g. for 0-1 loss
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Story so far
Classification scheme requires:

h

! class-probability estimation

t

! if unknown, alternate approach (see poster)

a,b ,p

! can we estimate these?

noise
oracle

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier

D D

ˆh

ˆa, ˆb , ˆp

?

Kernel logistic regression

sign( ˆh(x)�f
ˆa, ˆb , ˆp(t))
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Estimating noise rates: some bad news

p strongly non-identifiable!

p allowed to be arbitrary (e.g. PU learning)

a,b non-identifiable without assumptions (Scott et al., 2013)

Can we estimate a,b under assumptions?
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Weak separability assumption

Assume that D is “weakly separable”:

min

x2X
h(x) = 0

max

x2X
h(x) = 1

i.e. 9 deterministically +’ve and -’ve instances

weaker than full separability

Assumed range of h constrains observed range of h!
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Estimating noise rates

Proposition
Pick any weakly separable D. Then, for any D,

a =
h

min

· (h
max

�p)
p · (h

max

�h
min

)
and b =

(1�h
max

) · (p �h
min

)

(1�p) · (h
max

�h
min

)

where
h

min

= min

x2X
h(x)

h
max

= max

x2X
h(x)

a,b can be estimated from corrupted data alone
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Estimating noise rates: special cases

Label noise PU learning

r = 1�h
max

= h
min

p =
p �h

min

h
max

�h
min

a = 0

b = p

=
1�h

max

h
max

· p
1�p

(Elkan and Noto, 2008),
(Liu and Tao, 2014)

c.f. mixture proportion estimate of (Scott et al., 2013)

In these cases, p can be estimated as well
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Story so far

Optimal classification in general requires a,b ,p

when does fa,b ,p(t) not depend on a,b ,p?

noise
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Classification without noise rates
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Balanced error (BER) of classifier

Balanced error (BER) of a classifier f : X! {±1} is:

BER

D(f ) =
FPR

D(f )+FNR

D(f )

2

for false positive and negative rates FPR

D(f ),FNR

D(f )

average classification performance on each class

optimal classifier is sign(h(x)�p)
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D,D, and classifier f : X! {±1},

BER

D(f ) = (1�a �b ) ·BER

D(f )+
a +b

2

BER-optimal classifiers on clean and corrupted coincide

sign(h(x)�p) = sign(h(x)�p)

Minimise clean BER ! don’t need to know corruption rates!

threshold on h does not need a,b ,p
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BER “immunity” & class-probability estimation

Trivially, we also have

regret

D

BER

(f ) = (1�a �b )�1 · regret

D

BER

(f ).

i.e. good corrupted BER =) good clean BER

can make regret

D

BER

(f )! 0 by class-probability estimation

Similar result for AUC (see poster)
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BER “immunity” under corruption: proof

From (Scott et al., 2013),

h
FPR

D(f ) FNR

D(f )
i

T

=
⇥
FPR

D(f ) FNR

D(f )
⇤

T ·


1�b �a
�b 1�a

�

+
⇥
b a

⇤
T

,

and


1

1

�
is an eigenvector of


1�b �a
�b 1�a

�
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Are other measures “immune”?

BER is only (non-trivial) performance measure for which:

corrupted risk = affine transform of clean risk

I because of eigenvector interpretation

corrupted threshold is independent of a,b ,p
I because of nature of fa,b ,p

(see poster)

Other performance measures ! need (one of) a,b ,p
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Experiments
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Experimental setup
Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

well-specified if D linearly separable:

h(x) = s(hw,xi) =) h(x) = a ·s(hw,xi)+b

Evaluate:

reliability of noise estimates

BER performance on clean test set

I corrupted data used for training and validation

0-1 performance on clean test set (see poster)
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Experimental results: noise rates
Estimated noise rates are generally reliable
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Experimental results: BER immunity
Generally, low observed degradation in BER

Dataset Noise 1 - AUC (%) BER (%)

segment
None 0.00 ± 0.00 0.00 ± 0.00
(r+,r�) = (0.1,0.0) 0.00 ± 0.00 0.01 ± 0.00
(r+,r�) = (0.1,0.2) 0.02 ± 0.01 0.90 ± 0.08
(r+,r�) = (0.2,0.4) 0.03 ± 0.01 3.24 ± 0.20

spambase
None 2.49 ± 0.00 6.93 ± 0.00
(r+,r�) = (0.1,0.0) 2.67 ± 0.02 7.10 ± 0.03
(r+,r�) = (0.1,0.2) 3.01 ± 0.03 7.66 ± 0.05
(r+,r�) = (0.2,0.4) 4.91 ± 0.09 10.52 ± 0.13

mnist
None 0.92 ± 0.00 3.63 ± 0.00
(r+,r�) = (0.1,0.0) 0.95 ± 0.01 3.56 ± 0.01
(r+,r�) = (0.1,0.2) 0.97 ± 0.01 3.63 ± 0.02
(r+,r�) = (0.2,0.4) 1.17 ± 0.02 4.06 ± 0.03
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Conclusion
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Learning from corrupted binary labels

Monotone relationship h(x) = fa,b ,p(h(x)) facilitates:

noise
estimator

nature corruptor class-prob
estimator

classifier
D D

ˆh

ˆh
ˆa, ˆb , ˆp

Range of ˆh

Omit for BER

Kernel logistic regression

sign( ˆh(x)�f
ˆa, ˆb , ˆp(t))
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Future work

Better noise estimators in special cases?

c.f. (Elkan and Noto, 2008) when D separable

Fusion with “loss transfer” (Natarajan et al., 2013) approach

assumes noise rates known

better for misspecified models?

I c.f. non-robustness of convex surrogate minimisation
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Thanks!1

1Drop by the poster for more (Paper ID 69)
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