
Q: Can we learn a good classifier when labels have been corrupted (e.g. label noise, no negative labels)?  
A: If corruption rates are unknown, we can do well on balanced error and AUC; 
     If corruption rates are known, we can do well on a range of other measures (e.g. F-score); 
     We can estimate corruption rates from outputs of class-probability estimation (e.g. kernel logistic regression). 

Learning from Corrupted Binary Labels via Class-
Probability Estimation 

Classification with Corrupted Binary Labels 

Positive and unlabelled data 
(PU learning) 

Balanced Error and AUC are “Corruption-Immune” 
Balanced Error (BER) of a classifier f:                                 .     

•  favoured over 0-1 error under class imbalance 
 
Fact: Clean and corrupted BER satisfy: 
 
 
 

Assumed Corruption Model 

Estimating Corruption Parameters 

Then, if 
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Experimental Validation 

•  Inject label noise of varying rates to UCI datasets  
•  Estimate noise rates via a neural network, since 
 
 
•  Estimated noise rates generally reliable: 
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•  Classification w/ noise estimates ~ w/ oracle noise 
•  Observe low degradation in both BER and AUC 

Class-conditional label noise 
(CCN learning) 

Labels flipped with 
class-dependent 
probability. 

Problem: Learning when labels are corrupted in some way. For many measures, optimal to threshold (clean) class-
probabilities,   . In general, the corrupted class-
probabilities          satisfy: 
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Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2

{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘

min

= inf

x2X
⌘

corr

(x) and ⌘

max

= sup

x2X
⌘

corr

(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any D

M,⌘

satisfying Equation 14.
Then, for any Corr(D,↵,�,⇡

corr
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(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂

min

, ⌘̂

max

, ⇡̂

corr

into Equation 15,
we obtain estimates ↵̂,

ˆ

� of ↵,�. (Observe that without
the weak separability assumption, our expressions for ↵,�
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢

+

= 1� ⌘

max

and ⇢� = ⌘

min

.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘

corr

in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (P

corr

, Q

corr

) or ⇡
corr

. For
example, in CCN learning (see Supplementary Material),

⇡ =

⇡

corr

� ⌘

min

⌘

max

� ⌘

min

,

while for the case-controlled PU setting,

⇡ =

⇡

corr

1� ⇡

corr

·

1� ⌘

max

⌘

max

.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂

min

, ⌘̂

max

computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘

corr

, or simply arises from
an inability to model ⌘

corr

5. For example, with a linear
logistic regression model ⌘̂

corr

(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂

max

may be
arbitrarily close to 1 regardless of ↵,�. This is because
⌘̂

corr

(N · sign(w)) = �(N ||w||+ b) ! 1 as N ! 1.

Second, when constructing ⌘̂

corr

, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂

corr

, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂

min

, ⌘̂

max

from a fresh sample not used for constructing
probability estimates ⌘̂

corr

. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂

corr

is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵,� may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂

+

� ⇢̂� to be comparable to the true difference ⇢

+

� ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).
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noise parameters, based on a reduction to the problem of
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3. BER and AUC are immune to corruption
We now show that, remarkably, we can optimise balanced
error and AUC from corrupted data without knowledge of
the corruption process parameters ↵,� or clean base rate ⇡.

3.1. BER minimisation is immune to label corruption

The balanced error (BER) (Brodersen et al., 2010) of a
classifier is simply the mean of the class error rates,

BER

D

(f) =

FPR

D

(f) + FNR

D

(f)

2

.

This is a popular measure in imbalanced learning problems
(Cheng et al., 2002; Guyon et al., 2004) as it penalises sac-
rificing accuracy on the rare class in favour of accuracy on
the dominant class. The negation of the BER is also known
as the AM (arithmetic mean) metric (Menon et al., 2013),
or macro-average accuracy (Flach, 2012, pg. 60).

The BER-optimal classifier thresholds the class-probability
function at the base rate (Menon et al., 2013), so that:

argmin

f : X!{±1}
BER

D

(f) = thresh(⌘,⇡) (4)

argmin

f : X!{±1}
BER

D

corr

(f) = thresh(⌘

corr

,⇡

corr

). (5)

As Equation 4 depends on ⇡, it may appear that one min-
imally needs to know ⇡ to minimise the clean BER from
corrupted data. Surprisingly, the BER-optimal classifiers
in Equations 4 and 5 coincide. This is because of a simple
affine relationship between the clean and corrupted BER2.
Proposition 1. Pick any D and Corr(D,↵,�,⇡

corr

).
Then, for any classifier f : X ! {±1},

BER

D

corr

(f) = (1� ↵� �) · BER

D

(f) +

↵+ �

2

. (6)

Thus, when BER is the desired performance metric, we do
not need to estimate the noise parameters, or the clean base
rate: we can simply optimise the BER on the corrupted data
using estimates ⌘̂

corr

, ⇡̂

corr

of ⌘
corr

,⇡

corr

, from which we
build a classifier thresh(⌘̂

corr

, ⇡̂

corr

). More generally, this
suggests that to minimise BER, we can treat the corrupted
samples as if they were clean. Thus, in a PU learning prob-
lem e.g., we treat the unlabelled samples as negative, and
obtain ⌘̂

corr

via class-probability estimation.

The above relationship means that we can also establish
surrogate regret bounds. Suppose we know the corrupted
base rate3

⇡

corr

, and suppose that s is a scorer with low
2The result is concerned with the population BER, as opposed

to the empirical BER on a finite sample.
3In practice, we will only have some estimate of this quantity

from finite samples. It is possible to nonetheless establish consis-
tency of thresholding using such an estimate (Menon et al., 2013).

`-regret for some proper composite loss ` with link  i.e.
 

�1

(s) is a good estimate of ⌘
corr

. Then, the classifier
resulting from thresholding this scorer will attain low BER.
Proposition 2. Pick any D and Corr(D,↵,�,⇡

corr

). Let
` be a strongly proper composite with modulus � and link
function  . Then, for any scorer s : X ! R,

regret

D
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·

r
2

�

·

q
regret

D

corr

`

(s),

where f = thresh(s, (⇡

corr

)).

Thus, good estimates of the corrupted class-probabilities
let us minimise the clean BER4. However, compared to the
regret bound obtained if we could minimise ` on the clean
distribution D, we have an extra penalty of (1�↵� �)

�1.
This matches our intuition that for high-noise regimes (i.e.
↵ + � ⇡ 1), we need more corrupted samples to learn ef-
fectively with respect to the clean distribution.

3.2. AUC maximisation is immune to label corruption
The area under the ROC curve (AUC) of a scorer is the
probability of a random positive instance scoring higher
than a random negative instance (Agarwal et al., 2005):

AUCD(s) = E
X⇠P,X0⇠Q


Js(X) > s(X0)K + 1

2
Js(X) = s(X0)K

�
.

Like the BER, the AUC is also a popular performance mea-
sure in imbalanced learning scenarios. In fact, the AUC
may be seen as an average of BER across a range of thresh-
olds ((Flach et al., 2011); see Supplementary Material):

AUC

D

(s) =

3

2

� 2 · EX⇠P

[BER

D

(s; s(X))]. (7)

Based on this, we have a counterpart to Proposition 1.
Corollary 3. Pick any D

P,Q,⇡

and Corr(D,↵,�,⇡

corr

).
Then, for any scorer s : X ! R,

AUC

D

corr

(s) = (1� ↵� �) ·AUC

D

(s) +

↵+ �

2

. (8)

Thus, like the BER, optimising the AUC with respect to
the corrupted distribution optimises the AUC with respect
to the clean one. Further, via recent bounds on the AUC-
regret (Agarwal, 2014), we can show that a good corrupted
class-probability estimator will have good clean AUC.
Corollary 4. Pick any D and Corr(D,↵,�,⇡

corr

). Let `
be a strongly proper composite loss with modulus �. Then,
for every scorer s : X ! R,

regret

D

AUC

(s) 

C(⇡

corr

)

1� ↵� �

·

r
2

�

·

q
regret

D

corr

`

(s),

4One can remove the p. in the regret bound by circumventing
class-probability estimation, e.g. with the hinge loss. However,
class-probability estimation will also allow us to estimate corrup-
tion parameters, as shall be explored in §6.

⇒ can minimise BER as-is on corrupted data 
⇒ does not require knowledge of corruption parameters! 
⇒ can obtain regret bound for strongly proper composite 
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Mutually contaminated distributions framework (Scott et al, 
2013): corrupted class-conditionals are mixtures of original 
 
 
 
 
 
 

Three questions: 
(1)  Don’t know corruption parameters ! can we still learn? 
(2)  Know corruption parameters ! can we learn more? 
(3)  Can we estimate the corruption parameters? 
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Corollary 3. Pick any D

P,Q,⇡

and Corr(D,↵,�,⇡

corr

).
Then, for any scorer s : X ! R,

AUC

D

corr

(s) = (1� ↵� �) ·AUC

D

(s) +

↵+ �

2

. (8)

Thus, like the BER, optimising the AUC with respect to
the corrupted distribution optimises the AUC with respect
to the clean one. Further, via recent bounds on the AUC-
regret (Agarwal, 2014), we can show that a good corrupted
class-probability estimator will have good clean AUC.
Corollary 4. Pick any D and Corr(D,↵,�,⇡

corr

). Let `
be a strongly proper composite loss with modulus �. Then,
for every scorer s : X ! R,

regret

D

AUC

(s) 

C(⇡

corr

)

1� ↵� �

·

r
2

�

·

q
regret

D

corr

`

(s),

where C(⇡

corr

) = (⇡

corr

· (1� ⇡

corr

))

�1.

What is special about the BER (and consequently the AUC)
that lets us avoid estimation of the corruption parameters?
To answer this, we more carefully study the structure of
⌘

corr

to understand why Equation 4 and 5 coincide, and
whether any other measures have this property.

Relation to existing work For the special case of CCN
learning, Proposition 1 was shown in Blum & Mitchell
(1998, Section 5), and for case-controlled PU learning, in
(Lee & Liu, 2003; Zhang & Lee, 2008). None of these
works established surrogate regret bounds.

4. Corrupted and clean class-probabilities
The equivalence between a specific thresholding of the
clean and corrupted class-probabilities (Equations 4 and 5)
hints at a relationship between the two functions. We now
make this relationship explicit.
Proposition 5. For any D

M,⌘

and Corr(D,↵,�,⇡

corr

),

(8x 2 X) ⌘
corr

(x) = T (↵,�,⇡,⇡

corr

, ⌘(x)) (9)

where, for � : z 7!

z

1+z

, T (↵,�,⇡,⇡
corr

, t) is given by

�

 
⇡

corr

1� ⇡

corr

·

(1� ↵) ·

1�⇡

⇡

·

t

1�t

+ ↵

� ·

1�⇡

⇡

·

t

1�t

+ (1� �)

!
. (10)

It is evident that ⌘

corr

is a strictly monotone increasing
transform of ⌘. This is useful to study classifiers based
on thresholding ⌘, as per Equation 4. Suppose we want
a classifier of the form thresh(⌘, t). The structure of
⌘

corr

means that this is equivalent to a corrupted classi-
fier thresh(⌘

corr

, T (↵,�,⇡,⇡

corr

, t)), where the function
T (as per Equation 10) tells us how to modify the threshold
t on corrupted data. We now make this precise.

Corollary 6. Pick any D

M,⌘

and Corr(D,↵,�,⇡

corr

).
Then, 8x 2 X and 8t 2 [0, 1],

⌘(x) > t () ⌘

corr

(x) > T (↵,�,⇡,⇡

corr

, t)

where T is as defined in Equation 10.

By viewing the minimisation of a general classification
measure in light of the above, we now return to the issue
of why BER can avoid estimating corruption parameters.

Relation to existing work In PU learning, Proposition 5
has been shown in both the case-controlled (McCullagh &
Nelder, 1989, pg. 113), (Phillips et al., 2009; Ward et al.,
2009) and censoring settings (Elkan & Noto, 2008, Lemma
1). In CCN learning, Proposition 5 is used in Natarajan
et al. (2013, Lemma 7). Corollary 6 is implicit in Scott
et al. (2013, Proposition 1), but the explicit form for the
corrupted threshold is useful for subsequent analysis.

5. Classification from corrupted data
Consider the problem of optimising a classification mea-
sure Class

D

 

(f) for some  : [0, 1]

3

! [0, 1]. For a range
of  , the optimal classifier is f = thresh(⌘, t

D

 

) (Koyejo
et al., 2014; Narasimhan et al., 2014), for some optimal
threshold t

D

 

. For example, by Equation 4, the BER-
optimal classifier thresholds class-probabilities at the base
rate; other examples of such  are those corresponding to
misclassification error, and the F-score. But by Corollary
6, thresh(⌘, tD

 

) = thresh(⌘

corr

, t

D

corr, 

), where

t

D

corr, 

= T (↵,�,⇡,⇡

corr

, t

D

 

) (11)

is the corresponding optimal corrupted threshold. Based
on this, we now look at two approaches to minimising
Class

D

 

(f). For the purposes of description, we shall as-
sume that ↵,�,⇡ are known (or can be estimated). We then
study the practically important question of when these ap-
proaches can be applied without knowledge of ↵,�,⇡.

5.1. Classification when t

D

 

is known

Suppose that tD
 

has some closed-form expression; for ex-
ample, for misclassification risk, tD

 

= 1/2. Then, there
is a simple strategy for minimising Class

D

 

: compute esti-
mates ⌘̂

corr

of the corrupted class probabilities, and thresh-
old them via t

D

corr, 

computed from Equation 11. Standard
cost-sensitive regret bounds may then be invoked. For con-
creteness, consider the misclassification risk, where plug-
ging in t

D

 

= 1/2 into Equation 10 gives

t

D

corr, 

= �

✓
⇡

corr

1� ⇡

corr

·

(1� ↵) ·

1�⇡

⇡

+ ↵

� ·

1�⇡

⇡

+ (1� �)

◆
, (12)

for � : z 7! z/(1 + z). We have the following.

Similarly, for area under the ROC curve (AUC) of scorer s: 

(FPR(f) + FNR(f))/2

Suppose D satisfies: 
 
i.e., exist “deterministically +’ve and –’ve instances. 
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In special cases, other  may have such an affine relation-
ship. In the censoring version of PU learning, Lee & Liu
(2003) gave one example, the product of Precision and Re-
call; Appendix G discusses others.

Relation to existing work Scott (2015, Corollary 1) es-
tablished an analogue of Proposition 7 for CCN learning.
Scott et al. (2013) used the approach in §5.2 of rewriting
clean in terms of corrupted rates to minimise the minimax
risk on D. We are unaware of prior study on conditions
where estimation of corruption parameters is unnecessary.

6. Estimating noise rates from corrupted data
We have seen that given estimates of ↵,�,⇡, a range
of classification measures can be minimised by corrupted
class-probability estimation. We now show that under mild
assumptions on D, corrupted class-probability estimation
lets us estimate ↵,�, and in special cases, ⇡ as well.

6.1. Estimating ↵,� from ⌘

corr

An interesting consequence of Equation 9 is that the range
of ⌘

corr

will be a strict subset of [0, 1] in general. This is be-
cause each instance has a nonzero chance of being assigned
to either the positive or negative corrupted class; thus, one
cannot be sure as to its corrupted label.

The precise range of ⌘
corr

depends on ↵,�,⇡

corr

, and the
range of ⌘. We can thus compute ↵,� from the range of
⌘

corr

, with the proviso that we impose the following weak
separability assumption on D:

inf

x2X
⌘(x) = 0 and sup

x2X
⌘(x) = 1. (15)

This does not require D to be separable (i.e. (8x) ⌘(x) 2

{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Appendix H).

Equipped with this assumption, and defining

⌘

min

= inf

x2X
⌘

corr

(x) and ⌘

max

= sup

x2X
⌘

corr

(x),

we can compute the corruption parameters as follows.
Proposition 10. Pick any D

M,⌘

satisfying Equation 15.
Then, for any Corr(D,↵,�,⇡

corr

),

↵ =

⌘

min

· (⌘

max

� ⇡

corr

)

⇡

corr

· (⌘

max

� ⌘

min

)

� =

(1� ⌘

max

) · (⇡

corr

� ⌘

min

)

(1� ⇡

corr

) · (⌘

max

� ⌘

min

)

.

(16)

The right hand sides above involve quantities that can be
estimated given only corrupted data. Thus, plugging in

estimates of ⌘̂
min

, ⌘̂

max

, ⇡̂

corr

into Equation 16, we obtain
estimates ↵̂, ˆ� of ↵,�. (Without the weak separability as-
sumption, the right hand sides would depend on the un-
known minimal and maximal values of ⌘.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Appendix D),

⇢

+

= 1� ⌘

max

and ⇢� = ⌘

min

. (17)

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘

corr

in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (P

corr

, Q

corr

) or ⇡
corr

. For
example, in CCN learning (see Appendix E),

⇡ =

⇡

corr

� ⌘

min

⌘

max

� ⌘

min

,

while for the case-controlled PU setting,

⇡ =

⇡

corr

1� ⇡

corr

·

1� ⌘

max

⌘

max

.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 16 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂

min

, ⌘̂

max

computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘

corr

, or simply arises from
an inability to model ⌘

corr

. For example, with a linear
logistic regression model ⌘̂

corr

(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂

max

may be
arbitrarily close to 1 regardless of ↵,�. This is because
⌘̂

corr

(N · sign(w)) = �(N ||w||+ b) ! 1 as N ! 1.

Second, when constructing ⌘̂

corr

, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂

corr

, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂

min

, ⌘̂

max

from a fresh sample not used for constructing
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This does not require D to be separable (i.e. (8x) ⌘(x) 2

{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘

min

= inf

x2X
⌘

corr

(x) and ⌘

max

= sup

x2X
⌘

corr

(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any D

M,⌘

satisfying Equation 14.
Then, for any Corr(D,↵,�,⇡

corr

),

↵ =

⌘

min

· (⌘

max

� ⇡

corr

)

⇡

corr

· (⌘

max

� ⌘

min

)

� =

(1� ⌘

max

) · (⇡

corr

� ⌘

min

)

(1� ⇡

corr

) · (⌘

max

� ⌘

min

)

.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂

min

, ⌘̂

max

, ⇡̂

corr

into Equation 15,
we obtain estimates ↵̂,

ˆ

� of ↵,�. (Observe that without
the weak separability assumption, our expressions for ↵,�
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢

+

= 1� ⌘

max

and ⇢� = ⌘

min

.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘

corr

in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (P

corr

, Q

corr

) or ⇡
corr

. For
example, in CCN learning (see Supplementary Material),

⇡ =

⇡

corr

� ⌘

min

⌘

max

� ⌘

min

,

while for the case-controlled PU setting,

⇡ =

⇡

corr

1� ⇡

corr

·

1� ⌘

max

⌘

max

.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂

min

, ⌘̂

max

computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘

corr

, or simply arises from
an inability to model ⌘

corr

5. For example, with a linear
logistic regression model ⌘̂

corr

(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂

max

may be
arbitrarily close to 1 regardless of ↵,�. This is because
⌘̂

corr

(N · sign(w)) = �(N ||w||+ b) ! 1 as N ! 1.

Second, when constructing ⌘̂

corr

, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂

corr

, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂

min

, ⌘̂

max

from a fresh sample not used for constructing
probability estimates ⌘̂

corr

. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂

corr

is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵,� may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂

+

� ⇢̂� to be comparable to the true difference ⇢

+

� ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

CCN learning: 

⇒ similar regret bound as for BER  

 
Good news: We can estimate              from         ! 

CCN learning: If +’ve (-‘ve) 
labels are flipped w.p.        (      ),  
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what extent they generalise to other label corruption prob-
lems. This is a step towards a unified treatment of these
problems. We now fix notation and formalise the problem.

2. Background and problem setup
Fix an instance space X. We denote by D some distribution
over X ⇥ {±1}, with (X,Y) ⇠ D a pair of random vari-
ables. Any D may be expressed via the class-conditional
distributions (P,Q) = (P(X | Y = 1),P(X | Y = �1))

and base rate ⇡ = P(Y = 1), or equivalently via marginal
distribution M = P(X) and class-probability function
⌘ : x 7! P(Y = 1 | X = x). When referring to these
constituent distributions, we write D as D

P,Q,⇡

or D
M,⌘

.

2.1. Classifiers, scorers, and risks

A classifier is any function f : X ! {±1}. A scorer is any
function s : X ! R. Many learning methods (e.g. SVMs)
output a scorer, from which a classifier is formed by thresh-
olding about some t 2 R. We denote the resulting classifier
by thresh(s, t) : x 7! sign(s(x)� t).

The false positive and false negative rates of a classifier
f are denoted FPR

D

(f),FNR

D

(f), and are defined by
P

X⇠Q

(f(X) = 1) and P
X⇠P

(f(X) = �1) respectively.

Given a function  : [0, 1]

3

! [0, 1], a classification per-
formance measure Class

D

 

: {±1}

X
! [0, 1] assesses the

performance of a classifier f via (Narasimhan et al., 2014)

Class

D

 

(f) =  (FPR

D

(f),FNR

D

(f),⇡).

A canonical example is the misclassification error, where
 : (u, v, p) 7! p · v+ (1� p) · u. Given a scorer s, we use
Class

D

 

(s; t) to refer to Class

D

 

(thresh(s, t)).

The  -classification regret of a classifier f : X ! {±1} is

regret

D

 

(f) = Class

D

 

(f)� inf

g : X!{±1}
Class

D

 

(g).

A loss is any function ` : {±1}⇥R ! R
+

. Given a distri-
bution D, the `-risk of a scorer s is defined as

LD

`

(s) = E
(X,Y)⇠D

[`(Y, s(X))] . (1)

The `-regret of a scorer, regretD
`

, is as per the  -regret.

We say ` is strictly proper composite (Reid & Williamson,
2010) if argmin

s

LD

`

(s) is some strictly monotone trans-
formation  of ⌘, i.e. we can recover class-probabilities
from the optimal prediction via the link function  . We call
class-probability estimation (CPE) the task of minimising
Equation 1 for some strictly proper composite `.

The conditional Bayes-risk of a strictly proper composite
` is L

`

: ⌘ 7! ⌘`

1

( (⌘)) + (1 � ⌘)`�1

( (⌘)). We call

Quantity Clean Corrupted
Joint distribution D Corr(D,↵,�,⇡

corr

)

or D
corr

Class-conditionals P,Q P

corr

, Q

corr

Base rate ⇡ ⇡

corr

Class-probability ⌘ ⌘

corr

 -optimal threshold t

D

 

t

D

corr, 

Table 1. Common quantities on clean and corrupted distributions.

` strongly proper composite with modulus � if L

`

is �-
strongly concave (Agarwal, 2014). Canonical examples of
such losses are the logistic and exponential loss, as used in
logistic regression and AdaBoost respectively.

2.2. Learning from contaminated distributions

Suppose D

P,Q,⇡

is some “clean” distribution where per-
formance will be assessed. (We do not assume that
D is separable.) In MC learning (Scott et al., 2013),
we observe samples from some corrupted distribution
Corr(D,↵,�,⇡

corr

) over X ⇥ {±1}, for some unknown
noise parameters ↵,� 2 [0, 1] with ↵ + � < 1; where the
parameters are clear from context, we occasionally refer to
the corrupted distribution as D

corr

. The corrupted class-
conditional distributions P

corr

, Q

corr

are

P

corr

= (1� ↵) · P + ↵ ·Q

Q

corr

= � · P + (1� �) ·Q,

(2)

and the corrupted base rate ⇡
corr

in general has no relation
to the clean base rate ⇡. (If ↵+� = 1, then P

corr

= Q

corr

,
making learning impossible, whereas if ↵+ � > 1, we can
swap P

corr

, Q

corr

.) Table 1 summarises common quantities
on the clean and corrupted distributions.

From (2), we see that none of P

corr

, Q

corr

or ⇡
corr

con-
tain any information about ⇡ in general. Thus, estimating
⇡ from Corr(D,↵,�,⇡

corr

) is impossible in general. The
parameters ↵,� are also non-identifiable, but can be esti-
mated under some assumptions on D (Scott et al., 2013).

2.3. Special cases of MC learning

Two special cases of MC learning are notable. In learning
from class-conditional label noise (CCN learning) (An-
gluin & Laird, 1988), positive samples have labels flipped
with probability ⇢

+

, and negative samples with probability
⇢�. This can be shown to reduce to MC learning with

↵ = ⇡

�1

corr

· (1� ⇡) · ⇢� , � = (1� ⇡

corr

)

�1

· ⇡ · ⇢

+

, (3)

and the corrupted base rate ⇡
corr

= (1�⇢

+

)·⇡+⇢�·(1�⇡).
(See Appendix C for details.)
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what extent they generalise to other label corruption prob-
lems. This is a step towards a unified treatment of these
problems. We now fix notation and formalise the problem.

2. Background and problem setup
Fix an instance space X. We denote by D some distribution
over X ⇥ {±1}, with (X,Y) ⇠ D a pair of random vari-
ables. Any D may be expressed via the class-conditional
distributions (P,Q) = (P(X | Y = 1),P(X | Y = �1))

and base rate ⇡ = P(Y = 1), or equivalently via marginal
distribution M = P(X) and class-probability function
⌘ : x 7! P(Y = 1 | X = x). When referring to these
constituent distributions, we write D as D

P,Q,⇡

or D
M,⌘

.

2.1. Classifiers, scorers, and risks

A classifier is any function f : X ! {±1}. A scorer is any
function s : X ! R. Many learning methods (e.g. SVMs)
output a scorer, from which a classifier is formed by thresh-
olding about some t 2 R. We denote the resulting classifier
by thresh(s, t) : x 7! sign(s(x)� t).

The false positive and false negative rates of a classifier
f are denoted FPR

D

(f),FNR

D

(f), and are defined by
P

X⇠Q

(f(X) = 1) and P
X⇠P

(f(X) = �1) respectively.

Given a function  : [0, 1]

3

! [0, 1], a classification per-
formance measure Class

D

 

: {±1}

X
! [0, 1] assesses the

performance of a classifier f via (Narasimhan et al., 2014)

Class

D

 

(f) =  (FPR

D

(f),FNR

D

(f),⇡).

A canonical example is the misclassification error, where
 : (u, v, p) 7! p · v+ (1� p) · u. Given a scorer s, we use
Class

D

 

(s; t) to refer to Class

D

 

(thresh(s, t)).

The  -classification regret of a classifier f : X ! {±1} is

regret

D

 

(f) = Class

D

 

(f)� inf

g : X!{±1}
Class

D

 

(g).

A loss is any function ` : {±1}⇥R ! R
+

. Given a distri-
bution D, the `-risk of a scorer s is defined as

LD

`

(s) = E
(X,Y)⇠D

[`(Y, s(X))] . (1)

The `-regret of a scorer, regretD
`

, is as per the  -regret.

We say ` is strictly proper composite (Reid & Williamson,
2010) if argmin

s

LD

`

(s) is some strictly monotone trans-
formation  of ⌘, i.e. we can recover class-probabilities
from the optimal prediction via the link function  . We call
class-probability estimation (CPE) the task of minimising
Equation 1 for some strictly proper composite `.

The conditional Bayes-risk of a strictly proper composite
` is L

`

: ⌘ 7! ⌘`

1

( (⌘)) + (1 � ⌘)`�1

( (⌘)). We call

Quantity Clean Corrupted
Joint distribution D Corr(D,↵,�,⇡

corr

)

or D
corr

Class-conditionals P,Q P

corr

, Q

corr

Base rate ⇡ ⇡

corr

Class-probability ⌘ ⌘

corr

 -optimal threshold t

D

 

t

D

corr, 

Table 1. Common quantities on clean and corrupted distributions.

` strongly proper composite with modulus � if L

`

is �-
strongly concave (Agarwal, 2014). Canonical examples of
such losses are the logistic and exponential loss, as used in
logistic regression and AdaBoost respectively.

2.2. Learning from contaminated distributions

Suppose D

P,Q,⇡

is some “clean” distribution where per-
formance will be assessed. (We do not assume that
D is separable.) In MC learning (Scott et al., 2013),
we observe samples from some corrupted distribution
Corr(D,↵,�,⇡

corr

) over X ⇥ {±1}, for some unknown
noise parameters ↵,� 2 [0, 1] with ↵ + � < 1; where the
parameters are clear from context, we occasionally refer to
the corrupted distribution as D

corr

. The corrupted class-
conditional distributions P

corr

, Q

corr

are

P

corr

= (1� ↵) · P + ↵ ·Q

Q

corr

= � · P + (1� �) ·Q,

(2)

and the corrupted base rate ⇡
corr

in general has no relation
to the clean base rate ⇡. (If ↵+� = 1, then P

corr

= Q

corr

,
making learning impossible, whereas if ↵+ � > 1, we can
swap P

corr

, Q

corr

.) Table 1 summarises common quantities
on the clean and corrupted distributions.

From (2), we see that none of P

corr

, Q

corr

or ⇡
corr

con-
tain any information about ⇡ in general. Thus, estimating
⇡ from Corr(D,↵,�,⇡

corr

) is impossible in general. The
parameters ↵,� are also non-identifiable, but can be esti-
mated under some assumptions on D (Scott et al., 2013).

2.3. Special cases of MC learning

Two special cases of MC learning are notable. In learning
from class-conditional label noise (CCN learning) (An-
gluin & Laird, 1988), positive samples have labels flipped
with probability ⇢

+

, and negative samples with probability
⇢�. This can be shown to reduce to MC learning with

↵ = ⇡

�1

corr

· (1� ⇡) · ⇢� , � = (1� ⇡

corr

)

�1

· ⇡ · ⇢

+

, (3)

and the corrupted base rate ⇡
corr

= (1�⇢

+

)·⇡+⇢�·(1�⇡).
(See Appendix C for details.)
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In special cases, other  may have such an affine relation-
ship. In the censoring version of PU learning, Lee & Liu
(2003) gave one example, the product of Precision and Re-
call; Appendix G discusses others.

Relation to existing work Scott (2015, Corollary 1) es-
tablished an analogue of Proposition 7 for CCN learning.
Scott et al. (2013) used the approach in §5.2 of rewriting
clean in terms of corrupted rates to minimise the minimax
risk on D. We are unaware of prior study on conditions
where estimation of corruption parameters is unnecessary.

6. Estimating noise rates from corrupted data
We have seen that given estimates of ↵,�,⇡, a range
of classification measures can be minimised by corrupted
class-probability estimation. We now show that under mild
assumptions on D, corrupted class-probability estimation
lets us estimate ↵,�, and in special cases, ⇡ as well.

6.1. Estimating ↵,� from ⌘

corr

An interesting consequence of Equation 9 is that the range
of ⌘

corr

will be a strict subset of [0, 1] in general. This is be-
cause each instance has a nonzero chance of being assigned
to either the positive or negative corrupted class; thus, one
cannot be sure as to its corrupted label.

The precise range of ⌘
corr

depends on ↵,�,⇡

corr

, and the
range of ⌘. We can thus compute ↵,� from the range of
⌘

corr

, with the proviso that we impose the following weak
separability assumption on D:

inf

x2X
⌘(x) = 0 and sup

x2X
⌘(x) = 1. (15)

This does not require D to be separable (i.e. (8x) ⌘(x) 2

{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Appendix H).

Equipped with this assumption, and defining

⌘

min

= inf

x2X
⌘

corr

(x) and ⌘

max

= sup

x2X
⌘

corr

(x),

we can compute the corruption parameters as follows.
Proposition 10. Pick any D

M,⌘

satisfying Equation 15.
Then, for any Corr(D,↵,�,⇡

corr

),

↵ =

⌘

min

· (⌘

max

� ⇡

corr

)

⇡

corr

· (⌘

max

� ⌘

min

)

� =

(1� ⌘

max

) · (⇡

corr

� ⌘

min

)

(1� ⇡

corr

) · (⌘

max

� ⌘

min

)

.

(16)

The right hand sides above involve quantities that can be
estimated given only corrupted data. Thus, plugging in

estimates of ⌘̂
min

, ⌘̂

max

, ⇡̂

corr

into Equation 16, we obtain
estimates ↵̂, ˆ� of ↵,�. (Without the weak separability as-
sumption, the right hand sides would depend on the un-
known minimal and maximal values of ⌘.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Appendix D),

⇢

+

= 1� ⌘

max

and ⇢� = ⌘

min

. (17)

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘

corr

in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (P

corr

, Q

corr

) or ⇡
corr

. For
example, in CCN learning (see Appendix E),

⇡ =

⇡

corr

� ⌘

min

⌘

max

� ⌘

min

,

while for the case-controlled PU setting,

⇡ =

⇡

corr

1� ⇡

corr

·

1� ⌘

max

⌘

max

.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 16 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂

min

, ⌘̂

max

computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘

corr

, or simply arises from
an inability to model ⌘

corr

. For example, with a linear
logistic regression model ⌘̂

corr

(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂

max

may be
arbitrarily close to 1 regardless of ↵,�. This is because
⌘̂

corr

(N · sign(w)) = �(N ||w||+ b) ! 1 as N ! 1.

Second, when constructing ⌘̂

corr

, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂

corr

, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂

min

, ⌘̂

max

from a fresh sample not used for constructing
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may be estimated. This is because in each case, some in-
formation about ⇡ is present in (P

corr

, Q

corr

) or ⇡
corr

. For
example, in CCN learning (see Appendix E),

⇡ =

⇡

corr

� ⌘

min

⌘

max

� ⌘

min

,

while for the case-controlled PU setting,

⇡ =

⇡

corr

1� ⇡

corr

·

1� ⌘

max

⌘

max

.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 16 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂

min

, ⌘̂

max

computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘

corr

, or simply arises from
an inability to model ⌘

corr

. For example, with a linear
logistic regression model ⌘̂

corr

(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂

max

may be
arbitrarily close to 1 regardless of ↵,�. This is because
⌘̂

corr

(N · sign(w)) = �(N ||w||+ b) ! 1 as N ! 1.

Second, when constructing ⌘̂

corr

, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂

corr

, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂

min

, ⌘̂

max

from a fresh sample not used for constructing

⌘(x) = �(hw, xi) =) ⌘

corr

(x) = a · �(hw, xi) + b

↵,�,⇡

↵,�,⇡

Bad news: Beyond BER, we need to know              
•  Only (non-trivial) measure whose: 

•  corrupted threshold independent of 
•  corrupted risk = affine transform of clean risk 

-  Equal FPR/FNR ! eigenvector of corruption transform 

But what about other performance measures? 

↵,�,⇡

 
 
Know             ! can classify on clean distribution: 

•  find optimal threshold on corrupted distribution, or 
•  find equivalent corrupted risk 

⌘

Corruption rates 

P
corr

= (1� ↵) · P + ↵ ·Q
Q

corr

= � · P + (1� �) ·Q
↵,�


