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Abstract
Many supervised learning problems involve
learning from samples whose labels are cor-
rupted in some way. For example, each label
may be flipped with some constant probability
(learning with label noise), or one may have a
pool of unlabelled samples in lieu of negative
samples (learning from positive and unlabelled
data). This paper uses class-probability estima-
tion to study these and other corruption processes
belonging to the mutually contaminated distribu-
tions framework (Scott et al., 2013), with three
conclusions. First, one can optimise balanced er-
ror and AUC without knowledge of the corrup-
tion parameters. Second, given estimates of the
corruption parameters, one can minimise a range
of classification risks. Third, one can estimate
corruption parameters via a class-probability es-
timator (e.g. kernel logistic regression) trained
solely on corrupted data. Experiments on label
noise tasks corroborate our analysis.

1. Learning from corrupted binary labels
In many practical scenarios involving learning from binary
labels, one observes samples whose labels are corrupted
versions of the actual ground truth. For example, in learn-
ing from class-conditional label noise (CCN learning), the
labels are flipped with some constant probability (Angluin
& Laird, 1988). In positive and unlabelled learning (PU
learning), we have access to some positive samples, but in
lieu of negative samples only have a pool of samples whose
label is unknown (Denis, 1998). More generally, suppose
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there is a notional clean distribution D over instances and
labels. We say a problem involves learning from corrupted
binary labels if we observe training samples drawn from
some corrupted distribution Dcorr such that the observed
labels do not represent those we would observe under D.

A fundamental question is whether one can minimise a
given performance measure with respect to D, given ac-
cess only to samples from Dcorr. Intuitively, in general
this requires knowledge of the parameters of the corrup-
tion process that determines Dcorr. This yields two fur-
ther questions: are there measures for which knowledge of
these corruption parameters is unnecessary, and for other
measures, can we estimate these parameters?

In this paper, we consider corruption problems belonging to
the mutually contaminated distributions framework (Scott
et al., 2013). We then study the above questions through
the lens of class-probability estimation, with three conclu-
sions. First, optimising balanced error (BER) as-is on cor-
rupted data equivalently optimises BER on clean data, and
similarly for the area under the ROC curve (AUC). That
is, these measures can be optimised without knowledge of
the corruption process parameters; further, we present evi-
dence that these are essentially the only measures with this
property. Second, given estimates of the corruption param-
eters, a range of classification measures can be minimised
by thresholding corrupted class-probabilities. Third, under
some assumptions, these corruption parameters may be es-
timated from the range of the corrupted class-probabilities.

For all points above, observe that learning requires only
corrupted data. Further, corrupted class-probability esti-
mation can be seen as treating the observed samples as if
they were uncorrupted. Thus, our analysis gives justifica-
tion (under some assumptions) for this apparent heuristic
in problems such as CCN and PU learning.

While some of our results are known for the special cases
of CCN and PU learning, our interest is in determining to
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what extent they generalise to other label corruption prob-
lems. This is a step towards a unified treatment of these
problems. We now fix notation and formalise the problem.

2. Background and problem setup
Fix an instance space X. We denote byD some distribution
over X × {±1}, with (X,Y) ∼ D a pair of random vari-
ables. Any D may be expressed via the class-conditional
distributions (P,Q) = (P(X | Y = 1),P(X | Y = −1))
and base rate π = P(Y = 1), or equivalently via marginal
distribution M = P(X) and class-probability function
η : x 7→ P(Y = 1 | X = x). When referring to these
constituent distributions, we write D as DP,Q,π or DM,η.

2.1. Classifiers, scorers, and risks

A classifier is any function f : X→ {±1}. A scorer is any
function s : X → R. Many learning methods (e.g. SVMs)
output a scorer, from which a classifier is formed by thresh-
olding about some t ∈ R. We denote the resulting classifier
by thresh(s, t) : x 7→ sign(s(x)− t).

The false positive and false negative rates of a classifier
f are denoted FPRD(f),FNRD(f), and are defined by
P

X∼Q
(f(X) = 1) and P

X∼P
(f(X) = −1) respectively.

Given a function Ψ: [0, 1]3 → [0, 1], a classification per-
formance measure ClassDΨ : {±1}X → [0, 1] assesses the
performance of a classifier f via (Narasimhan et al., 2014)

ClassDΨ(f) = Ψ(FPRD(f),FNRD(f), π).

A canonical example is the misclassification error, where
Ψ: (u, v, p) 7→ p · v+ (1− p) · u. Given a scorer s, we use
ClassDΨ(s; t) to refer to ClassDΨ(thresh(s, t)).

The Ψ-classification regret of a classifier f : X→ {±1} is

regretDΨ(f) = ClassDΨ(f)− inf
g : X→{±1}

ClassDΨ(g).

A loss is any function ` : {±1} ×R→ R+. Given a distri-
bution D, the `-risk of a scorer s is defined as

LD` (s) = E
(X,Y)∼D

[`(Y, s(X))] . (1)

The `-regret of a scorer, regretD` , is as per the Ψ-regret.

We say ` is strictly proper composite (Reid & Williamson,
2010) if argmins LD` (s) is some strictly monotone trans-
formation ψ of η, i.e. we can recover class-probabilities
from the optimal prediction via the link function ψ. We call
class-probability estimation (CPE) the task of minimising
Equation 1 for some strictly proper composite `.

The conditional Bayes-risk of a strictly proper composite
` is L` : η 7→ η`1(ψ(η)) + (1 − η)`−1(ψ(η)). We call

Quantity Clean Corrupted

Joint distribution D Corr(D,α, β, πcorr)
or Dcorr

Class-conditionals P,Q Pcorr, Qcorr

Base rate π πcorr

Class-probability η ηcorr

Ψ-optimal threshold tDΨ tDcorr,Ψ

Table 1. Common quantities on clean and corrupted distributions.

` strongly proper composite with modulus λ if L` is λ-
strongly concave (Agarwal, 2014). Canonical examples of
such losses are the logistic and exponential loss, as used in
logistic regression and AdaBoost respectively.

2.2. Learning from contaminated distributions

Suppose DP,Q,π is some “clean” distribution where per-
formance will be assessed. (We do not assume that
D is separable.) In MC learning (Scott et al., 2013),
we observe samples from some corrupted distribution
Corr(D,α, β, πcorr) over X × {±1}, for some unknown
noise parameters α, β ∈ [0, 1] with α + β < 1; where the
parameters are clear from context, we occasionally refer to
the corrupted distribution as Dcorr. The corrupted class-
conditional distributions Pcorr, Qcorr are

Pcorr = (1− α) · P + α ·Q
Qcorr = β · P + (1− β) ·Q,

(2)

and the corrupted base rate πcorr in general has no relation
to the clean base rate π. (If α+β = 1, then Pcorr = Qcorr,
making learning impossible, whereas if α+ β > 1, we can
swap Pcorr, Qcorr.) Table 1 summarises common quantities
on the clean and corrupted distributions.

From (2), we see that none of Pcorr, Qcorr or πcorr con-
tain any information about π in general. Thus, estimating
π from Corr(D,α, β, πcorr) is impossible in general. The
parameters α, β are also non-identifiable, but can be esti-
mated under some assumptions on D (Scott et al., 2013).

2.3. Special cases of MC learning

Two special cases of MC learning are notable. In learning
from class-conditional label noise (CCN learning) (An-
gluin & Laird, 1988), positive samples have labels flipped
with probability ρ+, and negative samples with probability
ρ−. This can be shown to reduce to MC learning with

α = π−1
corr · (1− π) · ρ− , β = (1− πcorr)

−1 · π · ρ+, (3)

and the corrupted base rate πcorr = (1−ρ+)·π+ρ−·(1−π).
(See Appendix C for details.)
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In learning from positive and unlabelled data (PU learn-
ing) (Denis, 1998), one has access to unlabelled samples in
lieu of negative samples. There are two subtly different set-
tings: in the case-controlled setting (Ward et al., 2009), the
unlabelled samples are drawn from the marginal distribu-
tion M , corresponding to MC learning with α = 0, β = π,
and πcorr arbitrary. In the censoring setting (Elkan & Noto,
2008), observations are drawn from D followed by a label
censoring procedure. This is in fact a special of CCN (and
hence MC) learning with ρ− = 0.

3. BER and AUC are immune to corruption
We first show that optimising balanced error and AUC on
corrupted data is equivalent to doing so on clean data.
Thus, with a suitably rich function class, one can opti-
mise balanced error and AUC from corrupted data without
knowledge of the corruption process parameters.

3.1. BER minimisation is immune to label corruption

The balanced error (BER) (Brodersen et al., 2010) of a
classifier is simply the mean of the per-class error rates,

BERD(f) =
FPRD(f) + FNRD(f)

2
.

This is a popular measure in imbalanced learning problems
(Cheng et al., 2002; Guyon et al., 2004) as it penalises sac-
rificing accuracy on the rare class in favour of accuracy on
the dominant class. The negation of the BER is also known
as the AM (arithmetic mean) metric (Menon et al., 2013).

The BER-optimal classifier thresholds the class-probability
function at the base rate (Menon et al., 2013), so that:

argmin
f : X→{±1}

BERD(f) = thresh(η, π) (4)

argmin
f : X→{±1}

BERDcorr(f) = thresh(ηcorr, πcorr), (5)

where ηcorr denotes the corrupted class-probability func-
tion. As Equation 4 depends on π, it may appear that one
must know π to minimise the clean BER from corrupted
data. Surprisingly, the BER-optimal classifiers in Equa-
tions 4 and 5 coincide. This is because of the following
relationship between the clean and corrupted BER.

Proposition 1. Pick any D and Corr(D,α, β, πcorr).
Then, for any classifier f : X→ {±1},

BERDcorr(f) = (1− α− β) · BERD(f) +
α+ β

2
, (6)

and so the minimisers of the two are identical.

Thus, when BER is the desired performance metric, we do
not need to estimate the noise parameters, or the clean

base rate: we can (approximately) optimise the BER on
the corrupted data using estimates η̂corr, π̂corr, from which
we build a classifier thresh(η̂corr, π̂corr). Observe that this
approach effectively treats the corrupted samples as if they
were clean, e.g. in a PU learning problem, we treat the un-
labelled samples as negative, and perform CPE as usual.

With a suitably rich function class, surrogate regret bounds
quantify the efficacy of thresholding approximate class-
probability estimates. Suppose we know the corrupted base
rate1πcorr, and suppose that s is a scorer with low `-regret
on the corrupted distribution for some proper composite
loss ` with link ψ i.e. ψ−1(s) is a good estimate of ηcorr.
Then, the classifier resulting from thresholding this scorer
will attain low BER on the clean distribution D.

Proposition 2. Pick any D and Corr(D,α, β, πcorr). Let
` be a strongly proper composite loss with modulus λ and
link function ψ. Then, for any scorer s : X→ R,

regretDBER(f) ≤ C(πcorr)

1− α− β
·
√

2

λ
·
√

regretDcorr

` (s),

where f = thresh(s, ψ(πcorr)) and C(πcorr) = (2 ·
πcorr · (1− πcorr))

−1.

Thus, good estimates of the corrupted class-probabilities
let us minimise the clean BER. Of course, learning from
corrupted data comes at a price: compared to the regret
bound obtained if we could minimise ` on the clean dis-
tribution D, we have an extra penalty of (1 − α − β)−1.
This matches our intuition that for high-noise regimes (i.e.
α + β ≈ 1), we need more corrupted samples to learn ef-
fectively with respect to the clean distribution; confer van
Rooyen & Williamson (2015) for lower and upper bounds
on sample complexity for a range of corruption problems.

3.2. AUC maximisation is immune to label corruption

Another popular performance measure in imbalanced
learning scenarios is the area under the ROC curve (AUC).
The AUC of a scorer, AUCD(s), is the probability of a ran-
dom positive instance scoring higher than a random nega-
tive instance (Agarwal et al., 2005):

E
X∼P,X′∼Q

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
.

We have a counterpart to Proposition 1 by rewriting the
AUC as an average of BER across a range of thresholds
((Flach et al., 2011); see Appendix A.5):

AUCD(s) =
3

2
− 2 · EX∼P [BERD(s; s(X))]. (7)

1Surrogate regret bounds may also be derived for an empiri-
cally chosen threshold (Kotłowski & Dembczyński, 2015).
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Corollary 3. Pick any DP,Q,π and Corr(D,α, β, πcorr).
Then, for any scorer s : X→ R,

AUCDcorr(s) = (1− α− β) ·AUCD(s) +
α+ β

2
. (8)

Thus, like the BER, optimising the AUC with respect to
the corrupted distribution optimises the AUC with respect
to the clean one. Further, via recent bounds on the AUC-
regret (Agarwal, 2014), we can show that a good corrupted
class-probability estimator will have good clean AUC.

Corollary 4. Pick any D and Corr(D,α, β, πcorr). Let `
be a strongly proper composite loss with modulus λ. Then,
for every scorer s : X→ R,

regretDAUC(s) ≤ C(πcorr)

1− α− β
·
√

2

λ
·
√

regretDcorr

` (s),

where C(πcorr) = (πcorr · (1− πcorr))
−1.

What is special about the BER (and consequently the AUC)
that lets us avoid estimation of the corruption parameters?
To answer this, we more carefully study the structure of
ηcorr to understand why Equation 4 and 5 coincide, and
whether any other measures have this property.

Relation to existing work For the special case of CCN
learning, Proposition 1 was shown in Blum & Mitchell
(1998, Section 5), and for case-controlled PU learning, in
(Lee & Liu, 2003; Zhang & Lee, 2008). None of these
works established surrogate regret bounds.

4. Corrupted and clean class-probabilities
The equivalence between a specific thresholding of the
clean and corrupted class-probabilities (Equations 4 and 5)
hints at a relationship between the two functions. We now
make this relationship explicit.

Proposition 5. For any DM,η and Corr(D,α, β, πcorr),

(∀x ∈ X) ηcorr(x) = T (α, β, π, πcorr, η(x)) (9)

where, for φ : z 7→ z
1+z , T (α, β, π, πcorr, t) is given by

φ

(
πcorr

1− πcorr
·

(1− α) · 1−π
π ·

t
1−t + α

β · 1−π
π ·

t
1−t + (1− β)

)
. (10)

It is evident that ηcorr is a strictly monotone increasing
transform of η. This is useful to study classifiers based
on thresholding η, as per Equation 4. Suppose we want
a classifier of the form thresh(η, t). The structure of
ηcorr means that this is equivalent to a corrupted classi-
fier thresh(ηcorr, T (α, β, π, πcorr, t)), where the function
T (as per Equation 10) tells us how to modify the threshold
t on corrupted data. We now make this precise.

Corollary 6. Pick any DM,η and Corr(D,α, β, πcorr).
Then, ∀x ∈ X and ∀t ∈ [0, 1],

η(x) > t ⇐⇒ ηcorr(x) > T (α, β, π, πcorr, t)

where T is as defined in Equation 10.

By viewing the minimisation of a general classification
measure in light of the above, we now return to the issue
of why BER can avoid estimating corruption parameters.

Relation to existing work In PU learning, Proposition 5
has been shown in both the case-controlled (McCullagh &
Nelder, 1989, pg. 113), (Phillips et al., 2009; Ward et al.,
2009) and censoring settings (Elkan & Noto, 2008, Lemma
1). In CCN learning, Proposition 5 is used in Natarajan
et al. (2013, Lemma 7). Corollary 6 is implicit in Scott
et al. (2013, Proposition 1), but the explicit form for the
corrupted threshold is useful for subsequent analysis.

5. Classification from corrupted data
Consider the problem of optimising a classification mea-
sure ClassDΨ(f) for some Ψ: [0, 1]3 → [0, 1]. For a range
of Ψ, the optimal classifier is f = thresh(η, tDΨ) (Koyejo
et al., 2014; Narasimhan et al., 2014), for some optimal
threshold tDΨ . For example, by Equation 4, the BER-
optimal classifier thresholds class-probabilities at the base
rate; other examples of such Ψ are those corresponding to
misclassification error, and the F-score. But by Corollary
6, thresh(η, tDΨ) = thresh(ηcorr, t

D
corr,Ψ), where

tDcorr,Ψ = T (α, β, π, πcorr, t
D
Ψ) (11)

is the corresponding optimal corrupted threshold. Based
on this, we now look at two approaches to minimising
ClassDΨ(f). For the purposes of description, we shall as-
sume that α, β, π are known (or can be estimated). We then
study the practically important question of when these ap-
proaches can be applied without knowledge of α, β, π.

5.1. Classification when tDΨ is known

Suppose that tDΨ has some closed-form expression; for ex-
ample, for misclassification risk, tDΨ = 1/2. Then, there
is a simple strategy for minimising ClassDΨ : compute esti-
mates η̂corr of the corrupted class probabilities, and thresh-
old them via tDcorr,Ψ computed from Equation 11. Standard
cost-sensitive regret bounds may then be invoked. For con-
creteness, consider the misclassification risk, where plug-
ging in tDΨ = 1/2 into Equation 10 gives

tDcorr,Ψ = φ

(
πcorr

1− πcorr
·

(1− α) · 1−π
π + α

β · 1−π
π + (1− β)

)
, (12)

for φ : z 7→ z/(1 + z). We have the following.
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Proposition 7. Pick any D and Corr(D,α, β, πcorr). Let
` be a strongly proper composite loss with modulus λ and
link function ψ. Then, for any scorer s : X→ R,

regretDERR(f) ≤ γ ·
√

2

λ
·
√

regretDcorr

` (s),

where f = thresh(s, ψ(tDcorr,Ψ)), tDcorr,Ψ is as per Equation
12, and γ is a constant depending on α, β, π, πcorr.

5.2. Classification when tDΨ is unknown

For some Ψ, tDΨ does not have a simple closed-form ex-
pression, rendering the above approach inapplicable2. For
example, the optimal threshold for F -score does not have a
closed form (Koyejo et al., 2014), and is typically com-
puted by a grid search. In such cases, we can make
progress by re-expressing ClassDΨ(f) as an equivalent mea-
sure ClassDcorr

Ψcorr
(f) on the corrupted distribution, and then

tune thresholds on η̂corr to optimise the latter. Here, Ψcorr

is not the same as Ψ in general, but rather is the result of
re-expressing the clean false positive and negative rates in
terms of the corrupted ones, as per Scott et al. (2013):[

FPRD(f)

FNRD(f)

]
=

[
1− β −β
−α 1− α

]−1 [
FPRDcorr(f)− β
FNRDcorr(f)− α

]
.

Thus, for example, for Ψ: (u, v, p) = u, we would have
Ψcorr : (u, v, p) 7→ (1−α)

1−α−β · (u− β) + β
1−α−β · (v − α).

In general, both of the above approaches will require
knowledge of α, β, π. For the approach in §5.1, tDcorr,Ψ

may clearly depend on these parameters. For the approach
in §5.2, the corrupted measure Ψcorr may similarly depend
on these parameters, as in the example of Ψ(u, v, p) = u.
We now provide strong evidence that for both approaches,
BER is essentially the only measure that obviates the need
for estimation of the corruption parameters.

5.3. BER threshold is uniquely corruption-immune

One way of interpreting the immunity of BER is that the
corrupted threshold function (Equation 10) sheds all depen-
dence on α, β, π when instantiated with a threshold of π:

(∀α, β, π, πcorr)T (α, β, π, πcorr, π) = πcorr.

Is t : π 7→ π the only threshold whose corrupted counter-
part does not depend on α, β, π? As stated, the answer is
trivially “no”; we can set the corrupted threshold to be any
function of πcorr, and invert Equation 10 to get an equiva-
lent threshold t for η. However, this t will depend on α, β,
and it is unreasonable for the performance measure to de-
pend on the exogenous corruption process. Refining the

2Recent work has shown how for F -score, we can employ a
series of thresholds (Parambath et al., 2014); studying this ap-
proach in our framework would be of interest.

question to ask whether π is the only threshold independent
of α, β such that T is independent of α, β, π, the answer is
“yes”. We can formalise this as follows.
Proposition 8. Pick any Ψ. Then, there exists F : (0, 1)→
(0, 1) such that ClassDΨ has a unique minimiser of the form
x 7→ sign(ηcorr(x) − F (πcorr)) for every D,Dcorr if and
only if Ψ: (u, v, p) 7→ (u+ v)/2 corresponds to the BER.

Thus, for measures other than BER which are uniquely op-
timised by thresholding η3, we must know one of α, β, π to
find the optimal corrupted threshold. But as it is impossible
in general to estimate π, it will similarly be impossible to
compute this threshold to optimally classify.

While this seems disheartening, two qualifications are in
order. First, in the special cases of CCN and PU learning,
π can be estimated (see §6.2). Second, Proposition 8 is
concerned with immunity to arbitrary corruption, where
α, β, π may be chosen independently. But in special cases
where these parameters are tied, other measures may have
a threshold independent of these parameters; e.g., in CCN
learning, the misclassification error threshold is (Natarajan
et al., 2013, Theorem 9)

tDcorr,Ψ =
1− ρ+ + ρ−

2
. (13)

So, when ρ+ = ρ−, tDcorr,Ψ = 1
2 ; i.e. for symmetric label

noise, we do not need to know the noise parameters. Ap-
pendix G discusses this issue further.

5.4. BER is uniquely affinely related

Another way of interpreting the immunity of the BER
is that, for Ψ: (u, v, p) 7→ (u + v)/2, the correspond-
ing corrupted performance measure Ψcorr is simply an
affine transformation of Ψ (Proposition 6). Thus, for this
measure, ClassDcorr

Ψcorr
may be minimised without knowing

α, β, π. More generally, we seek Ψ for which there exist
f, g such that the corresponding Ψcorr is expressible as

Ψcorr(u, v, p) = f(α, β, π) ·Ψ(u, v, p)+g(α, β, π). (14)

While we do not have a general characterisation of all Ψ
satisfying Equation 14, we can show that BER is the only
linear combination of the false positive and negative rates
with an affine relationship between Ψ and Ψcorr. The key
is that (1, 1) is the only noise-agnostic eigenvector of the
row-stochastic matrix implicit in Equation 2.
Proposition 9. The set of Ψ of the form Ψ: (u, v, p) 7→
w1(p) · u + w2(p) · v where, for every D,Dcorr, f ,
ClassDΨ(f) is an affine transformation of ClassDcorr

Ψ (f) is
{Ψ: (u, v, p) 7→ w(p) · (u + v) | w : [0, 1] → R}, corre-
sponding to a scaled version of the BER.

3This rules out degenerate cases such Ψ ≡ 0, where there is a
set of optimal classifiers (i.e. all of them).
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In special cases, other Ψ may have such an affine relation-
ship. In the censoring version of PU learning, Lee & Liu
(2003) gave one example, the product of Precision and Re-
call; Appendix G discusses others.

Relation to existing work Scott (2015, Corollary 1) es-
tablished an analogue of Proposition 7 for CCN learning.
Scott et al. (2013) used the approach in §5.2 of rewriting
clean in terms of corrupted rates to minimise the minimax
risk on D. We are unaware of prior study on conditions
where estimation of corruption parameters is unnecessary.

6. Estimating noise rates from corrupted data
We have seen that given estimates of α, β, π, a range
of classification measures can be minimised by corrupted
class-probability estimation. We now show that under mild
assumptions on D, corrupted class-probability estimation
lets us estimate α, β, and in special cases, π as well.

6.1. Estimating α, β from ηcorr

An interesting consequence of Equation 9 is that the range
of ηcorr will be a strict subset of [0, 1] in general. This is be-
cause each instance has a nonzero chance of being assigned
to either the positive or negative corrupted class; thus, one
cannot be sure as to its corrupted label.

The precise range of ηcorr depends on α, β, πcorr, and the
range of η. We can thus compute α, β from the range of
ηcorr, with the proviso that we impose the following weak
separability assumption on D:

inf
x∈X

η(x) = 0 and sup
x∈X

η(x) = 1. (15)

This does not require D to be separable (i.e. (∀x) η(x) ∈
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Appendix H).

Equipped with this assumption, and defining

ηmin = inf
x∈X

ηcorr(x) and ηmax = sup
x∈X

ηcorr(x),

we can compute the corruption parameters as follows.
Proposition 10. Pick any DM,η satisfying Equation 15.
Then, for any Corr(D,α, β, πcorr),

α =
ηmin · (ηmax − πcorr)

πcorr · (ηmax − ηmin)

β =
(1− ηmax) · (πcorr − ηmin)

(1− πcorr) · (ηmax − ηmin)
.

(16)

The right hand sides above involve quantities that can be
estimated given only corrupted data. Thus, plugging in

estimates of η̂min, η̂max, π̂corr into Equation 16, we obtain
estimates α̂, β̂ of α, β. (Without the weak separability as-
sumption, the right hand sides would depend on the un-
known minimal and maximal values of η.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Appendix D),

ρ+ = 1− ηmax and ρ− = ηmin. (17)

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating π from ηcorr in special cases

Unlike the general case, in both CCN and PU learning, π
may be estimated. This is because in each case, some in-
formation about π is present in (Pcorr, Qcorr) or πcorr. For
example, in CCN learning (see Appendix E),

π =
πcorr − ηmin

ηmax − ηmin
,

while for the case-controlled PU setting,

π =
πcorr

1− πcorr
· 1− ηmax

ηmax
.

Estimating π may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 16 is an asymptotic identity. In practice, we typ-
ically employ estimates η̂min, η̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ηcorr, or simply arises from
an inability to model ηcorr. For example, with a linear
logistic regression model η̂corr(x) = σ(〈w, x〉 + b) ap-
plied to instances from Rd, our estimated η̂max may be
arbitrarily close to 1 regardless of α, β. This is because
η̂corr(N · sign(w)) = σ(N ||w||+ b)→ 1 as N →∞.

Second, when constructing η̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
η̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
η̂min, η̂max from a fresh sample not used for constructing
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probability estimates η̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for η̂corr

is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smooth the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of α, β may be sufficient. For example,
in CCN learning, we only need the estimated difference
ρ̂+ − ρ̂− to be comparable to the true difference ρ+ − ρ−
(by Equation 13). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 16
may be seen as a generalisation of that proposed by Elkan
& Noto (2008) for the censoring version of PU learning.
For CCN learning, in independent work, Liu & Tao (2014,
Theorem 4) proposed the estimators in Equation 17.

Scott et al. (2013) proposed a means of estimating the noise
parameters, based on a reduction to the problem of mix-
ture proportion estimation. By an interpretation provided
by Blanchard et al. (2010), the noise parameters can be
seen as arising from the derivative of the right hand side of
the optimal ROC curve on Corr(D,α, β, πcorr). Sander-
son & Scott (2014); Scott (2015) explored a practical es-
timator along these lines. As the optimal ROC curve for
Dcorr is produced by any strictly monotone transformation
of ηcorr, class-probability estimation is implicit in this ap-
proach, and so our estimator is simply based on a different
perspective. (See Appendix I.) The class-probability esti-
mation perspective shows that a single approach can both
estimate the corruption parameters and be used to classify
optimally for a range of performance measures.

7. Experiments
We now present experiments that aim to validate our anal-
ysis4 via three questions. First, can we optimise BER and
AUC from corrupted data without knowledge of the noise
parameters? Second, can we accurately estimate corrup-
tion parameters? Third, can we optimise other classifica-
tion measures using estimates of corruption parameters?

We focus on CCN learning with label flip probabilities
ρ+, ρ− ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.49}; recall that ρ− = 0
is the censoring version of PU learning. For this prob-

4Sample scripts are available at http://users.cecs.anu.edu.
au/˜akmenon/papers/corrupted-labels/index.html.

lem, a number of approaches have been proposed to answer
the third question above, e.g. (Stempfel & Ralaivola, 2007;
2009; Natarajan et al., 2013). To our knowledge, all of
these operate in the setting where the noise parameters are
known. It is thus possible to use the noise estimates from
class-probability estimation as inputs to these approaches,
and we expect such a fusion will be beneficial. We leave
such a study for future work, as our aim here is merely to
illustrate that with corrupted class-probability estimation,
we can answer all three questions in the affirmative.

We report results on a range of UCI datasets. For each
dataset, we construct a random 80% – 20% train-test split.
For fixed ρ+, ρ−, we inject label noise into the training set.
The learner estimates class-probabilities from these noisy
samples, with predictions on the clean test samples used
to estimate η̂min, η̂max if required. We summarise perfor-
mance across τ independent corruptions of the training set.

Observe that if DM,η can be modelled by a linear scorer,
so that η : x 7→ σ(〈w, x〉+ b), then ηcorr : x 7→ (1− ρ+ −
ρ−) · σ(〈w, x〉 + b) + ρ−; i.e. , a neural network with a
single hidden sigmoidal unit, bias term, and identity output
link is well-specified. Thus, in all experiments, we use as
our base model a neural network with a sigmoidal hidden
layer, trained to minimise squared error5 with `2 regular-
isation. The regularisation parameter for the model was
tuned by cross-validation (on the corrupted data) based on
squared error. We emphasise that both learning and param-
eter tuning is solely on corrupted data.

7.1. Are BER and AUC immune to corruption?

We first assess how effectively we can optimise BER and
AUC from corrupted data without knowledge or estimates
of the noise parameters. For a fixed setting of ρ+, ρ−,
and each of τ = 100 corruption trials, we learn a class-
probability estimator from the corrupted training set. We
use this to predict class-probabilities for instances on the
clean test set. We measure the AUC of the resulting class-
probabilities, as well as the BER resulting from threshold-
ing these probabilities about the corrupted base rate.

Table 2 summarises the results for a selection of datasets
and noise rates ρ+, ρ−. (Appendix J contains a full set of
results.) We see that in general the BER and AUC in the
noise-free case (ρ+ = ρ− = 0) and in the noisy cases
are commensurate. This is in agreement with our analysis
on the immunity of BER and AUC. For smaller datasets
and higher levels of noise, we see a greater degradation in
performance. This matches our regret bounds (Proposition
2), which indicated a penalty in high-noise regimes.

5Using log-loss requires explicitly constraining the range of
the bias and hidden→ output term, else the loss is undefined.

http://users.cecs.anu.edu.au/~akmenon/papers/corrupted-labels/index.html
http://users.cecs.anu.edu.au/~akmenon/papers/corrupted-labels/index.html
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Figure 1. Violin plots of bias in estimate ρ̂+ over τ = 100 trials on Segment (L), Spambase (M) and MNIST (R).

Dataset Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

segment

None 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

(ρ+, ρ−) = (0.1, 0.0) 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00

(ρ+, ρ−) = (0.1, 0.2) 0.02± 0.01 0.90± 0.08 0.31± 0.05 0.30± 0.05

(ρ+, ρ−) = (0.2, 0.4) 0.03± 0.01 3.24± 0.20 0.31± 0.06 0.27± 0.06

spambase

None 2.49± 0.00 6.93± 0.00 6.52± 0.00 6.52± 0.00

(ρ+, ρ−) = (0.1, 0.0) 2.67± 0.02 7.10± 0.03 6.88± 0.03 6.89± 0.03

(ρ+, ρ−) = (0.1, 0.2) 3.01± 0.03 7.66± 0.05 7.51± 0.05 7.48± 0.05

(ρ+, ρ−) = (0.2, 0.4) 4.91± 0.09 10.52± 0.13 10.82± 0.31 10.26± 0.12

mnist

None 0.92± 0.00 3.63± 0.00 3.63± 0.00 3.63± 0.00

(ρ+, ρ−) = (0.1, 0.0) 0.95± 0.01 3.56± 0.01 3.55± 0.01 3.55± 0.01

(ρ+, ρ−) = (0.1, 0.2) 0.97± 0.01 3.63± 0.02 3.62± 0.02 3.62± 0.02

(ρ+, ρ−) = (0.2, 0.4) 1.17± 0.02 4.06± 0.03 4.06± 0.03 4.05± 0.03

Table 2. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on UCI datasets injected with random

label noise τ = 100 times. The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.

7.2. Can we reliably estimate noise rates?

We now study the viability of learning label flip proba-
bilities ρ+, ρ−. As above, we compute corrupted class-
probability estimates, and use these to compute label flip
probability estimates ρ̂+, ρ̂− as per the approach in §6.

Figure 1 presents violin plots (Hintze & Nelson, 1998) of
the signed errors in the estimate ρ̂+, for symmetric ground-
truth ρ+, ρ−, on three of the UCI datasets. (For plots of
ρ̂−, see Appendix J.) These plots show the distribution of
signed errors across the noise trials; concentration about
zero is ideal. For lower noise rates, the estimates are gen-
erally only mildly biased, and possess low mean squared
error. As previously, we see a greater spread in the error
distribution for higher ground-truth noise rates.

7.3. Can other classification measures be minimised?

We finally study the misclassification error6 of a classifier
learned from noisy data. As above, we learn a corrupted
class-probability estimator, and compute noise estimates
ρ+, ρ− as per §6. We then threshold predictions based on

6While BER is more apposite on imbalanced data, we simply
aim to assess the feasibility of minimising misclassification risk.

Equation 13 to form a classifier. We also include the results
of an oracle that has exact knowledge of ρ+, ρ−, but only
access to the noisy data. The performance of this method
illustrates whether increased classification error is due to
inexact estimates of ρ+, ρ−, or inexact estimates of ηcorr.

Table 2 illustrates that while compared to BER and AUC,
we see slightly higher levels of degradation, in general the
misclassification rate can be effectively minimised even
in high noise regimes. As previously, we find that under
higher levels of ground-truth noise, there is in general a
slight decrease in accuracy. Interestingly, this is so even for
the oracle estimator, again corroborating our regret bounds
which indicate a penalty in high-noise regimes.

In summary, class-probability estimation lets us both esti-
mate the parameters of the contamination process, as well
as minimise a range of classification measures.

8. Conclusion
We have used class-probability estimation to study learn-
ing from corrupted binary labels. In particular, we have
shown that for optimising the balanced error and AUC, the
corruption process may be ignored; given estimates of the
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corruption parameters, several classification measures can
be minimised; and that such estimates may be obtained by
the range of the class-probabilities.

In future work, we aim to study the impact of corruption on
estimation rates of class-probabilities; study ranking risks
beyond the AUC; and study potential extensions of our re-
sults to more general corruption problems.
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Clémençon, Stéphan, Lugosi, Gábor, and Vayatis, Nicolas.
Ranking and Empirical Minimization of U-statistics. The
Annals of Statistics, 36(2):844–874, April 2008.

Denis, François. PAC learning from positive statistical
queries. In Algorithmic Learning Theory (ALT), volume
1501 of Lecture Notes in Computer Science, pp. 112–
126. Springer Berlin Heidelberg, 1998. ISBN 978-3-
540-65013-3.

du Plessis, Marthinus C, Niu, Gang, and Sugiyama,
Masashi. Analysis of learning from positive and unla-
beled data. In Advances in Neural Information Process-
ing Systems (NIPS), pp. 703–711. Curran Associates,
Inc., 2014.

du Plessis, Marthinus Christoffel and Sugiyama, Masashi.
Class prior estimation from positive and unlabeled data.
IEICE Transactions, 97-D(5):1358–1362, 2014.

Elkan, Charles and Noto, Keith. Learning classifiers from
only positive and unlabeled data. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 213–220, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-193-4.

Flach, Peter, Hernândez-Orallo, Josè, and Ferri, Cësar. A
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Proofs for “Learning from Corrupted Binary Labels via
Class-Probability Estimation”

A. Additional helper results
We collect here some results that are useful for the proofs of results in the main body.

A.1. Basic properties of ηcorr

Corollary 11. Pick any DM,η and Corr(D,α, β, πcorr). Then, ηcorr is a strictly monotone increasing transform of η.

Proof of Corollary 11. Pick any f : R → R, and define the function g : x 7→ a·f(x)+b
c·f(x)+d for a, b, c, d ≥ 0. If c = 0, g is

an affine transformation of f , and since a ≥ 0 it is a strictly monotone increasing transformation of f . If c 6= 0, we can
rewrite g as

g : x 7→
a
c · c · f(x) + bc

a ·
a
c

c · f(x) + d

= x 7→ a

c
·
c · f(x) + bc

a

c · f(x) + d

= x 7→ a

c
·

(
1 +

bc
a − d

c · f(x) + d

)

= x 7→ a

c
+

bc− ad
ac · f(x) + ad

.

Since ac ≥ 0, g is a strictly monotone increasing transformation of f when ad > bc.

We now apply this to f(x) = 1−π
π · η(x)

1−η(x) , which is in turn a strictly monotone increasing transformation of η. Then,
g = ηcorr, where from Equation 9,

a = (1− α)

b = α

c = β

d = 1− β.

Thus, ad − bc = 1 − α − β, which by our assumption that α + β < 1 is positive. Hence ηcorr is a strictly monotone
increasing transformation of η.

Corollary 12. Pick any DM,η satisfying Equation 15. Then, for every Corr(D,α, β, πcorr),

ηmin =
πcorr · α

1− ρ
and ηmax =

πcorr · (1− α)

ρ
,

where ρ = πcorr · (1− α) + (1− πcorr) · β.

Proof of Corollary 12. For the ρ as defined, it is easy to check that

1− ρ = πcorr · α+ (1− πcorr) · (1− β).

Plug in η(x) = 0 into Equation 9, and we get

ηcorr(x)

1− ηcorr(x)
=

πcorr

1− πcorr
· α

1− β
,
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which has solution
ηcorr(x) =

πcorr · α
πcorr · α+ (1− πcorr) · (1− β)

.

Clearly such an x corresponds to the minimum of η, and since ηcorr is a strictly monotone transformation of η by Corollary
11, it must correspond to the minimum of ηcorr as well.

Similarly, plug in η(x) = 1 into Equation 9, and we get

ηcorr(x)

1− ηcorr(x)
=

πcorr

1− πcorr
· 1− α

β
,

which has solution

ηcorr(x) =
πcorr · (1− α)

πcorr · (1− α) + (1− πcorr) · β
.

Proposition 13. Let T : [0, 1]5 → [0, 1] be as per Equation 10. Suppose ∆X×{±1} is the set of all distributions on
X× {±1}. The only function t : ∆X×{±1} → [0, 1] for which

(∃F : [0, 1]→ [0, 1]) (∀D,Dcorr)T (α, β, π, πcorr, t(D)) = F (πcorr)

is t : DP,Q,π 7→ π.

Proof of Proposition 13. Let t(D) be some candidate clean threshold function, independent of α, β, πcorr. For conve-
nience, let t̄(D) = t(D)

1−t(D) and g(π) = 1−π
π . Recall from Equation 10 that

(∀D,Dcorr)
T (α, β, π, πcorr, t(D))

1− T (α, β, π, πcorr, t(D))
=

πcorr

1− πcorr
· (1− α) · g(π) · t̄(D) + α

β · g(π) · t̄(D) + (1− β)
.

We require T (α, β, π, πcorr, t(D)) to be equal to F (πcorr) for some function F , or equivalently, to be independent of α, β, π
(as well as any other parameters derived from D). Now, as the left hand side of the above equation is a strictly monotone
transformation of T (α, β, π, πcorr, t(D)), we equivalently need the right hand side of the above to be independent of
α, β, π. As the first term, πcorr

1−πcorr
, depends solely on πcorr, we need the second term to be independent of α, β, π. Say the

second term equals some function G(πcorr). Then, we require

(∀D,Dcorr) (1− α) · g(π) · t̄(D) + α = G(πcorr) · (β · g(π) · t̄(D) + (1− β)).

But then, differentiating this with respect to α, we need

(∀D,Dcorr) − g(π) · t̄(D) + 1 = 0,

meaning that the only possible solution for t̄(D) is

t̄(D) =
1

g(π)
,

or t(D) = π.

Suppose we require T (α, β, π, πcorr, t(D)) to merely be independent of π, but possibly dependent on α, β. For simplicity,
suppose t only depends on π. Then, we equivalently need

(∀α, β, π) (1− α) · g(π) · t̄(π) + α = G(πcorr, α, β) · (β · g(π) · t̄(π) + (1− β))

for some function G. Differentiating with respect to π, we get that either g(π) · t̄(π) is a constant (independent of π), or
G(πcorr, α, β) = 1−α

β . The latter can be ruled out by plugging back into the original equation, and so we find that the
admissible threshold functions are {

t : π 7→ c0 · π
(1− π) + c0 · π

| c0 ∈ R
}
.

Clearly c0 = 1 corresponds to t(π) = π, but other thresholds (corresponding to non-standard performance measures) are
also possible in this case, e.g. 2π

1+π .
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A.2. Contaminated BER and AUC

Corollary 14. Pick any D and Corr(D,α, β, πcorr). Then, for any classifier f : X→ {±1},

Argmin
f : X→{±1}

BERDcorr(f) = Argmin
f : X→{±1}

BERD(f)

and

regretDBER(f) =
1

1− α− β
· regretDcorr

BER (f).

Proof of Corollary 14. As the corrupted BER is a positive scaling and translation of the clean BER (Equation 6), the
equivalence of minimisers is immediate.

For the regret relation, observe that

regretDBER(f) = BERD(f)− inf
g : X→{±1}

BERD(g)

=
1

1− α− β
·
(

BERDcorr(f)− 1

2

)
− inf
g : X→{±1}

1

1− α− β
·
(

BERDcorr(g)− 1

2

)
=

1

1− α− β
·
(

BERDcorr(f)− inf
g : X→{±1}

BERDcorr(g)

)
=

1

1− α− β
· regretDcorr

BER (f).

Corollary 15. For any D and Corr(D,α, β, πcorr),

Argmin
s : X→R

AUCDcorr(s) = Argmin
s : X→R

AUCD(s)

and

regretDAUC(s) =
1

1− α− β
· regretDcorr

AUC (s).

Proof of Corollary 15. Building on Corollary 3, this follows analogously to the proof of Corollary 14.

A.3. Contaminated false positive and negative rates

Proposition 16 ((Scott et al., 2013)). Pick any D and Corr(D,α, β, πcorr). Then, for any classifier f : X→ {±1},

FPRDcorr(f) = (1− β) · FPRD(f)− β · FNRD(f) + β

FNRDcorr(f) = −α · FPRD(f) + (1− α) · FNRD(f) + α,

or equivalently,

FPRD(f) =
1

1− α− β
·
(
(1− α) · FPRDcorr(f) + β · FNRDcorr(f)− β

)
FNRD(f) =

1

1− α− β
·
(
α · FPRDcorr(f) + (1− β) · FNRDcorr(f)− α

)
.

Proof of Proposition 16. This result essentially appears in Scott et al. (2013), but we find it useful to slightly re-express it
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here, and so present a rederivation. Observe that

FPRDcorr(f) = E
X∼Qcorr

[Jf(X) = 1K]

= E
X∼βP+(1−β)Q

[Jf(X) = 1K]

= β · E
X∼P

[Jf(X) = 1K] + (1− β) · E
X∼Q

[Jf(X) = 1K]

= β · TPRD(f) + (1− β) · FPRD(f)

= β − β · FNRD(f) + (1− β) · FPRD(f),

and similarly,

FNRDcorr(f) = E
X∼Pcorr

[Jf(X) = −1K]

= E
X∼(1−α)P+αQ

[Jf(X) = −1K]

= (1− α) · E
X∼P

[Jf(X) = −1K] + α · E
X∼Q

[Jf(X) = −1K]

= (1− α) · FNRD(f) + α · TNRD(f)

= (1− α) · FNRD(f) + α− α · FPRD(f).

This gives the first part of the result. For the second part, write the above as[
FPRDcorr(f)

FNRDcorr(f)

]
=

[
1− β −β
−α 1− α

] [
FPRD(f)

FNRD(f)

]
+

[
β
α

]
.

Inverting this matrix equation gives the second part result.

Lemma 17. Pick any D and Corr(D,α, β, πcorr). Then, for any classifier f : X→ {±1},

ERRD(f) = γ · CSDcorr(f ; c)− π · α+ (1− π) · β
1− α− β

,

where

c = φ

(
πcorr

1− πcorr
· π · α+ (1− π) · (1− α)

π · (1− β) + (1− π) · β

)
γ =

1

1− α− β
· π · (1− ρ) + ρ · (1− π)

πcorr · (1− πcorr)

ρ = πcorr · (1− α) + (1− πcorr) · β

φ : z 7→ z

1 + z
.

Proof of Lemma 17. From Proposition 16,

π · FNRD(f) =
π

1− α− β
· (α · FPRDcorr(f) + (1− β) · FNRDcorr(f)− α)

(1− π) · FPRD(f) =
1− π

1− α− β
· ((1− α) · FPRDcorr(f) + β · FNRDcorr(f)− β),

and so

ERRD(f) =
π · (1− β) + (1− π) · β

1− α− β
· FNRDcorr(f) +

π · α+ (1− π) · (1− α)

1− α− β
· FPRDcorr(f) + C,

where C = −π·α+(1−π)·β
1−α−β .
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But a performance measure of the form

a · FNRDcorr(f) + b · FPRDcorr(f) = πcorr ·
a

πcorr
· FNRDcorr(f) + (1− πcorr) ·

b

1− πcorr
· FPRDcorr(f)

=

(
a

πcorr
+

b

1− πcorr

)
· CSDcorr(f ; c),

where c = b
1−πcorr

·
(

a
πcorr

+ b
1−πcorr

)−1

, and

φ−1(c) =
c

1− c
=

πcorr

1− πcorr
· b
a
.

In our case,

γ =
a

πcorr
+

b

1− πcorr

=
πcorr · (b− a) + a

πcorr · (1− πcorr)

=
πcorr · (1− 2π) · (1− α− β) + π · (1− β) + (1− π) · β

πcorr · (1− πcorr)

=
(1− π) · ρ+ π · (1− ρ)

πcorr · (1− πcorr)

and

c

1− c
=

πcorr

1− πcorr
· b
a

=
πcorr

1− πcorr
· π · α+ (1− π) · (1− α)

π · (1− β) + (1− π) · β
.

A.4. Strongly proper losses

Proposition 18. Pick any DM,η. Let ` be a strongly proper composite loss with modulus λ. Then, for any s : X→ R,

E
X∼M

[
(η(X)− ψ−1(s(X)))2

]
≤ 2

λ
· regretD` (s).

Proof of Proposition 18. An equivalent definition of ` being strongly proper composite with modulus λ is (Agarwal, 2014,
Definition 7)

(∀η, η̂ ∈ [0, 1]) regret`(η, η̂) ≥ λ

2
· (η − η̂)2,

where regret`(η, η̂) denotes the conditional regret with respect to loss `, so that

regretD` (s) = E
X∼M

[
regret`(η(X), ψ−1(s(X))

]
.

Therefore,

E
X∼M

[
(η(X)− ψ−1(s(X)))2

]
≤ 2

λ
· regretD` (s).
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A.5. Properties of the AUC and BER

We first show the following simple property of the AUC.

Proposition 19. Pick any distribution P over X and scorer s : X→ R. Then,

E
X∼P,X′∼P

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
=

1

2
.

Proof. Define a distribution D = (P, P, π) over X× {±1} for some π ∈ (0, 1). Then,

AUCD(s) = E
X∼P,X′∼P

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
.

By the Neyman-Pearson lemma (Clémençon et al., 2008),

Argmin
s : X→R

1−AUCD(s) = {φ ◦ η | φ strictly monotone increasing }.

But for two identical class-conditionals, η is just a constant, since

(∀x ∈ X)
η(x)

1− η(x)
=

π

1− π
· P (x)

P (x)
,

or η ≡ π. Therefore,

max
s : X→R

AUCD(s) = AUCD(π) =
1

2
.

Now consider any other scorer s : X → R. Suppose AUCD(s) < 1
2 . Then, define the scorer s̄ : x 7→ −s(x). Clearly,

AUCD(s̄) = 1 − AUCD(s). But if AUCD(s) < 1
2 , then AUCD(s̄) > 1

2 . This contradicts the fact that the maximal
achievable AUC is 1

2 . Thus, every scorer must attain AUCD(s) = 1
2 .

Using the above, we show how the AUC can be seen as the average BER for a specific distribution over classification
thresholds. This is implicit in Flach et al. (2011, Theorems 4, 5), but we show the result here for completeness.

Proposition 20. Pick any DP,Q,π. Then,

AUCD(s) =
3

2
− 2 · E

X∼P

[
BERD(s; s(X))

]
=

3

2
− 2 · E

X∼Q

[
BERD(s; s(X))

]
.

Proof. We use as our starting point the following definition of the AUC (Agarwal et al., 2005):

AUCD(s) = E
X∼P,X′∼Q

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
.

This can be re-expressed as
AUCD(s) = E

X∼P

[
1− FPRD(s; s(X))

]
,

where

FPRD(s; t) = P
X′∼Q

(s(X′) > t) +
1

2
· P
X∼Q

(s(X′) = t) ,

which is equivalent to the false positive rate of a randomised classifier that outputs thresh(s, t) when s(x) 6= t, and {±1}
uniformly at random when s(x) = t.
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Further, by Proposition 19,

E
X∼P

[
FNRD(s; s(X))

]
= E

X∼P,X′∼P

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
=

1

2
.

Thus,

E
X∼P

[
FPRD(s; s(X)) + FNRD(s; s(X))

2

]
=

1−AUCD(s) + 1
2

2
,

or

AUCD(s) =
3

2
− 2 · E

X∼P

[
BERD(s; s(X))

]
.

Equivalently, we have
AUCD(s) = E

X∼Q

[
1− FNRD(s; s(X))

]
and by Proposition 19,

E
X∼Q

[
FPRD(s; s(X))

]
= E

X∼Q,X′∼Q

[
Js(X′) > s(X)K +

1

2
Js(X′) = s(X)K

]
=

1

2
.

Thus,

E
X∼Q

[
FPRD(s; s(X)) + FNRD(s; s(X))

2

]
=

1−AUCD(s) + 1
2

2
,

or

AUCD(s) =
3

2
− 2 · E

X∼Q

[
BERD(s; s(X))

]
.

Observe that the above implies a special property of the BER.

Corollary 21. Pick any DP,Q,π and scorer s : X→ R. Then,

E
X∼P

[
BERD(s; s(X))

]
= E

X∼Q

[
BERD(s; s(X))

]
.

B. Proofs of results in main body
We now present proofs of all results in the main body.

B.1. BER and AUC are immune to corruption

Proof of Proposition 1. Recalling from Proposition 16 that for any classifier f : X→ {±1},

FPRD(f) =
1

1− α− β
·
(
(1− α) · FPRDcorr(f) + β · FNRDcorr(f)− β

)
FNRD(f) =

1

1− α− β
·
(
α · FPRDcorr(f) + (1− β) · FNRDcorr(f)− α

)
,

the result follows immediately by definition of the BER as the mean of the false positive and negative rates.
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Proof of Proposition 2. Define η̂corr : x 7→ ψ−1(s(x)). For some fixed c ∈ (0, 1), let f = thresh(s, ψ(c)) =
thresh(η̂corr, c). By Menon et al. (2013, Lemma 4),

regretDcorr

CS(c)(f) ≤ min
r≥1

(
E

X∼Mcorr

[|ηcorr(X)− η̂corr(X)|r]
)1/r

,

where regretDcorr

CS(c)(f) denotes the regret with respect to the cost-sensitive loss with parameter c,

CS(f ; c) = π · (1− c) · FNRD(f) + (1− π) · c · FPRD(f).

The BER of f with respect to distribution Dcorr can be viewed as a scaled version cost-sensitive loss with cost parameter
c = πcorr:

BERDcorr(f) =
1

2 · πcorr · (1− πcorr)
· CS(f ;πcorr).

So, by Corollary 14,

regretDBER(f) =
1

1− α− β
· regretDcorr

BER (f)

=
1

1− α− β
· 1

2 · πcorr · (1− πcorr)
· regretDcorr

CS(c)(f)

≤ 1

1− α− β
· 1

2 · πcorr · (1− πcorr)
·min
r≥1

(
E

X∼Mcorr

[|ηcorr(X)− η̂corr(X)|r]
)1/r

.

If ` is strongly proper composite with modulus λ, then by Proposition 18,

√
E

X∼Mcorr

[(ηcorr(X)− η̂corr(X))2] ≤
√

2

λ
·
√

regretDcorr

` (s).

But the left hand side corresponds to the case of r = 2 in the above bound, meaning

regretDBER(f) ≤ C(πcorr)

1− α− β
·
√

2

λ
·
√

regretDcorr

` (s).

Proof of Corollary 3. Using the results of Appendix A.5, we have

AUCDcorr(s) =
3

2
− 2 · E

X∼Pcorr

[
BERDcorr(s; s(X))

]
=

3

2
− 2 · E

X∼Pcorr

[
1

2
+ (1− α− β) ·

(
BERD(s; s(X))− 1

2

)]
=

3

2
− (α+ β)− 2 · (1− α− β) · E

X∼Pcorr

[
BERD(s; s(X))

]
=

1

2
+ (1− α− β)− 2 · (1− α− β) ·

(
(1− α) · E

X∼P

[
BERD(s; s(X))

]
+ α · E

X∼Q

[
BERD(s; s(X))

])
=

1

2
+ (1− α− β)− 2 · (1− α− β) · E

X∼P

[
BERD(s; s(X))

]
=

1

2
+ (1− α− β) + (1− α− β) ·AUCD(s)− 3

2
· (1− α− β)

=
1

2
+ (1− α− β) ·

(
AUCD(s)− 1

2

)
.
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Proof of Corollary 4. From Corollary 15, we know that

regretDAUC(s) =
1

1− α− β
· regretDcorr

AUC (s).

Now apply Agarwal (2014, Theorem 13) to the right hand side.

B.2. The corrupted class-probabilities

Proof of Proposition 5. Let p, q denotes the densities of P,Q, and pcorr, qcorr the densities of Pcorr, Qcorr. By the definition
of conditional probability, we have

p(x)

q(x)
=

1− π
π
· η(x)

1− η(x)
.

and, on the corrupted distribution,
ηcorr(x)

1− ηcorr(x)
=

πcorr

1− πcorr
· pcorr(x)

qcorr(x)
.

Thus, from Equation 2,

(∀x ∈ X)
ηcorr(x)

1− ηcorr(x)
=

πcorr

1− πcorr
· (1− α) · p(x) + α · q(x)

β · p(x) + (1− β) · q(x)

=
πcorr

1− πcorr
·

(1− α) · p(x)
q(x) + α

β · p(x)
q(x) + (1− β)

=
πcorr

1− πcorr
·

(1− α) · 1−π
π ·

η(x)
1−η(x) + α

β · 1−π
π ·

η(x)
1−η(x) + (1− β)

.

Proof of Corollary 6. This follows from the fact that ηcorr is a strictly monotone increasing transformation of η (Corollary
11), and plugging in η(x) = t into Equation 9.

B.3. Classification from corrupted data

Proof of Proposition 7. Define η̂corr : x 7→ ψ−1(s(x)), and let f = thresh(η̂corr, t
D
corr,Ψ). Now, recall from Lemma 17

that

ERRD(f) = γ · CSDcorr(f ; c)− π · α+ (1− π) · β
1− α− β

where the cost parameter c = tDcorr,Ψ. Thus,

regretDERR(f) = γ · regretDcorr

CS(c)(f).

The rest of the proof proceeds identically to that of Proposition 2.

Proof of Proposition 8. ( ⇐= ). For Ψ corresponding to the BER, we know from Proposition 1 that this holds for the
identity function F : πcorr 7→ πcorr.

( =⇒ ). Suppose Ψ satisfies the desired statement. Since Ψ has a unique minimiser which is a thresholding of ηcorr, and
since η and ηcorr are strict monotone transformations of each other, we can conclude that for every D, Ψ has a unique
minimiser of the form sign(η(x)− tDΨ) for some tDΨ . By Corollary 6, we have that

(∀D,Dcorr) (∀x ∈ X) sign(η(x)− tDΨ) = sign(ηcorr(x)− T (α, β, π, πcorr, t
D
Ψ)).

Thus, by assumption on the minimiser of Ψ,

(∃F ) (∀D,Dcorr) (∀x ∈ X) sign(ηcorr(x)− T (α, β, π, πcorr, t
D
Ψ)) = sign(ηcorr(x)− F (πcorr)).
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Thus, it must be true that
(∃F ) (∀D,Dcorr)F (πcorr) = T (α, β, π, πcorr, t

D
Ψ).

Now, by Proposition 13, we must have that tDΨ = π. But this corresponds to the unique optimal threshold for the BER.
Hence, Ψ must correspond to the BER.

Proof of Proposition 9. Given some w : [0, 1]→ R2
+, we restrict attention to functions of the form7

Ψw : (u, v, p) 7→
〈
w(p),

[
u
v

]〉
,

with corresponding performance measures of the form

ClassDΨw
(f) = w1(π) · FPRD(f) + w2(π) · FNRD(f).

We are interested in admissible weights w, for which the performance measures on the clean and corrupted distributions
are some affine transformation on each other:

W = {w : [0, 1]→ R2
+ | (∀D) (∀α, β, πcorr)(∃a, b ∈ R) (∀f) ClassDΨw

(f) = a · ClassDcorr

Ψw
(f) + b}

= {w : [0, 1]→ R2
+ | (∀D) (∀α, β, πcorr)(∃a, b ∈ R) (∀f) 〈w(π), x〉 = a · 〈w(πcorr), x̄〉+ b},

where we let x =

[
FPRD(f)

FNRD(f)

]
, and x̄ =

[
FPRDcorr(f)

FNRDcorr(f)

]
. Observe that a, b are allowed to depend on the distribution

D, and the corruption process parameters. What is relevant is that they do not depend on the classifier f , so that for the
purposes of minimising Ψ on D, we can equivalently minimise Ψ on Dcorr.

Recall from Proposition 16 that, for any D,Dcorr, f ,[
FPRDcorr(f)

FNRDcorr(f)

]
=

[
1− β −β
−α 1− α

] [
FPRD(f)

FNRD(f)

]
+

[
β
α

]
,

or, in the preceding notation,
x̄ = Ax+ c

where

A =

[
1− β −β
−α 1− α

]
c =

[
β
α

]
.

Pick any w ∈ R2
+

[0,1]. Then, we have

w ∈W ⇐⇒ (∀DP,Q,π) (∀α, β, πcorr) (∃a, b) (∀f) 〈w(π), x〉 = a · 〈w(πcorr), Ax+ c〉+ b.

As this must hold for every choice of πcorr, it must hold for the case πcorr = π, i.e.

w ∈W =⇒ (∀DP,Q,π) (∀α, β) (∃a, b) (∀f) 〈w(π), x〉 = a · 〈w(π), Ax+ c〉+ b.

For any π ∈ (0, 1), we can pick (P,Q) such that D is separable. For a separable D, we can pick a classifier so as to attain
any combination of false-positive and negative rates (possibly by allowing for randomised classifiers). For x =

[
0 0

]
,

we see that b = −a · 〈w(π), c〉. So,

w ∈W =⇒ (∀π) (∀α, β) (∃a) (∀x ∈ [0, 1]2) 〈w(π), x〉 = a · 〈ATw(π), x〉

=⇒ (∀π) (∀α, β) (∃a) (∀x ∈ [0, 1]2)

〈(
1

a
I −AT

)
w(π), x

〉
= 0.

7We assume here for simplicity that the performance measure is such that Ψ(0, 0, p) = 0; adding any constant to Ψ will trivially
leave the following unchanged.
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As this must hold for every x ∈ [0, 1]2, this is satisfiable iff the first term is zero, i.e.

w ∈W =⇒ (∀π) (∀α, β) (∃a)ATw(π) =
1

a
Iw(π).

This is possible only if w(π) is some scaling of an eigenvector of AT , or is in the nullspace of AT . But

AT =

[
1− β −α
−β 1− α

]
,

which is a scaled row-stochastic matrix. Since α + β 6= 1, it is invertible and hence has empty nullspace. Its eigenvectors

are
[
1
1

]
and

[
1

−β/α

]
. The latter depends on α, β, which is not possible since w does not depend on these parameters. So,

W ⊆
{
w : π 7→

[
λ(π)
λ(π)

]
| λ : [0, 1]→ R

}
.

The above is in fact an equality. Pick any w : π 7→
[
λ(π) λ(π)

]T
. Then, for any D,Dcorr, and classifier f ,

〈w(πcorr), Ax+ c〉 = λ(πcorr) ·
〈[

1
1

]
, Ax+ c

〉
= λ(πcorr) ·

〈
AT
[
1
1

]
, x

〉
+ λ(πcorr) ·

〈[
1
1

]
, c

〉
= λ(πcorr) · (1− α− β) ·

〈[
1
1

]
, x

〉
+ λ(πcorr) ·

〈[
1
1

]
, c

〉
=
λ(πcorr)

λ(π)
· (1− α− β) ·

〈
λ(π) ·

[
1
1

]
, x

〉
+ λ(πcorr) ·

〈[
1
1

]
, c

〉
= a · 〈w(π), x〉+ b

for appropriate a, b, so that w ∈W. Thus,

W =

{
w : π 7→

[
λ(π)
λ(π)

]
| λ : [0, 1]→ R

}
.

These correspond to the performance measures

ClassDw (f) = λ(π) · (FPRD(f) + FNRD(f)) = 2λ(π) · BERD(f),

meaning that the set of admissible functionals is the set of scalings and translations of balanced error.

B.4. Learning noise rates

Proof of Proposition 10. From Corollary 12,

ηmin =
πcorr · α

πcorr · α+ (1− πcorr) · (1− β)

ηmax =
πcorr · (1− α)

πcorr · (1− α) + (1− πcorr) · β
.

Rearranging,

πcorr · (1− ηmin) · α+ (1− πcorr) · ηmin · β = (1− πcorr) · ηmin

πcorr · (1− ηmax) · α+ (1− πcorr) · ηmax · β = πcorr · (1− ηmax).

In matrix form,

A ·
[
α
β

]
=

[
(1− πcorr) · ηmin

πcorr · (1− ηmax)

]
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where

A =

[
πcorr · (1− ηmin) (1− πcorr) · ηmin

πcorr · (1− ηmax) (1− πcorr) · ηmax

]
=

[
1− ηmin ηmin

1− ηmax ηmax

]
·
[
πcorr 0

0 1− πcorr

]
.

It is apparent that

A−1 =

[
π−1

corr 0
0 (1− πcorr)

−1

]
· 1

ηmax − ηmin
·
[

ηmax −ηmin

−(1− ηmax) 1− ηmin

]
Hence,[

α
β

]
= A−1 ·

[
(1− πcorr) · ηmin

πcorr · (1− ηmax)

]
=

1

ηmax − ηmin
·
[
π−1

corr 0
0 (1− πcorr)

−1

]
·
[

ηmax −ηmin

−(1− ηmax) 1− ηmin

]
·
[

(1− πcorr) · ηmin

πcorr · (1− ηmax)

]
=

1

ηmax − ηmin
·
[
π−1

corr 0
0 (1− πcorr)

−1

]
·
[

(1− πcorr) · ηmax · ηmin − πcorr · ηmin · (1− ηmax)
−(1− πcorr) · ηmin · (1− ηmax) + πcorr · (1− ηmin) · (1− ηmax)

]
=

1

ηmax − ηmin
·
[
π−1

corr 0
0 (1− πcorr)

−1

]
·
[

ηmin · (ηmax − πcorr)
(1− ηmax) · (πcorr − ηmin)

]
.

Thus,

α =
ηmin · (ηmax − πcorr)

πcorr · (ηmax − ηmin)

β =
(1− ηmax) · (πcorr − ηmin)

(1− πcorr) · (ηmax − ηmin)
.
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Additional Discussion for “Learning from Corrupted Binary
Labels via Class-Probability Estimation”

C. Derivation of special cases of MC learning
We now show the precise settings of α, β, πcorr that recover CCN and PU learning as special cases of MC learning.

C.1. CCN learning

The problem of learning with class-conditional label noise is the following (Blum & Mitchell, 1998; Natarajan et al., 2013).
We imagine drawing (X,Y) ∼ D. The instance X is unchanged: however, the label is altered such that positive samples
have labels flipped with probability ρ+, while negative samples have labels flipped with probability ρ−. We will refer
to the resulting distribution by CCN(D, ρ+, ρ−). It is apparent that the noise process leaves the marginal distribution of
instances, M , unchanged. However, all other quantities are distinct from their counterparts in D. From the definition of
CCN learning, the form of the class-probability function is apparent. This result appears in the proof of Natarajan et al.
(2013, Lemma 7).

Proposition 22. Pick any DP,Q,π. Denote the class-probability function of CCN(D, ρ+, ρ−) by

ηcorr : x 7→ P(Z = 1|X = x).

Then,
(∀x ∈ X) ηcorr(x) = (1− ρ+ − ρ−) · η(x) + ρ−. (18)

Proof of Proposition 22. Let (X,Y) denote random variables distributed according to D. Let Z denote the noisy label. By
definition of the noise process,

(∀x ∈ X)P(Z = 1|X = x) = P(Z = 1|Y = 1) · P(Y = 1|X = x) + P(Z = 1|Y = −1) · P(Y = −1|X = x)

= (1− ρ+) · η(x) + ρ− · (1− η(x))

= (1− ρ+ − ρ−) · η(x) + ρ−.

From this, one can also relate the base rate πcorr to the noise parameters ρ+, ρ−.

Corollary 23. Pick any DP,Q,π . Then, CCN(D, ρ+, ρ−) has base rate

πcorr = π · (1− ρ+ − ρ−) + ρ−.

Proof of Corollary 23. Take the expectation of Equation 18 over X ∼M , and use the fact that EX∼M [η(X)] = π.

Now observe that

(∀x ∈ X)Pcorr(x) =
M(x) · ηcorr(x)

πcorr

=
M(x) · ((1− ρ+ − ρ−) · η(x) + ρ−)

π · (1− ρ+ − ρ−) + ρ−

=
M(x) · (1− ρ+ − ρ−) · η(x) +M(x) · ρ−

π · (1− ρ+ − ρ−) + ρ−

=
π · (1− ρ+ − ρ−) · P (x) + π · ρ− · P (x) + (1− π) · ρ− ·Q(x)

π · (1− ρ+ − ρ−) + ρ−

=
π · (1− ρ+ − ρ−) + π · ρ−
π · (1− ρ+ − ρ−) + ρ−

· P (x) +
(1− π) · ρ−

π · (1− ρ+ − ρ−) + ρ−
·Q(x),



Learning from Corrupted Binary Labels via Class-Probability Estimation

Quantity CCN Learning

P(Z = 1) π · (1− ρ+ − ρ−) + ρ−

Pcorr (1− α) · P + α ·Q

Qcorr β · P + (1− β) ·Q

Mcorr M

ηcorr(x) (1− ρ+ − ρ−) · η(x) + ρ−

Table 3. Summary of marginal and condition densities for CCN learning. Here, α, β are as defined in Equation 19.

so that the noisy class-conditional is a mixture of the clean class-conditionals. A similar calculation for Qcorr reveals that
the distribution CCN(D, ρ+, ρ−) is, unsurprisingly, a special case of an MC learning distribution, with noise parameters

α =
(1− π) · ρ−

π · (1− ρ+) + (1− π) · ρ−
β =

π · ρ+

π · ρ+ + (1− π) · (1− ρ−)
.

(19)

That is,
CCN(D, ρ+, ρ−) = Corr(D,α, β, π · (1− ρ+ − ρ−) + ρ−).

Table 3 summarises some properties of this distribution.

C.2. PU learning

There are two variants of the PU learning problem, both of which are special cases of MC learning.

In case-controlled PU learning (Ward et al., 2009), we see samples from a distribution PUcase(D,πcorr), for some base
rate πcorr ∈ (0, 1). Here, positive instances are drawn from the true class-conditional P , and unlabelled instances are
drawn from the true marginal M . The base rate πcorr specifies the fraction of positive to unlabelled samples, which is in
general unrelated to the clean base rate π. Since our observed samples have class-conditionals (P,M), drawn with base
rate π, it is evident that

PUcase(D,πcorr) = Corr(D, 0, π, πcorr).

The class-probability function may thus be written as

(∀x ∈ X) ηcorr(x) =
πcorr · η(x)

π · (1− πcorr) + πcorr · η(x)

= σ
(
log(η(x)) + σ−1(πcorr)− log π

)
,

where σ : x 7→ 1/(1 + exp(−x)) is the sigmoid function.

In censored PU learning (Denis, 1998; Lee & Liu, 2003; Elkan & Noto, 2008), we see samples from a distribution
PUcen (D, c), for some censoring parameter c ∈ (0, 1). Here, positive instances are drawn from the true class-conditional
P , while unlabelled distances are drawn from a distribution defined by a censoring process, wherein one (conceptually)
draws a sample from the true D, but then conceals the labels of any negative samples with certainty, and conceals the label
of an positive sample with probability 1− c. The censoring process may be understood as a special case of CCN learning,
where there is no noise on the negatives (i.e. no negative is accidentally labelled as positive), but there is noise rate 1 − c
on the positives (so that some positives are accidentally labelled as negative). That is,

PUcen (D, c) = CCN (D, 1− c, 0)

= Corr

(
D, 0,

π · (1− c)
1− c · π

, c · π
)
.
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Quantity Case controlled Censoring

P(Z = 1) πcorr c · π

Pcorr P P

Qcorr M π·(1−c)
1−c·π · P + 1−π

1−c·π ·Q

Mcorr ρ · P + (1− ρ) ·Q M

ηcorr(x) σ(log(η(x)) + σ−1(πcorr)− log π) c · η(x)

Table 4. Summary of marginal and condition densities for PUcase(D,πcorr) and PUcen (D, c). Here, ρ = πcorr · (1− π) + π.

The connection to CCN learning means that, for example,

(∀x ∈ X) ηcorr(x) = c · η(x).

We see that both settings are special cases of MC learning where the positive class contamination rate α = 0. However, the
censoring setting involves a choice of corrupted base rate that depends on the noise parameter β. (This is just a consequence
of this setting being a special case of CCN learning.) Interestingly, the case controlled setting is not a special case of CCN
learning in general, because it involves an arbitrary corrupted base rate πcorr.

Table 4 summarises the properties of the distributions for each setting.

D. Estimates for noise rates special cases
We have seen how corruption parameters can be estimated in general. We now see how these simplify for the special cases
discussed earlier. While these all can be derived directly from Equation 16, it is simpler (and illustrative) to build on our
earlier expressions for ηcorr in each case.

D.1. CCN learning

Recall that
ηcorr : x 7→ (1− ρ+ − ρ−) · η(x) + ρ−.

Thus, any x for which η(x) = 0 will have ηcorr(x) = ρ−, and if η(x) = 1, ηcorr(x) = 1− ρ+. Since these correspond to
the minimum and maximum of η, and thus ηcorr, we have

ρ+ = 1− ηmax and ρ− = ηmin.

D.2. PU learning

In PU learning, we know that α = 0. Therefore, we only need an estimate for the contamination rate β. In the case-
controlled setting, recall that β = π. But we have

ηmax =
πcorr

πcorr + (1− πcorr) · π

=
πcorr

πcorr + (1− πcorr) · β
.

which may be inverted to give

β =
πcorr

1− πcorr
· 1− ηmax

ηmax
.

In the censoring setting, building on the result for CCN learning,

1− c = 1− ηmax,



Learning from Corrupted Binary Labels via Class-Probability Estimation

or
c = ηmax.

This is precisely one of the estimators proposed by Elkan & Noto (2008).

E. Estimates for π in special cases
We show how π can be estimated in each of the special cases discussed earlier.

E.1. CCN learning

In the CCN learning scenario, we have

π =
πcorr − ρ−

1− ρ+ − ρ−
.

That is, the base rate contains information about π, unlike the general MC learning problem. Using the estimates for ρ+, ρ−
from earlier, we can thus estimate π from ηcorr as

π =
πcorr − ηmin

ηmax − ηmin
.

E.2. PU learning

In the case-controlled scenario, we have α = 0 and β = π. Therefore, estimating β is equivalent to estimating π. Recalling
our earlier estimate for β, we have

π =
πcorr

1− πcorr
· 1− ηmax

ηmax
.

This does not contradict Ward et al. (2009, Proposition 7), which states that π is unidentifiable when using linear logistic
regression to model an arbitrary η (i.e. when using a misspecified model). This reiterates the importance of our assumption
of a suitably rich function class, as well as the weak separability assumption D.

In the censoring scenario, using the result for CCN learning, we have the following, which is mentioned in Elkan & Noto
(2008, Section 3):

π =
πcorr

ηmax
.

F. Thresholds for misclassification error in special cases
The optimal corrupted threshold for the misclassification error simplifies in the special cases discussed earlier.

F.1. CCN learning

From the definition of ηcorr, it is apparent that

(∀x ∈ X) η(x) > t ⇐⇒ ηcorr(x) > (1− ρ+ − ρ−) · t+ ρ−.

Setting t = 1
2 ,

(∀x ∈ X) η(x) >
1

2
⇐⇒ ηcorr(x) >

1− ρ+ + ρ−
2

.

It is apparent that the only choice of noise rates for which the contaminated threshold is a constant is ρ+ = ρ−, i.e. the
symmetric noise case.

F.2. PU learning

In the case-controlled setting, from the definition of ηcorr, it is apparent that

(∀x ∈ X) η(x) > t ⇐⇒ ηcorr(x) >
πcorr · t

πcorr · t+ (1− πcorr) · π
.
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Setting t = 1
2 ,

(∀x ∈ X) η(x) >
1

2
⇐⇒ ηcorr(x) >

πcorr

πcorr + 2 · (1− πcorr) · π
.

Recall that π can be expressed in terms of πcorr and ηmax. Plugging this in, we find

(∀x ∈ X) η(x) >
1

2
⇐⇒ ηcorr(x) >

ηmax

2− ηmax
.

In general this is not a constant, and we cannot avoid the estimation of ηmax.

In the censoring setting, plugging in ρ+ = 1− c and ρ− = 0 into the CCN formula,

(∀x ∈ X) η(x) >
1

2
⇐⇒ ηcorr(x) >

c

2
.

It is apparent that we thus always need to estimate the censoring rate in order to optimally threshold. This also follows
from the fact that the problem is a form of asymmetric label noise, which we saw above yields a non-constant corrupted
threshold.

G. Noise immunity in special cases
We study whether in special cases, there are performance measures other than BER that are immune to corruption.

G.1. CCN learning

For CCN learning with arbitrary label noise, as before, we consider a clean threshold function t(π) on η such that the
corresponding contaminated threshold T (α, β, π, πcorr, t(π)) depends only on πcorr (i.e. is independent of ρ+, ρ−, π). As
in the general case, the only such threshold is t(π) = π.

Proposition 24. For CCN learning with arbitrary label noise, the only function t(π) for which T (α, β, π, πcorr, t(π)) is
independent of ρ+, ρ−, π is t(π) = π, i.e. the optimal threshold for BER.

Proof. From the definition of ηcorr, it is apparent that

T (α, β, π, πcorr, t) = (1− ρ+ − ρ−) · t+ ρ−.

For noise-immunity, we want the corrupted threshold to be some function of πcorr (and thus independent of ρ+, ρ−, π)
when given a clean threshold t(π). Recall that πcorr = (1− ρ+− ρ−) · π+ ρ− is itself a function of ρ+, ρ−, π. So, we are
interested in all choices of clean threshold t(π) such that

(∀ρ+, ρ−, π) (1− ρ+ − ρ−) · t(π) + ρ− = F ((1− ρ+ − ρ−) · π + ρ−)

for some function F .

Plug in π = 0 in the above and we get
(∀ρ+, ρ−) ρ− = F (ρ−).

That is, the only feasible choice of F is the identity function. Thus,

(∀ρ+, ρ−, π) (1− ρ+ − ρ−) · t(π) + ρ− = (1− ρ+ − ρ−) · π + ρ−,

or
(∀ρ+, ρ−, π) (1− ρ+ − ρ−) · (t(π)− π) = 0.

Fix any ρ+, ρ− such that ρ+ + ρ− 6= 1, and we need

(∀π) t(π)− π = 0.
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In the symmetric label noise case, however, there is a broader class of functions t(π) such that the corresponding contami-
nated threshold sheds dependence on ρ+, ρ−, π.

Proposition 25. For CCN learning with symmetric label noise, the set of functions t(π) for which T (α, β, π, πcorr, t(π))
is independent of ρ+, ρ−, π is

{t : π 7→ (1− c0) · π + c0 · (1− π) | c0 ∈ [0, 1]} .

Proof. Here, we have
T (α, β, π, πcorr, t(π)) = (1− 2ρ+) · t(π) + ρ+

and πcorr = (1− 2ρ+) · π + ρ+. As before, we want there to exist some function F such that

(∀ρ+, π) (1− 2ρ+) · t(π) + ρ+ = F ((1− 2ρ+) · π + ρ+)

Plug in π = 0 as before, and we get

(∀ρ+)F (ρ+) = (1− 2t(0)) · ρ+ + t(0).

Therefore, we need

(∀ρ+, π) (1− 2ρ+) · t(π) + ρ+ = (1− 2t(0)) · ((1− 2ρ+) · π + ρ+) + t(0)

or
(∀ρ+, π) (1− 2ρ+) · (t(π)− (1− 2t(0)) · π − t(0)) = 0.

As before, pick any ρ+ 6= 1
2 and we find

(∀π) t(π) = (1− 2t(0)) · π + t(0).

Let c0 := t(0) and we get
(∀π) t(π) = (1− c0) · π + c0 · (1− π).

Clearly c0 = 0 corresponds to t(π) = π, as before. However, we can also set c0 = 1
2 and get t(π) = 1

2 , corresponding
to the optimal threshold for misclassification risk. For other choices of c0 we get less obviously interpretable, but still
immune thresholds e.g. t(π) = 2π+1

4 .

G.2. PU learning

For case-controlled PU learning, recall that α = 0, while β = π. Thus, there is no restriction per se on the clean threshold
t, which may freely depend on π and hence β. It turns out that, like the symmetric label noise setting, there are a range of
clean thresholds for which the corresponding contaminated threshold is independent of π.

Proposition 26. For case-controlled PU learning, the set of functions t(π) for which T (α, β, π, πcorr, t(π)) is independent
of π is

{t : π 7→ c0 · π | c0 ∈ R− {0}}.

Proof. In the case-controlled setting, from the definition of ηcorr, it is apparent that

T (α, β, π, πcorr, t) =
πcorr · t

πcorr · t+ (1− πcorr) · π

=
1

1 + (1−πcorr)·π
πcorr·t

.

Let T̄ (π, πcorr) = 1−πcorr

πcorr
· π
t(π) . Recall that πcorr is chosen independent of π in this setting. Thus, we simply need

(∀π, πcorr) T̄ (πcorr, π) = F (πcorr)

for some function F . Since T̄ decomposes into a product of one function of πcorr and another function of π, we clearly
need the second function to evaluate to a constant. This requires t(π) = c0 ·π for some constant c0 6= 0. Setting c0 = 1, we
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get the BER-optimal threshold t(π) = π. For other choices of the constant, we get thresholds corresponding to functionals
of the form

π · (1− c0 · π) · FPRD(f) + (1− π) · c0 · π · FNRD(f).

Recall that the censoring setting is a special case of CCN learning with asymmetric label noise. Thus, from the previous
results, we see that the only clean threshold that does not require estimating the censoring parameter is t(π) = π. As noted
in the body, a qualification is in order, which we now discuss.

G.3. When do performance measure equivalences hold in the censoring setting?

We show that for the purposes of minimising a performance measure on the clean distribution, it is possible to have a
corrupted threshold that depends on the corruption parameters, but that we can nonetheless estimate this threshold without
having to estimate the corruption parameters. We do this by operating in the censoring version of PU learning, which
simplifies a lot of the analysis. Consider

Ψ: (u, v, p) 7→ (1− y)2

p · (1− y) + (1− p) · x
, (20)

so that

ClassDΨ(f) =
(TPRD(f))2

π · TPRD(f) + (1− π) · FPRD(f)
.

The denominator is subtly different from the misclassification risk, and in fact is simply PX∼M (f(X) = 1). Lee & Liu
(2003) showed that, in the censoring setting,

ClassDΨ(f) = Class
PUcen(D,c)
Ψ (f). (21)

This is apparent since the marginal distributions of instances is unchanged in the censoring setting, so that the denominators
coincide; further, the numerators also coincide in the censoring setting, since Pcorr = P . Of interest is that the left hand
side is independent of c; this implies that the performance measure on the corrupted distribution can be evaluated without
knowledge of the corruption parameters.

Let tDΨ denote the optimal clean threshold for ClassDΨ(f). Now, we know that the optimal corrupted threshold is

tDcorr,Ψ = c · tDΨ ,

which clearly depends on the corruption parameter c. Ostensibly, then, thresholding ηcorr requires that we estimate this
parameter. But this is not true: we can simply define

tDcorr,Ψ = argmin
t∈[0,1]

Class
PUcen(D,c)
Ψ (thresh(ηcorr, t)),

where the performance measure, as we saw earlier, does not depend on the corruption parameter. While the result of the
minimisation will depend on c, performing the minimisation does not require knowledge of this parameter.

In the censoring setting, we can characterise all smooth functions Ψ that satisfy Equation 21. Observe that

ClassPUcen(D,c)(f) = Ψ

(
1− p

1− c · p
FPRD(f) +

(
1− 1− p

1− c · p

)
(1− FNRD(f)),FNRD(f), c · π

)
.

Thus, we need all solutions to the functional equation

Ψ(x, y, p) = Ψ

(
1− p

1− c · p
x+

(
1− 1− p

1− c · p

)
y, y, c · p

)
,

where we will instantiate x = FPRD(f), y = TPRD(f), p = π.
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For brevity, denote x̄ = 1−p
1−c·px+

(
1− 1−p

1−c·p

)
y. Differentiating the above with respect to c, we find

0 =
∂Ψ

∂x
(x̄, y, p) · ∂x̄

∂c
+
∂Ψ

∂p
(x̄, y, p) · p

=
∂Ψ

∂x
(x̄, y, p) · p(1− p)

(1− c · p)2
· (x− y) +

∂Ψ

∂p
(x̄, y, p) · p.

Let c = 1. Then, we need

0 =
∂Ψ

∂x
(x, y, p) · p

1− p
· (x− y) +

∂Ψ

∂p
(x, y, p) · p.

This can be shown (via MATHEMATICA) to have the solutions of the form

{Ψ: (x, y, p) 7→ f(y, (1− p) · x+ p · y) | f : R2 → R},

i.e. the only possible solutions are functions of TPRD(f) and PX∼M (f(X) = 1). This includes the performance measure
of Equation 20, as expected. The family includes the following scaled version of balanced error,

ClassDΨ(f) = (1− π) · BERD(f),

but this does not satisfy the equation as stated, due to the presence of an additional translation term. In general, we need to
solve

ClassPUcen(D,c)(f) = A(c) ·Ψ
(

1− p
1− c · p

FPRD(f) +

(
1− 1− p

1− c · p

)
(1− FNRD(f)),FNRD(f), c · π

)
+B(c),

which can again be shown (via MATHEMATICA) to have the solutions of the form

{Ψ: (x, y, p) 7→ p−A
′(1)/A(1) · f(y, (1− p) · x+ p · y)−B′(1) | f : R2 → R}.

That is, scaling by π is permitted: this is because we can always write c = πcorr

π , and use this to define a suitable A.

H. Mutually irreducible and weakly separable distributions
Scott et al. (2013) assumed that the clean distribution DP,Q,π had class-conditionals P,Q mutually irreducible in the sense
that, if they have densities p, q

inf
x∈X

p(x)

q(x)
= inf
x∈X

q(x)

p(x)
= 0.

This is equivalent to our weak separability assumption (Equation 15). By Bayes’ rule,

(∀x ∈ X)
p(x)

q(x)
=

π

1− π
· η(x)

1− η(x)
.

Thus, if π ∈ (0, 1),

inf
x∈X

p(x)

q(x)
= 0 ⇐⇒ inf

x∈X
η(x) = 0,

inf
x∈X

q(x)

p(x)
= 0 ⇐⇒ inf

x∈X
(1− η(x)) = 0 ⇐⇒ sup

x∈X
η(x) = 1.

I. Relating the ROC and class-probability estimators
For brevity, let P̄ = Pcorr, Q̄ = Qcorr, and denote the corresponding densities by p̄, q̄. Scott et al. (2013, Proposition 3)
established the following identities for the noise rates:

α =
ν∗(P̄ , Q̄) · (1− ν∗(Q̄, P̄ ))

1− ν∗(P̄ , Q̄) · ν∗(Q̄, P̄ )

β =
ν∗(Q̄, P̄ ) · (1− ν∗(P̄ , Q̄))

1− ν∗(P̄ , Q̄) · ν∗(Q̄, P̄ )
,



Learning from Corrupted Binary Labels via Class-Probability Estimation

where

ν∗(P̄ , Q̄) = inf
x∈X

p̄(x)

q̄(x)
.

Scott et al. (2013) then proposed to use plugin estimates of ν∗(P̄ , Q̄) and ν∗(Q̄, P̄ ) to estimate α, β from a finite sample.

Now, by (Blanchard et al., 2010, 6.2), we can interpret ν∗(P̄ , Q̄) as the left-derivative of the optimal ROC curve for (P̄ , Q̄)
at the right endpoint. By Krzanowski & Hand (2009, pg. 22), the derivative of this optimal ROC curve at the right endpoint
is

ν∗(P̄ , Q̄) =
1− πcorr

πcorr
·

(FPRDcorr
ηcorr )−1(1)

1− (FPRDcorr
ηcorr )−1(1)

.

Now,
FPRDcorr

ηcorr (t) = PX∼Q̄(ηcorr(X) > t),

and so (FPRDcorr
ηcorr )−1(1) = ηmin. Thus,

ν∗(P̄ , Q̄) =
1− πcorr

πcorr
· ηmin

1− ηmin
.

Similarly, for ν∗(Q̄, P̄ ), we have the same as the above except the roles of the two classes are swapped. Thus, we just swap
the base rates and work with 1− ηcorr, giving

ν∗(P̄ , Q̄) =
πcorr

1− πcorr
· 1− ηmax

ηmax
.

We then have

1− ν∗(P̄ , Q̄)) = 1− 1− πcorr

πcorr
· ηmin

1− ηmin

=
πcorr − ηmin

πcorr · (1− ηmin)
,

and

1− ν∗(P̄ , Q̄)) · ν∗(Q̄, P̄ ) = 1− ηmin · (1− ηmax)

ηmax · (1− ηmin)

=
ηmax − ηmin

ηmax · (1− ηmin)
.

Thus,

β =
ν∗(Q̄, P̄ ) · (1− ν∗(P̄ , Q̄))

1− ν∗(P̄ , Q̄) · ν∗(Q̄, P̄ )

= ν∗(Q̄, P̄ ) · πcorr − ηmin

πcorr
· ηmax

ηmax − ηmin

=
(1− ηmax) · (πcorr − ηmin)

(1− πcorr) · (ηmax − ηmin)
,

and similarly for α. Thus, the two estimators rely on the same identities for the noise rates.

Observe that to estimate the derivative of the right-hand side of the optimal ROC curve, a natural strategy is to produce this
curve first. This optimal ROC curve is produced by a scorer that is any strictly monotone transformation of ηcorr, by the
Neyman-Pearson lemma (Clémençon et al., 2008). Therefore, class-probability estimation is one way by which to use the
ROC-based estimator.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Additional Experiments for “Learning from Corrupted Binary
Labels via Class-Probability Estimation”

J. Additional experimental results
We present results assessing the quality of our noise estimates, and the performance of the resulting classifier, on a range
of UCI datasets (Table 5). For the MNIST 3v8 data, we perform PCA to reduce the feature space to D = 50 dimensions.

Dataset N D P(Y = 1)

Housing 506 13 0.0692

Car 1,728 8 0.0376

Image 2,086 18 0.5695

Segment 2,310 19 0.1429

Splice 3,190 61 0.2404

Spambase 4,601 57 0.3940

Optdigits 5,620 64 0.0986

Thyroid 7,200 21 0.0231

Pendigits 10,992 16 0.0960

MNIST 3v8 13,966 784 0.4887

Letter 20,000 16 0.0367

Covtype-Binary 38,501 54 0.0713

KDDCup98 191,779 15 0.0507

Table 5. Summary of UCI datasets. Here, N denotes the total number of samples, and D the dimensionality of the feature space. Many
of these datasets are seen to be imbalanced.

J.1. Results of noise estimation on synthetic data

It is illustrative to study the results of our noise estimator on synthetic data. Following Natarajan et al. (2013) we consider a
linearly separable 2D distribution where instances x = (x1, x2) ∈ R2 are drawn uniformly from the subset of [0, 1]2 that is
the complement of {(x1, x2) ∈ [0, 1]2 | |x1−x2| < 0.5}. Further, the class-probability function is η(x) = Jx2 > x1+0.5K.
Figure 2 illustrates a draw from this distribution.

We know that the weak (indeed, full) separability assumption holds on the synthetic distribution, so it serves as a suitable
sanity check. We consider the CCN learning setting with label flip probabilities ρ+, ρ− ∈ {0, 0.1, 0.2, 0.3, 0.4}. Recall
that in CCN learning, our estimators for the label flip probabilities are

ρ+ = 1− ηmax and ρ− = ηmin.

As previously, we consider a fixed 80% – 20% train–test split of the data. We assess the performance of our noise es-
timators across τ = 500 corruption trials. We consider draws of N training samples from this distribution, where
N ∈ {500, 1000, 2000, 3000}. For each such N , and each random corruption trial, we compute label flip probability
estimates ρ̂+, ρ̂−. For learning, we used a capped sigmoid model of the form η̂corr : x 7→ u+ v · σ(〈w, x〉+ b).

To evaluate our noise estimates, we present histograms across all τ trials, and also consider the mean squared error (MSE)
to the ground truth values. For the histograms, we would like to observe a unimodal distribution that is not badly biased,
with concentration about the mode. Our use of MSE is simply in keeping with prior work on evaluating estimates of
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Figure 2. Synthetic 2D dataset. Blue (red) coloured points indicate positive (negative) examples.
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Figure 3. MSE in estimates of ρ+ (L) and ρ− (R), synthetic dataset.
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Figure 4. Histogram of estimates for ρ+ (L) and ρ− (R) over τ = 500 trials, synthetic dataset with N = 3000 examples.

corruption parameters, e.g. du Plessis & Sugiyama (2014) in the PU learning setting.

Figure 3 summarises the MSE in the estimates ρ̂+, ρ̂− as the number of training samples N varies, and for various choices
of ground-truth ρ+, ρ−. We find that for all choices of ground-truth ρ+, ρ−, the MSE decreases given more samples. We
also find that for higher noise rates, there is higher MSE given fewer number of samples. In all cases the MSE of the
estimates is low, indicating accurate recovery of the noise rates. Figure 4 shows the histogram of estimates of ρ+, ρ− for
the setting ρ+ = ρ− = 0.1 and N = 3000. We see that the distribution is unimodal, with concentration about the mode.
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J.2. Violin plots of noise estimates

We present violin plots of the estimates ρ̂+, ρ̂− for all datasets and symmetric ground-truth in Figures 5 – 17. We see that
the trend for the two quantities is largely similar. Generally, poor estimation can be attributed to either the dataset having
too few training examples (e.g. Car), and (or) not satisfying the weak separability assumption, as evidenced by a bias in
the estimates even in the noise-free case (e.g. Letter).

With very high noise rate (ρ+ = ρ− = 0.49), generally the bias in the estimate is low. This can be attributed to the fact
that in such regimes, it is difficult to learn a discriminative classifier except with a very large number of samples.

We find that on some datasets, while there is concentration of the estimates close to the expected value, there are occa-
sional outliers (e.g. Splice). These can potentially be smoothened out by some form of training set averaging, such as the
bootstrap; we plan to explore this in future work.
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Figure 5. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on housing. (Note the different axes on the plots.)
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Figure 6. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on car. (Note the different axes on the plots.)
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Figure 7. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on image. (Note the different axes on the plots.)

0 0.1 0.2 0.3 0.4 0.49

−0.3

−0.2

−0.1

0

0.1

Ground−truth noise

B
ia

s
 o

f 
E

s
ti
m

a
te

segment

 

 

Mean
Median

0 0.1 0.2 0.3 0.4 0.49
−0.2

−0.15

−0.1

−0.05

0

Ground−truth noise

B
ia

s
 o

f 
E

s
ti
m

a
te

segment

 

 

Mean
Median

Figure 8. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on segment. (Note the different axes on the plots.)
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Figure 9. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on splice. (Note the different axes on the plots.)
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Figure 10. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on spambase. (Note the different axes on the plots.)
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Figure 11. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on optdigits. (Note the different axes on the plots.)
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Figure 12. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on thyroid. (Note the different axes on the plots.)
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Figure 13. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on mnist3v8. (Note the different axes on the plots.)
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Figure 14. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on pendigits. (Note the different axes on the plots.)
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Figure 15. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on letter. (Note the different axes on the plots.)
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Figure 16. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on covtype-binary. (Note the different axes on the plots.)
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Figure 17. Violin plots of bias in estimate ρ̂+, ρ̂− over τ = 100 trials on kddcup98. (Note the different axes on the plots.)
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J.3. Classification performance

We present results showing clean test set AUC, BER, and misclassification error for a range of noise settings in Tables 7
– 16. (Recall from §7.3 that ERRmax denotes the misclassification error of the classification formed by thresholding based
on the estimated noise rates, while ERRoracle is that of the classifier formed by thresholding based on the true noise rates.)
We find that generally, even with inexact estimates of ρ+, ρ−, we can attain reasonable classification performance.

Recall that the immunity of AUC and BER does not rely on the weak separability assumption. Therefore, even with
imperfect performance in the noise-free case, we expect only mild degradation in general. Nonetheless, on some datasets
(e.g. housing, car), there is significant degradation in the AUC and BER with moderate to high noise rates. These
are generally accompanied by a corresponding degradation in performance of the oracle classifier. This again indicates
that there is difficulty in accurately estimating the noisy class-conditional. One explanation for these results is that the
required sample size at moderate noise rates is not met by some of the smaller datasets. By contrast, on larger datasets, like
kddcup98, we observe robustness even at high noise rates.
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Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 14.48 ± 0.00 10.94 ± 0.00 19.80 ± 0.00 4.95 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 26.23 ± 0.71 29.99 ± 0.79 19.25 ± 0.96 5.11 ± 0.06

(ρ+, ρ−) = (0.0, 0.2) 33.91 ± 1.28 37.94 ± 1.04 37.30 ± 1.96 4.95 ± 0.00

(ρ+, ρ−) = (0.0, 0.3) 38.56 ± 1.45 43.84 ± 0.95 41.50 ± 1.84 4.96 ± 0.01

(ρ+, ρ−) = (0.0, 0.4) 40.30 ± 1.50 44.59 ± 0.84 49.83 ± 1.79 4.95 ± 0.00

(ρ+, ρ−) = (0.0, 0.49) 42.85 ± 1.55 47.14 ± 0.86 55.84 ± 1.81 5.00 ± 0.04

(ρ+, ρ−) = (0.1, 0.0) 17.04 ± 0.34 18.69 ± 0.70 16.39 ± 0.25 4.95 ± 0.00

(ρ+, ρ−) = (0.1, 0.1) 29.84 ± 1.20 33.45 ± 1.06 23.99 ± 1.63 5.10 ± 0.06

(ρ+, ρ−) = (0.1, 0.2) 36.89 ± 1.35 40.40 ± 1.04 40.71 ± 2.02 4.95 ± 0.00

(ρ+, ρ−) = (0.1, 0.3) 39.51 ± 1.40 44.74 ± 0.93 43.53 ± 1.85 5.15 ± 0.17

(ρ+, ρ−) = (0.1, 0.4) 41.67 ± 1.53 46.56 ± 0.73 51.38 ± 1.70 4.95 ± 0.00

(ρ+, ρ−) = (0.1, 0.49) 44.55 ± 1.57 47.86 ± 0.69 59.59 ± 1.86 5.07 ± 0.07

(ρ+, ρ−) = (0.2, 0.0) 18.88 ± 0.53 21.46 ± 0.76 15.99 ± 0.30 4.95 ± 0.00

(ρ+, ρ−) = (0.2, 0.1) 33.84 ± 1.32 36.71 ± 1.07 32.22 ± 1.99 5.16 ± 0.07

(ρ+, ρ−) = (0.2, 0.2) 39.50 ± 1.44 43.36 ± 1.01 43.57 ± 1.99 4.95 ± 0.00

(ρ+, ρ−) = (0.2, 0.3) 44.39 ± 1.48 46.37 ± 0.82 49.42 ± 1.96 4.97 ± 0.02

(ρ+, ρ−) = (0.2, 0.4) 44.06 ± 1.57 47.86 ± 0.76 54.72 ± 1.75 4.95 ± 0.00

(ρ+, ρ−) = (0.2, 0.49) 46.71 ± 1.52 48.75 ± 0.73 53.67 ± 1.92 5.29 ± 0.18

(ρ+, ρ−) = (0.3, 0.0) 21.09 ± 0.70 23.76 ± 0.93 16.59 ± 0.62 4.95 ± 0.00

(ρ+, ρ−) = (0.3, 0.1) 37.38 ± 1.36 39.89 ± 1.10 35.83 ± 2.08 5.14 ± 0.07

(ρ+, ρ−) = (0.3, 0.2) 43.15 ± 1.40 45.82 ± 0.90 49.48 ± 1.85 4.95 ± 0.00

(ρ+, ρ−) = (0.3, 0.3) 45.75 ± 1.41 48.52 ± 0.67 50.66 ± 1.91 4.95 ± 0.00

(ρ+, ρ−) = (0.3, 0.4) 44.14 ± 1.54 48.74 ± 0.60 51.22 ± 1.95 5.19 ± 0.14

(ρ+, ρ−) = (0.3, 0.49) 47.16 ± 1.51 49.46 ± 0.70 58.56 ± 1.77 6.05 ± 0.46

(ρ+, ρ−) = (0.4, 0.0) 23.01 ± 0.93 27.63 ± 1.01 17.58 ± 0.92 4.96 ± 0.01

(ρ+, ρ−) = (0.4, 0.1) 40.74 ± 1.41 43.32 ± 1.01 42.83 ± 2.19 5.14 ± 0.08

(ρ+, ρ−) = (0.4, 0.2) 45.08 ± 1.52 47.03 ± 0.82 47.74 ± 2.00 4.95 ± 0.00

(ρ+, ρ−) = (0.4, 0.3) 48.73 ± 1.53 49.79 ± 0.21 52.50 ± 1.92 4.95 ± 0.00

(ρ+, ρ−) = (0.4, 0.4) 46.95 ± 1.51 50.62 ± 0.28 55.10 ± 1.83 4.95 ± 0.00

(ρ+, ρ−) = (0.4, 0.49) 48.24 ± 1.63 49.45 ± 0.63 53.63 ± 1.82 11.78 ± 1.90

(ρ+, ρ−) = (0.49, 0.0) 25.44 ± 1.10 29.94 ± 0.99 18.77 ± 1.29 5.15 ± 0.10

(ρ+, ρ−) = (0.49, 0.1) 42.48 ± 1.47 44.39 ± 0.94 42.88 ± 2.14 5.04 ± 0.04

(ρ+, ρ−) = (0.49, 0.2) 47.16 ± 1.45 48.31 ± 0.85 48.43 ± 1.91 4.95 ± 0.00

(ρ+, ρ−) = (0.49, 0.3) 49.74 ± 1.55 49.79 ± 0.21 51.80 ± 1.93 4.95 ± 0.00

(ρ+, ρ−) = (0.49, 0.4) 46.19 ± 1.53 50.58 ± 0.37 52.74 ± 2.07 7.73 ± 1.40

(ρ+, ρ−) = (0.49, 0.49) 51.74 ± 1.60 50.24 ± 0.27 54.41 ± 1.97 44.92 ± 4.46

Table 6. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on housing injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.
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Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.42 ± 0.00 0.61 ± 0.00 1.16 ± 0.00 1.16 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.87 ± 0.24 8.73 ± 0.26 3.34 ± 0.60 2.57 ± 0.08

(ρ+, ρ−) = (0.0, 0.2) 0.93 ± 0.27 10.57 ± 0.27 3.28 ± 0.84 2.28 ± 0.08

(ρ+, ρ−) = (0.0, 0.3) 4.22 ± 0.87 14.72 ± 0.75 13.87 ± 2.69 2.84 ± 0.13

(ρ+, ρ−) = (0.0, 0.4) 11.38 ± 1.39 23.30 ± 1.34 28.46 ± 2.96 3.98 ± 0.15

(ρ+, ρ−) = (0.0, 0.49) 16.38 ± 1.11 32.02 ± 1.35 40.53 ± 1.91 4.97 ± 0.08

(ρ+, ρ−) = (0.1, 0.0) 0.84 ± 0.16 2.80 ± 0.32 1.90 ± 0.05 1.81 ± 0.04

(ρ+, ρ−) = (0.1, 0.1) 1.17 ± 0.29 9.65 ± 0.33 4.35 ± 0.91 2.74 ± 0.08

(ρ+, ρ−) = (0.1, 0.2) 2.48 ± 0.57 12.81 ± 0.69 8.71 ± 1.99 2.74 ± 0.11

(ρ+, ρ−) = (0.1, 0.3) 8.58 ± 1.05 21.56 ± 1.21 24.95 ± 2.67 4.01 ± 0.14

(ρ+, ρ−) = (0.1, 0.4) 18.32 ± 1.50 31.75 ± 1.36 39.19 ± 2.15 5.04 ± 0.07

(ρ+, ρ−) = (0.1, 0.49) 22.32 ± 1.33 37.29 ± 1.24 44.11 ± 1.07 5.22 ± 0.00

(ρ+, ρ−) = (0.2, 0.0) 1.26 ± 0.19 3.82 ± 0.39 2.11 ± 0.07 1.97 ± 0.06

(ρ+, ρ−) = (0.2, 0.1) 1.75 ± 0.35 11.14 ± 0.42 6.12 ± 1.28 2.99 ± 0.10

(ρ+, ρ−) = (0.2, 0.2) 5.68 ± 0.78 20.04 ± 1.29 19.48 ± 2.33 3.76 ± 0.14

(ρ+, ρ−) = (0.2, 0.3) 19.26 ± 1.97 31.01 ± 1.43 36.36 ± 2.12 4.82 ± 0.09

(ρ+, ρ−) = (0.2, 0.4) 20.53 ± 1.39 37.52 ± 1.34 43.18 ± 1.47 5.18 ± 0.05

(ρ+, ρ−) = (0.2, 0.49) 26.11 ± 1.37 42.37 ± 1.12 47.59 ± 1.00 5.22 ± 0.00

(ρ+, ρ−) = (0.3, 0.0) 2.15 ± 0.27 5.00 ± 0.37 2.09 ± 0.07 1.90 ± 0.05

(ρ+, ρ−) = (0.3, 0.1) 4.65 ± 0.62 14.78 ± 0.64 13.23 ± 1.72 3.82 ± 0.13

(ρ+, ρ−) = (0.3, 0.2) 13.72 ± 1.73 29.87 ± 1.63 30.45 ± 2.13 4.61 ± 0.11

(ρ+, ρ−) = (0.3, 0.3) 23.36 ± 1.64 36.79 ± 1.43 43.75 ± 1.70 5.19 ± 0.03

(ρ+, ρ−) = (0.3, 0.4) 31.20 ± 1.83 41.84 ± 1.13 46.15 ± 1.15 5.22 ± 0.01

(ρ+, ρ−) = (0.3, 0.49) 33.83 ± 1.53 44.41 ± 0.99 46.68 ± 0.88 5.22 ± 0.00

(ρ+, ρ−) = (0.4, 0.0) 2.93 ± 0.33 6.21 ± 0.55 2.49 ± 0.08 2.21 ± 0.07

(ρ+, ρ−) = (0.4, 0.1) 8.63 ± 1.29 22.43 ± 1.38 20.05 ± 1.82 4.59 ± 0.10

(ρ+, ρ−) = (0.4, 0.2) 20.44 ± 1.77 37.13 ± 1.49 38.81 ± 1.71 5.15 ± 0.04

(ρ+, ρ−) = (0.4, 0.3) 27.42 ± 1.68 40.70 ± 1.29 43.96 ± 1.36 5.26 ± 0.03

(ρ+, ρ−) = (0.4, 0.4) 34.88 ± 1.82 43.90 ± 1.02 47.76 ± 1.02 5.42 ± 0.08

(ρ+, ρ−) = (0.4, 0.49) 38.73 ± 1.78 46.73 ± 0.84 48.86 ± 0.85 5.28 ± 0.04

(ρ+, ρ−) = (0.49, 0.0) 2.89 ± 0.40 5.41 ± 0.56 3.16 ± 0.10 2.76 ± 0.09

(ρ+, ρ−) = (0.49, 0.1) 15.13 ± 1.81 28.55 ± 1.43 29.03 ± 1.58 5.09 ± 0.06

(ρ+, ρ−) = (0.49, 0.2) 26.36 ± 1.75 40.94 ± 1.30 42.40 ± 1.56 5.36 ± 0.07

(ρ+, ρ−) = (0.49, 0.3) 38.35 ± 2.04 44.18 ± 1.09 47.99 ± 1.42 5.44 ± 0.11

(ρ+, ρ−) = (0.49, 0.4) 40.95 ± 1.71 47.22 ± 0.82 49.22 ± 0.92 6.42 ± 0.36

(ρ+, ρ−) = (0.49, 0.49) 45.08 ± 1.84 48.82 ± 0.62 48.47 ± 0.87 35.54 ± 4.13

Table 7. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on car injected with random label noise

τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassification
errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 11.47 ± 0.00 14.98 ± 0.00 13.67 ± 0.00 13.91 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 11.60 ± 0.01 14.56 ± 0.03 13.87 ± 0.04 13.94 ± 0.03

(ρ+, ρ−) = (0.0, 0.2) 11.62 ± 0.02 14.58 ± 0.03 13.87 ± 0.04 13.89 ± 0.04

(ρ+, ρ−) = (0.0, 0.3) 11.67 ± 0.03 14.55 ± 0.04 13.84 ± 0.05 13.84 ± 0.05

(ρ+, ρ−) = (0.0, 0.4) 11.71 ± 0.03 14.69 ± 0.05 13.98 ± 0.06 13.95 ± 0.05

(ρ+, ρ−) = (0.0, 0.49) 11.86 ± 0.07 14.82 ± 0.09 14.24 ± 0.08 14.18 ± 0.08

(ρ+, ρ−) = (0.1, 0.0) 11.55 ± 0.01 14.64 ± 0.03 13.81 ± 0.03 13.85 ± 0.03

(ρ+, ρ−) = (0.1, 0.1) 11.64 ± 0.02 14.61 ± 0.03 13.93 ± 0.04 13.97 ± 0.05

(ρ+, ρ−) = (0.1, 0.2) 11.68 ± 0.04 14.61 ± 0.05 14.02 ± 0.06 13.93 ± 0.06

(ρ+, ρ−) = (0.1, 0.3) 11.93 ± 0.05 14.89 ± 0.07 14.30 ± 0.07 14.21 ± 0.07

(ρ+, ρ−) = (0.1, 0.4) 12.12 ± 0.07 15.13 ± 0.09 14.65 ± 0.10 14.56 ± 0.09

(ρ+, ρ−) = (0.1, 0.49) 12.70 ± 0.14 16.34 ± 0.23 15.92 ± 0.25 15.63 ± 0.21

(ρ+, ρ−) = (0.2, 0.0) 11.62 ± 0.02 14.66 ± 0.03 13.92 ± 0.05 13.97 ± 0.04

(ρ+, ρ−) = (0.2, 0.1) 11.75 ± 0.05 14.65 ± 0.05 14.06 ± 0.06 13.98 ± 0.06

(ρ+, ρ−) = (0.2, 0.2) 11.91 ± 0.05 14.82 ± 0.08 14.25 ± 0.08 14.18 ± 0.08

(ρ+, ρ−) = (0.2, 0.3) 12.13 ± 0.07 15.14 ± 0.09 14.83 ± 0.09 14.74 ± 0.09

(ρ+, ρ−) = (0.2, 0.4) 12.95 ± 0.15 16.80 ± 0.25 16.66 ± 0.23 16.32 ± 0.22

(ρ+, ρ−) = (0.2, 0.49) 14.45 ± 0.24 19.38 ± 0.35 19.11 ± 0.34 18.81 ± 0.33

(ρ+, ρ−) = (0.3, 0.0) 11.68 ± 0.04 14.62 ± 0.05 13.96 ± 0.05 14.02 ± 0.05

(ρ+, ρ−) = (0.3, 0.1) 12.03 ± 0.10 14.88 ± 0.09 14.24 ± 0.10 14.23 ± 0.10

(ρ+, ρ−) = (0.3, 0.2) 12.45 ± 0.12 15.43 ± 0.12 14.89 ± 0.12 14.84 ± 0.13

(ρ+, ρ−) = (0.3, 0.3) 13.09 ± 0.15 17.07 ± 0.27 16.51 ± 0.27 16.27 ± 0.23

(ρ+, ρ−) = (0.3, 0.4) 15.23 ± 0.29 20.64 ± 0.43 20.40 ± 0.52 19.70 ± 0.40

(ρ+, ρ−) = (0.3, 0.49) 19.30 ± 0.41 26.27 ± 0.50 26.68 ± 0.68 25.44 ± 0.43

(ρ+, ρ−) = (0.4, 0.0) 11.76 ± 0.04 14.71 ± 0.07 14.06 ± 0.07 14.03 ± 0.07

(ρ+, ρ−) = (0.4, 0.1) 12.27 ± 0.09 15.22 ± 0.12 14.59 ± 0.11 14.57 ± 0.11

(ρ+, ρ−) = (0.4, 0.2) 12.95 ± 0.13 16.73 ± 0.22 16.12 ± 0.21 15.94 ± 0.18

(ρ+, ρ−) = (0.4, 0.3) 14.86 ± 0.29 20.05 ± 0.42 19.57 ± 0.46 19.13 ± 0.38

(ρ+, ρ−) = (0.4, 0.4) 20.28 ± 0.48 27.47 ± 0.57 27.90 ± 0.71 26.62 ± 0.57

(ρ+, ρ−) = (0.4, 0.49) 29.96 ± 0.78 38.96 ± 0.86 38.87 ± 0.77 37.84 ± 0.77

(ρ+, ρ−) = (0.49, 0.0) 11.94 ± 0.09 14.96 ± 0.10 14.25 ± 0.12 14.26 ± 0.11

(ρ+, ρ−) = (0.49, 0.1) 12.73 ± 0.12 16.10 ± 0.18 15.50 ± 0.22 15.38 ± 0.17

(ρ+, ρ−) = (0.49, 0.2) 14.30 ± 0.19 19.73 ± 0.36 19.17 ± 0.43 18.58 ± 0.29

(ρ+, ρ−) = (0.49, 0.3) 19.62 ± 0.51 26.42 ± 0.51 28.28 ± 0.84 25.41 ± 0.53

(ρ+, ρ−) = (0.49, 0.4) 30.28 ± 0.94 38.17 ± 0.85 38.36 ± 0.87 37.49 ± 0.79

(ρ+, ρ−) = (0.49, 0.49) 43.80 ± 1.37 47.79 ± 0.58 47.18 ± 0.77 47.59 ± 0.56

Table 8. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on image injected with random label

noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassifica-
tion errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.02 ± 0.01 0.38 ± 0.04 0.18 ± 0.03 0.18 ± 0.03

(ρ+, ρ−) = (0.0, 0.2) 0.01 ± 0.01 0.71 ± 0.07 0.23 ± 0.04 0.22 ± 0.04

(ρ+, ρ−) = (0.0, 0.3) 0.01 ± 0.01 1.08 ± 0.07 0.23 ± 0.04 0.22 ± 0.04

(ρ+, ρ−) = (0.0, 0.4) 0.02 ± 0.01 1.56 ± 0.10 0.39 ± 0.08 0.39 ± 0.08

(ρ+, ρ−) = (0.0, 0.49) 0.04 ± 0.01 2.16 ± 0.15 0.54 ± 0.08 0.50 ± 0.08

(ρ+, ρ−) = (0.1, 0.0) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

(ρ+, ρ−) = (0.1, 0.1) 0.01 ± 0.00 0.46 ± 0.04 0.19 ± 0.03 0.19 ± 0.03

(ρ+, ρ−) = (0.1, 0.2) 0.02 ± 0.01 0.90 ± 0.08 0.31 ± 0.05 0.30 ± 0.05

(ρ+, ρ−) = (0.1, 0.3) 0.00 ± 0.00 1.51 ± 0.10 0.16 ± 0.04 0.16 ± 0.04

(ρ+, ρ−) = (0.1, 0.4) 0.03 ± 0.01 2.31 ± 0.16 0.47 ± 0.07 0.45 ± 0.07

(ρ+, ρ−) = (0.1, 0.49) 0.05 ± 0.01 3.15 ± 0.20 1.03 ± 0.26 0.66 ± 0.11

(ρ+, ρ−) = (0.2, 0.0) 0.00 ± 0.00 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

(ρ+, ρ−) = (0.2, 0.1) 0.00 ± 0.00 0.51 ± 0.05 0.09 ± 0.02 0.10 ± 0.02

(ρ+, ρ−) = (0.2, 0.2) 0.02 ± 0.02 1.00 ± 0.08 0.18 ± 0.05 0.17 ± 0.05

(ρ+, ρ−) = (0.2, 0.3) 0.03 ± 0.01 2.00 ± 0.14 0.23 ± 0.05 0.23 ± 0.05

(ρ+, ρ−) = (0.2, 0.4) 0.03 ± 0.01 3.24 ± 0.20 0.31 ± 0.06 0.27 ± 0.06

(ρ+, ρ−) = (0.2, 0.49) 0.13 ± 0.04 5.00 ± 0.28 1.47 ± 0.25 0.94 ± 0.21

(ρ+, ρ−) = (0.3, 0.0) 0.00 ± 0.00 0.06 ± 0.02 0.06 ± 0.01 0.06 ± 0.01

(ρ+, ρ−) = (0.3, 0.1) 0.02 ± 0.01 0.60 ± 0.06 0.20 ± 0.04 0.19 ± 0.04

(ρ+, ρ−) = (0.3, 0.2) 0.03 ± 0.01 1.59 ± 0.11 0.45 ± 0.09 0.43 ± 0.08

(ρ+, ρ−) = (0.3, 0.3) 0.05 ± 0.02 2.85 ± 0.18 0.49 ± 0.09 0.45 ± 0.09

(ρ+, ρ−) = (0.3, 0.4) 0.03 ± 0.01 5.09 ± 0.27 0.62 ± 0.12 0.31 ± 0.06

(ρ+, ρ−) = (0.3, 0.49) 0.03 ± 0.01 8.41 ± 0.37 3.10 ± 0.49 1.45 ± 0.32

(ρ+, ρ−) = (0.4, 0.0) 0.01 ± 0.01 0.10 ± 0.03 0.08 ± 0.02 0.07 ± 0.02

(ρ+, ρ−) = (0.4, 0.1) 0.03 ± 0.02 0.78 ± 0.08 0.26 ± 0.07 0.24 ± 0.07

(ρ+, ρ−) = (0.4, 0.2) 0.02 ± 0.01 1.98 ± 0.15 0.23 ± 0.06 0.20 ± 0.06

(ρ+, ρ−) = (0.4, 0.3) 0.02 ± 0.01 4.24 ± 0.24 0.46 ± 0.12 0.26 ± 0.07

(ρ+, ρ−) = (0.4, 0.4) 0.07 ± 0.02 8.21 ± 0.39 3.19 ± 0.83 1.53 ± 0.33

(ρ+, ρ−) = (0.4, 0.49) 1.28 ± 0.55 16.72 ± 1.04 18.16 ± 1.87 6.80 ± 0.68

(ρ+, ρ−) = (0.49, 0.0) 0.02 ± 0.01 0.19 ± 0.06 0.17 ± 0.06 0.11 ± 0.02

(ρ+, ρ−) = (0.49, 0.1) 0.02 ± 0.01 1.00 ± 0.09 0.24 ± 0.07 0.18 ± 0.05

(ρ+, ρ−) = (0.49, 0.2) 0.05 ± 0.02 2.98 ± 0.19 0.55 ± 0.17 0.32 ± 0.08

(ρ+, ρ−) = (0.49, 0.3) 0.07 ± 0.04 6.71 ± 0.33 1.48 ± 0.43 0.48 ± 0.11

(ρ+, ρ−) = (0.49, 0.4) 5.27 ± 1.30 20.19 ± 1.51 18.16 ± 1.75 7.31 ± 0.63

(ρ+, ρ−) = (0.49, 0.49) 32.23 ± 3.17 42.82 ± 1.39 44.23 ± 1.91 31.76 ± 2.86

Table 9. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on segment injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.28 ± 0.00 3.40 ± 0.00 2.35 ± 0.00 2.35 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.76 ± 0.03 4.20 ± 0.07 3.27 ± 0.05 3.27 ± 0.05

(ρ+, ρ−) = (0.0, 0.2) 1.22 ± 0.06 4.70 ± 0.10 4.23 ± 0.09 4.23 ± 0.09

(ρ+, ρ−) = (0.0, 0.3) 1.32 ± 0.06 6.12 ± 0.12 5.04 ± 0.09 4.62 ± 0.11

(ρ+, ρ−) = (0.0, 0.4) 1.10 ± 0.04 8.85 ± 0.11 6.67 ± 0.13 4.50 ± 0.09

(ρ+, ρ−) = (0.0, 0.49) 1.46 ± 0.04 10.76 ± 0.12 9.31 ± 0.17 5.38 ± 0.10

(ρ+, ρ−) = (0.1, 0.0) 0.55 ± 0.03 4.07 ± 0.08 2.83 ± 0.06 2.79 ± 0.05

(ρ+, ρ−) = (0.1, 0.1) 1.12 ± 0.04 4.84 ± 0.09 3.75 ± 0.07 3.75 ± 0.07

(ρ+, ρ−) = (0.1, 0.2) 1.70 ± 0.07 5.79 ± 0.11 5.00 ± 0.11 4.99 ± 0.11

(ρ+, ρ−) = (0.1, 0.3) 1.48 ± 0.06 7.96 ± 0.11 6.04 ± 0.11 5.08 ± 0.10

(ρ+, ρ−) = (0.1, 0.4) 2.01 ± 0.07 10.72 ± 0.12 9.08 ± 0.18 6.19 ± 0.11

(ρ+, ρ−) = (0.1, 0.49) 3.06 ± 0.09 13.35 ± 0.14 13.53 ± 0.24 7.92 ± 0.13

(ρ+, ρ−) = (0.2, 0.0) 0.75 ± 0.03 4.95 ± 0.12 3.54 ± 0.11 3.36 ± 0.06

(ρ+, ρ−) = (0.2, 0.1) 1.60 ± 0.06 6.05 ± 0.12 4.59 ± 0.09 4.53 ± 0.08

(ρ+, ρ−) = (0.2, 0.2) 1.79 ± 0.10 7.02 ± 0.10 5.39 ± 0.16 5.56 ± 0.15

(ρ+, ρ−) = (0.2, 0.3) 2.17 ± 0.07 9.93 ± 0.14 7.75 ± 0.13 6.63 ± 0.11

(ρ+, ρ−) = (0.2, 0.4) 3.64 ± 0.13 13.29 ± 0.17 12.73 ± 0.26 9.63 ± 0.37

(ρ+, ρ−) = (0.2, 0.49) 5.09 ± 0.24 16.01 ± 0.23 18.17 ± 0.40 15.70 ± 0.59

(ρ+, ρ−) = (0.3, 0.0) 1.07 ± 0.05 5.99 ± 0.16 4.69 ± 0.22 4.09 ± 0.08

(ρ+, ρ−) = (0.3, 0.1) 1.68 ± 0.08 6.54 ± 0.12 6.37 ± 0.26 5.53 ± 0.12

(ρ+, ρ−) = (0.3, 0.2) 1.95 ± 0.06 8.75 ± 0.13 6.55 ± 0.13 6.71 ± 0.13

(ρ+, ρ−) = (0.3, 0.3) 3.68 ± 0.11 12.25 ± 0.16 10.87 ± 0.20 8.79 ± 0.16

(ρ+, ρ−) = (0.3, 0.4) 5.62 ± 0.29 16.20 ± 0.44 16.83 ± 0.39 16.14 ± 0.58

(ρ+, ρ−) = (0.3, 0.49) 12.81 ± 1.37 39.21 ± 1.43 25.62 ± 1.16 22.45 ± 0.34

(ρ+, ρ−) = (0.4, 0.0) 1.34 ± 0.08 6.67 ± 0.27 8.23 ± 0.52 5.64 ± 0.17

(ρ+, ρ−) = (0.4, 0.1) 1.59 ± 0.07 7.03 ± 0.13 8.52 ± 0.32 7.20 ± 0.14

(ρ+, ρ−) = (0.4, 0.2) 3.14 ± 0.09 10.65 ± 0.15 8.61 ± 0.15 8.70 ± 0.16

(ρ+, ρ−) = (0.4, 0.3) 6.21 ± 0.25 16.21 ± 0.55 14.99 ± 0.30 13.77 ± 0.45

(ρ+, ρ−) = (0.4, 0.4) 15.67 ± 1.52 41.24 ± 1.37 26.08 ± 1.17 22.87 ± 0.31

(ρ+, ρ−) = (0.4, 0.49) 37.37 ± 1.94 50.00 ± 0.00 42.22 ± 1.20 24.45 ± 0.00

(ρ+, ρ−) = (0.49, 0.0) 0.66 ± 0.07 4.26 ± 0.23 15.80 ± 0.40 8.84 ± 0.16

(ρ+, ρ−) = (0.49, 0.1) 2.05 ± 0.06 7.95 ± 0.13 9.68 ± 0.32 8.56 ± 0.17

(ρ+, ρ−) = (0.49, 0.2) 5.19 ± 0.15 13.49 ± 0.19 11.67 ± 0.22 11.13 ± 0.21

(ρ+, ρ−) = (0.49, 0.3) 12.57 ± 0.96 34.95 ± 1.54 23.21 ± 0.88 20.63 ± 0.44

(ρ+, ρ−) = (0.49, 0.4) 28.59 ± 1.74 49.82 ± 0.18 38.30 ± 1.20 24.48 ± 0.03

(ρ+, ρ−) = (0.49, 0.49) 48.98 ± 1.61 50.00 ± 0.00 50.33 ± 1.05 41.31 ± 2.41

Table 10. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on splice injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 2.49 ± 0.00 6.93 ± 0.00 6.52 ± 0.00 6.52 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 2.71 ± 0.02 7.06 ± 0.03 6.87 ± 0.03 6.84 ± 0.03

(ρ+, ρ−) = (0.0, 0.2) 2.78 ± 0.03 7.30 ± 0.04 7.12 ± 0.04 7.07 ± 0.04

(ρ+, ρ−) = (0.0, 0.3) 2.94 ± 0.03 7.58 ± 0.05 7.40 ± 0.05 7.33 ± 0.04

(ρ+, ρ−) = (0.0, 0.4) 3.14 ± 0.04 8.01 ± 0.06 7.74 ± 0.06 7.63 ± 0.06

(ρ+, ρ−) = (0.0, 0.49) 3.35 ± 0.04 8.56 ± 0.08 8.37 ± 0.08 8.15 ± 0.07

(ρ+, ρ−) = (0.1, 0.0) 2.67 ± 0.02 7.10 ± 0.03 6.88 ± 0.03 6.89 ± 0.03

(ρ+, ρ−) = (0.1, 0.1) 2.82 ± 0.03 7.35 ± 0.04 7.21 ± 0.04 7.19 ± 0.04

(ρ+, ρ−) = (0.1, 0.2) 3.01 ± 0.03 7.66 ± 0.05 7.51 ± 0.05 7.48 ± 0.05

(ρ+, ρ−) = (0.1, 0.3) 3.31 ± 0.04 8.23 ± 0.06 7.97 ± 0.06 7.95 ± 0.06

(ρ+, ρ−) = (0.1, 0.4) 3.78 ± 0.06 8.90 ± 0.08 8.69 ± 0.08 8.56 ± 0.08

(ρ+, ρ−) = (0.1, 0.49) 4.38 ± 0.07 9.92 ± 0.11 9.87 ± 0.12 9.69 ± 0.11

(ρ+, ρ−) = (0.2, 0.0) 2.74 ± 0.02 7.19 ± 0.03 7.06 ± 0.04 7.04 ± 0.03

(ρ+, ρ−) = (0.2, 0.1) 2.97 ± 0.04 7.53 ± 0.05 7.38 ± 0.05 7.38 ± 0.05

(ρ+, ρ−) = (0.2, 0.2) 3.34 ± 0.05 8.20 ± 0.07 8.09 ± 0.07 8.07 ± 0.07

(ρ+, ρ−) = (0.2, 0.3) 4.00 ± 0.07 8.99 ± 0.08 9.02 ± 0.13 8.93 ± 0.09

(ρ+, ρ−) = (0.2, 0.4) 4.91 ± 0.09 10.52 ± 0.13 10.82 ± 0.31 10.26 ± 0.12

(ρ+, ρ−) = (0.2, 0.49) 6.51 ± 0.13 12.93 ± 0.18 15.40 ± 0.73 12.55 ± 0.16

(ρ+, ρ−) = (0.3, 0.0) 2.87 ± 0.04 7.29 ± 0.04 7.19 ± 0.04 7.20 ± 0.04

(ρ+, ρ−) = (0.3, 0.1) 3.21 ± 0.05 7.77 ± 0.07 7.77 ± 0.07 7.78 ± 0.07

(ρ+, ρ−) = (0.3, 0.2) 3.81 ± 0.07 8.91 ± 0.10 8.77 ± 0.11 8.69 ± 0.09

(ρ+, ρ−) = (0.3, 0.3) 5.01 ± 0.10 10.65 ± 0.13 10.90 ± 0.25 10.40 ± 0.12

(ρ+, ρ−) = (0.3, 0.4) 6.95 ± 0.12 13.41 ± 0.17 16.67 ± 0.92 13.11 ± 0.17

(ρ+, ρ−) = (0.3, 0.49) 9.14 ± 0.37 17.22 ± 0.69 19.29 ± 0.67 17.01 ± 0.51

(ρ+, ρ−) = (0.4, 0.0) 2.94 ± 0.03 7.47 ± 0.05 7.45 ± 0.05 7.41 ± 0.05

(ρ+, ρ−) = (0.4, 0.1) 3.62 ± 0.06 8.49 ± 0.09 8.41 ± 0.09 8.41 ± 0.08

(ρ+, ρ−) = (0.4, 0.2) 4.73 ± 0.10 10.24 ± 0.13 10.28 ± 0.19 10.09 ± 0.12

(ρ+, ρ−) = (0.4, 0.3) 6.86 ± 0.12 13.18 ± 0.16 15.41 ± 0.57 13.30 ± 0.17

(ρ+, ρ−) = (0.4, 0.4) 9.22 ± 0.23 17.89 ± 0.74 21.09 ± 0.77 18.49 ± 0.66

(ρ+, ρ−) = (0.4, 0.49) 14.90 ± 1.08 23.67 ± 1.06 27.99 ± 1.07 24.07 ± 0.76

(ρ+, ρ−) = (0.49, 0.0) 3.18 ± 0.04 7.74 ± 0.06 7.84 ± 0.06 7.79 ± 0.06

(ρ+, ρ−) = (0.49, 0.1) 4.14 ± 0.08 9.39 ± 0.11 9.25 ± 0.10 9.19 ± 0.09

(ρ+, ρ−) = (0.49, 0.2) 6.42 ± 0.13 12.64 ± 0.17 15.07 ± 0.46 12.57 ± 0.18

(ρ+, ρ−) = (0.49, 0.3) 8.98 ± 0.35 16.34 ± 0.49 20.40 ± 0.50 16.83 ± 0.39

(ρ+, ρ−) = (0.49, 0.4) 15.76 ± 0.84 27.15 ± 1.32 29.77 ± 1.13 26.94 ± 0.97

(ρ+, ρ−) = (0.49, 0.49) 40.46 ± 1.91 49.98 ± 0.02 45.94 ± 1.35 48.80 ± 1.00

Table 11. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on spambase injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.01 ± 0.00 1.18 ± 0.00 0.18 ± 0.00 0.18 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.07 ± 0.01 1.04 ± 0.05 0.61 ± 0.04 0.61 ± 0.04

(ρ+, ρ−) = (0.0, 0.2) 0.11 ± 0.02 1.61 ± 0.10 0.65 ± 0.04 0.66 ± 0.04

(ρ+, ρ−) = (0.0, 0.3) 0.07 ± 0.01 2.39 ± 0.16 0.58 ± 0.05 0.58 ± 0.05

(ρ+, ρ−) = (0.0, 0.4) 0.14 ± 0.02 2.96 ± 0.20 0.75 ± 0.06 0.74 ± 0.06

(ρ+, ρ−) = (0.0, 0.49) 0.15 ± 0.04 4.71 ± 0.22 0.77 ± 0.09 0.73 ± 0.09

(ρ+, ρ−) = (0.1, 0.0) 0.01 ± 0.00 0.86 ± 0.04 0.22 ± 0.01 0.22 ± 0.01

(ρ+, ρ−) = (0.1, 0.1) 0.09 ± 0.02 1.30 ± 0.06 0.65 ± 0.04 0.63 ± 0.04

(ρ+, ρ−) = (0.1, 0.2) 0.10 ± 0.02 1.82 ± 0.12 0.67 ± 0.04 0.67 ± 0.04

(ρ+, ρ−) = (0.1, 0.3) 0.12 ± 0.02 2.63 ± 0.19 0.77 ± 0.06 0.76 ± 0.06

(ρ+, ρ−) = (0.1, 0.4) 0.24 ± 0.04 3.44 ± 0.24 1.14 ± 0.09 1.13 ± 0.09

(ρ+, ρ−) = (0.1, 0.49) 0.36 ± 0.09 4.91 ± 0.35 1.49 ± 0.19 1.42 ± 0.18

(ρ+, ρ−) = (0.2, 0.0) 0.07 ± 0.02 1.00 ± 0.05 0.28 ± 0.01 0.28 ± 0.01

(ρ+, ρ−) = (0.2, 0.1) 0.13 ± 0.02 1.23 ± 0.06 0.76 ± 0.05 0.76 ± 0.05

(ρ+, ρ−) = (0.2, 0.2) 0.19 ± 0.03 2.05 ± 0.15 0.84 ± 0.06 0.83 ± 0.06

(ρ+, ρ−) = (0.2, 0.3) 0.46 ± 0.09 3.05 ± 0.22 1.39 ± 0.17 1.39 ± 0.17

(ρ+, ρ−) = (0.2, 0.4) 0.71 ± 0.23 4.45 ± 0.40 2.23 ± 0.52 1.65 ± 0.19

(ρ+, ρ−) = (0.2, 0.49) 1.44 ± 0.50 8.44 ± 0.72 4.42 ± 1.01 1.97 ± 0.18

(ρ+, ρ−) = (0.3, 0.0) 0.06 ± 0.02 1.16 ± 0.05 0.29 ± 0.01 0.30 ± 0.01

(ρ+, ρ−) = (0.3, 0.1) 0.21 ± 0.03 1.72 ± 0.10 0.85 ± 0.06 0.84 ± 0.06

(ρ+, ρ−) = (0.3, 0.2) 0.35 ± 0.04 2.64 ± 0.17 1.09 ± 0.08 1.08 ± 0.08

(ρ+, ρ−) = (0.3, 0.3) 0.85 ± 0.08 2.82 ± 0.17 1.99 ± 0.11 2.00 ± 0.10

(ρ+, ρ−) = (0.3, 0.4) 1.21 ± 0.49 10.79 ± 0.71 4.58 ± 1.03 1.67 ± 0.21

(ρ+, ρ−) = (0.3, 0.49) 0.30 ± 0.10 15.39 ± 0.31 7.48 ± 0.44 2.53 ± 0.25

(ρ+, ρ−) = (0.4, 0.0) 0.15 ± 0.03 1.25 ± 0.07 0.31 ± 0.01 0.31 ± 0.01

(ρ+, ρ−) = (0.4, 0.1) 0.25 ± 0.03 2.13 ± 0.12 0.98 ± 0.07 0.97 ± 0.07

(ρ+, ρ−) = (0.4, 0.2) 0.73 ± 0.24 4.21 ± 0.38 1.88 ± 0.55 1.41 ± 0.11

(ρ+, ρ−) = (0.4, 0.3) 0.60 ± 0.19 9.48 ± 0.52 2.39 ± 0.42 1.77 ± 0.21

(ρ+, ρ−) = (0.4, 0.4) 0.26 ± 0.03 15.29 ± 0.30 7.58 ± 0.48 3.01 ± 0.28

(ρ+, ρ−) = (0.4, 0.49) 5.51 ± 1.06 25.66 ± 1.27 26.14 ± 1.07 5.72 ± 0.27

(ρ+, ρ−) = (0.49, 0.0) 0.39 ± 0.07 1.75 ± 0.11 0.42 ± 0.02 0.42 ± 0.02

(ρ+, ρ−) = (0.49, 0.1) 0.53 ± 0.07 3.05 ± 0.16 1.25 ± 0.10 1.24 ± 0.10

(ρ+, ρ−) = (0.49, 0.2) 0.60 ± 0.11 7.33 ± 0.41 1.59 ± 0.14 1.66 ± 0.14

(ρ+, ρ−) = (0.49, 0.3) 0.26 ± 0.05 14.16 ± 0.34 4.92 ± 0.32 2.75 ± 0.25

(ρ+, ρ−) = (0.49, 0.4) 6.01 ± 1.15 26.32 ± 1.35 25.86 ± 1.27 5.66 ± 0.28

(ρ+, ρ−) = (0.49, 0.49) 39.89 ± 2.97 47.32 ± 0.81 49.02 ± 1.10 21.43 ± 2.79

Table 12. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on optdigits injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.16 ± 0.00 0.78 ± 0.00 0.62 ± 0.00 0.62 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.44 ± 0.05 4.22 ± 0.19 0.66 ± 0.01 0.66 ± 0.01

(ρ+, ρ−) = (0.0, 0.2) 0.95 ± 0.16 7.03 ± 0.26 0.73 ± 0.01 0.73 ± 0.01

(ρ+, ρ−) = (0.0, 0.3) 1.55 ± 0.26 8.37 ± 0.33 1.02 ± 0.25 0.78 ± 0.02

(ρ+, ρ−) = (0.0, 0.4) 1.72 ± 0.23 10.31 ± 0.35 0.84 ± 0.02 0.83 ± 0.01

(ρ+, ρ−) = (0.0, 0.49) 2.56 ± 0.36 11.24 ± 0.43 1.64 ± 0.47 0.96 ± 0.03

(ρ+, ρ−) = (0.1, 0.0) 0.18 ± 0.00 0.98 ± 0.08 0.62 ± 0.01 0.61 ± 0.01

(ρ+, ρ−) = (0.1, 0.1) 0.84 ± 0.14 5.20 ± 0.23 0.77 ± 0.07 0.70 ± 0.02

(ρ+, ρ−) = (0.1, 0.2) 1.16 ± 0.17 7.46 ± 0.33 0.88 ± 0.08 0.79 ± 0.02

(ρ+, ρ−) = (0.1, 0.3) 1.95 ± 0.28 9.90 ± 0.36 0.86 ± 0.02 0.84 ± 0.02

(ρ+, ρ−) = (0.1, 0.4) 2.79 ± 0.38 12.80 ± 0.43 1.12 ± 0.11 0.97 ± 0.03

(ρ+, ρ−) = (0.1, 0.49) 3.67 ± 0.41 15.23 ± 0.52 1.95 ± 0.39 1.09 ± 0.03

(ρ+, ρ−) = (0.2, 0.0) 0.78 ± 0.15 3.17 ± 0.22 0.94 ± 0.14 0.66 ± 0.02

(ρ+, ρ−) = (0.2, 0.1) 1.17 ± 0.19 5.98 ± 0.30 0.97 ± 0.16 0.75 ± 0.02

(ρ+, ρ−) = (0.2, 0.2) 1.74 ± 0.21 9.54 ± 0.39 0.92 ± 0.07 0.84 ± 0.02

(ρ+, ρ−) = (0.2, 0.3) 2.36 ± 0.27 11.86 ± 0.41 1.02 ± 0.07 0.93 ± 0.02

(ρ+, ρ−) = (0.2, 0.4) 2.96 ± 0.31 15.76 ± 0.45 1.16 ± 0.10 1.05 ± 0.02

(ρ+, ρ−) = (0.2, 0.49) 18.08 ± 1.86 29.79 ± 1.61 22.81 ± 3.08 1.47 ± 0.06

(ρ+, ρ−) = (0.3, 0.0) 1.08 ± 0.18 3.95 ± 0.24 0.93 ± 0.14 0.65 ± 0.02

(ρ+, ρ−) = (0.3, 0.1) 1.43 ± 0.19 7.17 ± 0.34 0.88 ± 0.08 0.81 ± 0.02

(ρ+, ρ−) = (0.3, 0.2) 2.25 ± 0.26 10.96 ± 0.40 1.01 ± 0.09 0.92 ± 0.02

(ρ+, ρ−) = (0.3, 0.3) 3.93 ± 0.52 15.76 ± 0.62 3.95 ± 1.43 1.15 ± 0.06

(ρ+, ρ−) = (0.3, 0.4) 20.37 ± 1.97 31.50 ± 1.55 27.39 ± 3.25 1.36 ± 0.03

(ρ+, ρ−) = (0.3, 0.49) 34.85 ± 1.74 43.48 ± 1.11 42.50 ± 2.81 1.58 ± 0.06

(ρ+, ρ−) = (0.4, 0.0) 2.02 ± 0.29 5.42 ± 0.25 1.29 ± 0.20 0.70 ± 0.03

(ρ+, ρ−) = (0.4, 0.1) 2.07 ± 0.28 8.97 ± 0.36 0.85 ± 0.01 0.85 ± 0.01

(ρ+, ρ−) = (0.4, 0.2) 3.11 ± 0.31 14.88 ± 0.42 1.01 ± 0.03 1.00 ± 0.03

(ρ+, ρ−) = (0.4, 0.3) 19.14 ± 2.06 29.28 ± 1.52 18.96 ± 2.78 1.44 ± 0.05

(ρ+, ρ−) = (0.4, 0.4) 37.26 ± 1.64 44.28 ± 1.11 49.74 ± 2.81 1.58 ± 0.04

(ρ+, ρ−) = (0.4, 0.49) 44.46 ± 1.01 47.93 ± 0.50 53.37 ± 2.69 1.48 ± 0.01

(ρ+, ρ−) = (0.49, 0.0) 2.37 ± 0.31 5.71 ± 0.27 1.29 ± 0.20 0.70 ± 0.03

(ρ+, ρ−) = (0.49, 0.1) 3.02 ± 0.38 11.32 ± 0.43 1.24 ± 0.24 0.93 ± 0.02

(ρ+, ρ−) = (0.49, 0.2) 10.83 ± 1.57 23.80 ± 1.33 11.16 ± 2.30 1.19 ± 0.03

(ρ+, ρ−) = (0.49, 0.3) 36.81 ± 1.83 42.12 ± 1.14 43.88 ± 2.87 1.55 ± 0.03

(ρ+, ρ−) = (0.49, 0.4) 39.98 ± 1.07 48.45 ± 0.64 59.99 ± 2.40 1.97 ± 0.19

(ρ+, ρ−) = (0.49, 0.49) 47.04 ± 0.99 50.20 ± 0.35 54.23 ± 2.69 13.31 ± 2.58

Table 13. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on thyroid injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.95 ± 0.00 4.51 ± 0.00 3.09 ± 0.00 3.05 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.84 ± 0.00 4.60 ± 0.02 2.63 ± 0.01 2.64 ± 0.01

(ρ+, ρ−) = (0.0, 0.2) 0.87 ± 0.01 4.16 ± 0.04 2.33 ± 0.02 2.33 ± 0.02

(ρ+, ρ−) = (0.0, 0.3) 0.86 ± 0.01 4.07 ± 0.04 2.13 ± 0.02 2.12 ± 0.02

(ρ+, ρ−) = (0.0, 0.4) 0.86 ± 0.01 4.12 ± 0.04 2.11 ± 0.02 2.12 ± 0.02

(ρ+, ρ−) = (0.0, 0.49) 0.88 ± 0.01 4.34 ± 0.06 2.20 ± 0.02 2.19 ± 0.02

(ρ+, ρ−) = (0.1, 0.0) 0.94 ± 0.00 4.57 ± 0.01 2.96 ± 0.01 2.89 ± 0.02

(ρ+, ρ−) = (0.1, 0.1) 0.87 ± 0.01 4.50 ± 0.03 2.60 ± 0.02 2.60 ± 0.02

(ρ+, ρ−) = (0.1, 0.2) 0.89 ± 0.01 4.27 ± 0.05 2.35 ± 0.03 2.37 ± 0.03

(ρ+, ρ−) = (0.1, 0.3) 0.89 ± 0.01 4.27 ± 0.04 2.19 ± 0.02 2.19 ± 0.02

(ρ+, ρ−) = (0.1, 0.4) 0.92 ± 0.01 4.52 ± 0.05 2.22 ± 0.02 2.23 ± 0.02

(ρ+, ρ−) = (0.1, 0.49) 1.01 ± 0.03 4.96 ± 0.09 2.33 ± 0.02 2.32 ± 0.02

(ρ+, ρ−) = (0.2, 0.0) 0.95 ± 0.00 4.53 ± 0.02 2.97 ± 0.02 2.92 ± 0.02

(ρ+, ρ−) = (0.2, 0.1) 0.89 ± 0.01 4.51 ± 0.04 2.60 ± 0.02 2.60 ± 0.02

(ρ+, ρ−) = (0.2, 0.2) 0.92 ± 0.01 4.45 ± 0.13 2.37 ± 0.03 2.41 ± 0.05

(ρ+, ρ−) = (0.2, 0.3) 0.95 ± 0.01 4.58 ± 0.06 2.32 ± 0.03 2.31 ± 0.03

(ρ+, ρ−) = (0.2, 0.4) 1.04 ± 0.02 5.05 ± 0.10 2.39 ± 0.03 2.39 ± 0.03

(ρ+, ρ−) = (0.2, 0.49) 1.27 ± 0.04 6.21 ± 0.17 2.68 ± 0.04 2.67 ± 0.04

(ρ+, ρ−) = (0.3, 0.0) 0.97 ± 0.01 4.46 ± 0.02 2.98 ± 0.02 2.92 ± 0.02

(ρ+, ρ−) = (0.3, 0.1) 0.92 ± 0.01 4.55 ± 0.05 2.59 ± 0.03 2.59 ± 0.03

(ρ+, ρ−) = (0.3, 0.2) 0.97 ± 0.02 4.69 ± 0.08 2.39 ± 0.03 2.38 ± 0.03

(ρ+, ρ−) = (0.3, 0.3) 1.10 ± 0.02 5.21 ± 0.10 2.49 ± 0.03 2.46 ± 0.03

(ρ+, ρ−) = (0.3, 0.4) 1.46 ± 0.07 6.22 ± 0.17 2.82 ± 0.05 2.76 ± 0.05

(ρ+, ρ−) = (0.3, 0.49) 2.07 ± 0.11 9.41 ± 0.28 3.38 ± 0.07 3.26 ± 0.06

(ρ+, ρ−) = (0.4, 0.0) 0.99 ± 0.01 4.48 ± 0.03 3.03 ± 0.02 2.98 ± 0.02

(ρ+, ρ−) = (0.4, 0.1) 0.95 ± 0.01 4.67 ± 0.06 2.60 ± 0.03 2.58 ± 0.03

(ρ+, ρ−) = (0.4, 0.2) 1.07 ± 0.02 4.97 ± 0.09 2.48 ± 0.03 2.43 ± 0.03

(ρ+, ρ−) = (0.4, 0.3) 1.31 ± 0.04 6.51 ± 0.17 2.74 ± 0.04 2.68 ± 0.04

(ρ+, ρ−) = (0.4, 0.4) 2.12 ± 0.12 10.36 ± 0.31 3.86 ± 0.27 3.39 ± 0.08

(ρ+, ρ−) = (0.4, 0.49) 9.53 ± 1.24 24.53 ± 1.24 23.16 ± 1.78 6.99 ± 0.19

(ρ+, ρ−) = (0.49, 0.0) 1.00 ± 0.01 4.48 ± 0.03 3.05 ± 0.02 2.99 ± 0.02

(ρ+, ρ−) = (0.49, 0.1) 1.00 ± 0.01 4.75 ± 0.06 2.61 ± 0.03 2.54 ± 0.03

(ρ+, ρ−) = (0.49, 0.2) 1.22 ± 0.03 5.70 ± 0.12 2.70 ± 0.04 2.61 ± 0.03

(ρ+, ρ−) = (0.49, 0.3) 1.94 ± 0.10 9.15 ± 0.27 3.47 ± 0.09 3.27 ± 0.07

(ρ+, ρ−) = (0.49, 0.4) 6.02 ± 0.43 19.80 ± 0.52 19.31 ± 1.38 6.74 ± 0.21

(ρ+, ρ−) = (0.49, 0.49) 32.02 ± 2.02 48.16 ± 0.71 51.59 ± 1.24 18.81 ± 2.49

Table 14. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on pendigits injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 0.92 ± 0.00 3.63 ± 0.00 3.63 ± 0.00 3.63 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 0.93 ± 0.00 3.61 ± 0.01 3.59 ± 0.01 3.60 ± 0.01

(ρ+, ρ−) = (0.0, 0.2) 0.94 ± 0.01 3.63 ± 0.01 3.62 ± 0.01 3.62 ± 0.01

(ρ+, ρ−) = (0.0, 0.3) 0.96 ± 0.01 3.65 ± 0.01 3.63 ± 0.01 3.64 ± 0.01

(ρ+, ρ−) = (0.0, 0.4) 0.99 ± 0.01 3.65 ± 0.02 3.65 ± 0.02 3.66 ± 0.02

(ρ+, ρ−) = (0.0, 0.49) 1.00 ± 0.01 3.69 ± 0.02 3.68 ± 0.02 3.68 ± 0.02

(ρ+, ρ−) = (0.1, 0.0) 0.95 ± 0.01 3.56 ± 0.01 3.55 ± 0.01 3.55 ± 0.01

(ρ+, ρ−) = (0.1, 0.1) 0.96 ± 0.01 3.62 ± 0.01 3.61 ± 0.01 3.61 ± 0.01

(ρ+, ρ−) = (0.1, 0.2) 0.97 ± 0.01 3.63 ± 0.02 3.62 ± 0.02 3.62 ± 0.02

(ρ+, ρ−) = (0.1, 0.3) 1.00 ± 0.01 3.68 ± 0.02 3.67 ± 0.02 3.67 ± 0.02

(ρ+, ρ−) = (0.1, 0.4) 1.05 ± 0.01 3.78 ± 0.02 3.77 ± 0.02 3.78 ± 0.02

(ρ+, ρ−) = (0.1, 0.49) 1.10 ± 0.01 3.94 ± 0.03 3.94 ± 0.03 3.94 ± 0.03

(ρ+, ρ−) = (0.2, 0.0) 0.96 ± 0.01 3.60 ± 0.01 3.59 ± 0.01 3.59 ± 0.01

(ρ+, ρ−) = (0.2, 0.1) 0.98 ± 0.01 3.64 ± 0.02 3.63 ± 0.02 3.64 ± 0.02

(ρ+, ρ−) = (0.2, 0.2) 1.02 ± 0.01 3.67 ± 0.02 3.68 ± 0.02 3.67 ± 0.02

(ρ+, ρ−) = (0.2, 0.3) 1.07 ± 0.02 3.83 ± 0.02 3.82 ± 0.02 3.83 ± 0.02

(ρ+, ρ−) = (0.2, 0.4) 1.17 ± 0.02 4.06 ± 0.03 4.06 ± 0.03 4.05 ± 0.03

(ρ+, ρ−) = (0.2, 0.49) 1.33 ± 0.03 4.41 ± 0.04 4.41 ± 0.04 4.42 ± 0.04

(ρ+, ρ−) = (0.3, 0.0) 0.98 ± 0.01 3.65 ± 0.02 3.64 ± 0.02 3.64 ± 0.02

(ρ+, ρ−) = (0.3, 0.1) 1.03 ± 0.01 3.72 ± 0.02 3.73 ± 0.02 3.73 ± 0.02

(ρ+, ρ−) = (0.3, 0.2) 1.06 ± 0.02 3.80 ± 0.03 3.80 ± 0.03 3.81 ± 0.03

(ρ+, ρ−) = (0.3, 0.3) 1.15 ± 0.02 4.09 ± 0.03 4.09 ± 0.03 4.09 ± 0.03

(ρ+, ρ−) = (0.3, 0.4) 1.40 ± 0.03 4.55 ± 0.05 4.57 ± 0.05 4.54 ± 0.05

(ρ+, ρ−) = (0.3, 0.49) 1.62 ± 0.05 5.08 ± 0.07 5.12 ± 0.07 5.10 ± 0.07

(ρ+, ρ−) = (0.4, 0.0) 1.02 ± 0.01 3.69 ± 0.02 3.70 ± 0.02 3.70 ± 0.02

(ρ+, ρ−) = (0.4, 0.1) 1.06 ± 0.01 3.83 ± 0.02 3.85 ± 0.02 3.84 ± 0.02

(ρ+, ρ−) = (0.4, 0.2) 1.16 ± 0.02 4.05 ± 0.03 4.06 ± 0.03 4.05 ± 0.03

(ρ+, ρ−) = (0.4, 0.3) 1.37 ± 0.03 4.60 ± 0.04 4.63 ± 0.04 4.61 ± 0.04

(ρ+, ρ−) = (0.4, 0.4) 1.77 ± 0.05 5.44 ± 0.09 5.49 ± 0.08 5.48 ± 0.08

(ρ+, ρ−) = (0.4, 0.49) 2.82 ± 0.09 7.63 ± 0.14 7.95 ± 0.16 8.05 ± 0.16

(ρ+, ρ−) = (0.49, 0.0) 1.03 ± 0.01 3.72 ± 0.02 3.72 ± 0.02 3.72 ± 0.02

(ρ+, ρ−) = (0.49, 0.1) 1.13 ± 0.02 3.96 ± 0.03 3.98 ± 0.03 3.96 ± 0.03

(ρ+, ρ−) = (0.49, 0.2) 1.33 ± 0.02 4.47 ± 0.04 4.50 ± 0.05 4.48 ± 0.04

(ρ+, ρ−) = (0.49, 0.3) 1.63 ± 0.06 5.20 ± 0.08 5.26 ± 0.08 5.24 ± 0.08

(ρ+, ρ−) = (0.49, 0.4) 2.95 ± 0.09 7.93 ± 0.15 8.30 ± 0.18 8.15 ± 0.15

(ρ+, ρ−) = (0.49, 0.49) 19.56 ± 1.28 34.70 ± 1.60 35.45 ± 1.15 46.59 ± 0.82

Table 15. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on mnist injected with random label

noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassifica-
tion errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 1.54 ± 0.00 4.71 ± 0.00 1.92 ± 0.00 1.65 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 3.04 ± 0.11 5.46 ± 0.45 1.01 ± 0.04 0.99 ± 0.03

(ρ+, ρ−) = (0.0, 0.2) 3.32 ± 0.21 6.13 ± 0.45 0.79 ± 0.03 0.79 ± 0.03

(ρ+, ρ−) = (0.0, 0.3) 3.16 ± 0.04 6.06 ± 0.07 0.74 ± 0.01 0.74 ± 0.01

(ρ+, ρ−) = (0.0, 0.4) 3.12 ± 0.04 6.38 ± 0.07 0.75 ± 0.01 0.75 ± 0.01

(ρ+, ρ−) = (0.0, 0.49) 3.12 ± 0.04 6.67 ± 0.10 0.77 ± 0.01 0.76 ± 0.01

(ρ+, ρ−) = (0.1, 0.0) 1.68 ± 0.05 4.72 ± 0.02 1.85 ± 0.02 1.67 ± 0.01

(ρ+, ρ−) = (0.1, 0.1) 2.96 ± 0.05 5.10 ± 0.04 0.93 ± 0.01 0.92 ± 0.01

(ρ+, ρ−) = (0.1, 0.2) 3.58 ± 0.47 6.21 ± 0.44 0.82 ± 0.04 0.81 ± 0.04

(ρ+, ρ−) = (0.1, 0.3) 3.15 ± 0.05 6.31 ± 0.09 0.79 ± 0.01 0.78 ± 0.01

(ρ+, ρ−) = (0.1, 0.4) 3.16 ± 0.05 6.95 ± 0.14 0.79 ± 0.01 0.79 ± 0.01

(ρ+, ρ−) = (0.1, 0.49) 3.20 ± 0.06 7.42 ± 0.15 0.84 ± 0.01 0.84 ± 0.01

(ρ+, ρ−) = (0.2, 0.0) 1.92 ± 0.08 4.79 ± 0.02 1.90 ± 0.04 1.71 ± 0.03

(ρ+, ρ−) = (0.2, 0.1) 3.08 ± 0.06 5.19 ± 0.04 0.91 ± 0.02 0.89 ± 0.02

(ρ+, ρ−) = (0.2, 0.2) 3.12 ± 0.13 6.85 ± 0.41 0.89 ± 0.04 0.83 ± 0.03

(ρ+, ρ−) = (0.2, 0.3) 3.01 ± 0.05 7.41 ± 0.18 0.86 ± 0.01 0.82 ± 0.01

(ρ+, ρ−) = (0.2, 0.4) 3.18 ± 0.08 8.40 ± 0.47 0.90 ± 0.05 0.87 ± 0.04

(ρ+, ρ−) = (0.2, 0.49) 3.24 ± 0.07 9.34 ± 0.24 0.96 ± 0.02 0.94 ± 0.02

(ρ+, ρ−) = (0.3, 0.0) 2.08 ± 0.09 4.77 ± 0.03 1.93 ± 0.06 1.76 ± 0.05

(ρ+, ρ−) = (0.3, 0.1) 3.01 ± 0.06 5.57 ± 0.07 0.92 ± 0.02 0.89 ± 0.01

(ρ+, ρ−) = (0.3, 0.2) 3.05 ± 0.05 6.53 ± 0.11 0.85 ± 0.01 0.82 ± 0.01

(ρ+, ρ−) = (0.3, 0.3) 3.15 ± 0.06 8.10 ± 0.23 0.91 ± 0.02 0.86 ± 0.01

(ρ+, ρ−) = (0.3, 0.4) 3.18 ± 0.07 10.19 ± 0.28 0.99 ± 0.02 0.91 ± 0.02

(ρ+, ρ−) = (0.3, 0.49) 3.47 ± 0.08 12.00 ± 0.32 1.47 ± 0.10 1.23 ± 0.04

(ρ+, ρ−) = (0.4, 0.0) 2.31 ± 0.10 4.79 ± 0.03 2.00 ± 0.07 1.80 ± 0.05

(ρ+, ρ−) = (0.4, 0.1) 2.99 ± 0.06 5.92 ± 0.08 0.95 ± 0.02 0.90 ± 0.02

(ρ+, ρ−) = (0.4, 0.2) 3.45 ± 0.43 7.80 ± 0.45 1.01 ± 0.05 0.91 ± 0.04

(ρ+, ρ−) = (0.4, 0.3) 3.07 ± 0.07 10.25 ± 0.27 1.10 ± 0.03 0.93 ± 0.01

(ρ+, ρ−) = (0.4, 0.4) 4.34 ± 0.56 13.71 ± 0.66 2.58 ± 0.94 1.34 ± 0.06

(ρ+, ρ−) = (0.4, 0.49) 14.13 ± 1.75 29.15 ± 1.31 18.93 ± 1.71 3.74 ± 0.07

(ρ+, ρ−) = (0.49, 0.0) 2.79 ± 0.11 4.82 ± 0.04 1.91 ± 0.07 1.77 ± 0.06

(ρ+, ρ−) = (0.49, 0.1) 3.04 ± 0.07 6.47 ± 0.12 1.01 ± 0.02 0.92 ± 0.01

(ρ+, ρ−) = (0.49, 0.2) 2.96 ± 0.06 9.21 ± 0.25 1.11 ± 0.03 0.93 ± 0.02

(ρ+, ρ−) = (0.49, 0.3) 3.38 ± 0.11 12.48 ± 0.49 2.50 ± 0.94 1.24 ± 0.05

(ρ+, ρ−) = (0.49, 0.4) 11.11 ± 1.27 29.05 ± 1.32 22.02 ± 1.79 3.79 ± 0.09

(ρ+, ρ−) = (0.49, 0.49) 36.26 ± 2.06 47.07 ± 0.87 39.98 ± 1.77 8.33 ± 1.41

Table 16. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on letter injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 5.58 ± 0.00 11.01 ± 0.00 7.26 ± 0.00 7.23 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 5.74 ± 0.09 11.24 ± 0.03 6.01 ± 0.04 5.88 ± 0.04

(ρ+, ρ−) = (0.0, 0.2) 5.85 ± 0.08 11.86 ± 0.04 5.44 ± 0.03 5.40 ± 0.02

(ρ+, ρ−) = (0.0, 0.3) 5.83 ± 0.03 12.24 ± 0.04 5.19 ± 0.02 5.17 ± 0.01

(ρ+, ρ−) = (0.0, 0.4) 6.03 ± 0.03 12.63 ± 0.09 5.04 ± 0.02 5.03 ± 0.01

(ρ+, ρ−) = (0.0, 0.49) 6.25 ± 0.04 13.51 ± 0.18 4.92 ± 0.02 4.92 ± 0.02

(ρ+, ρ−) = (0.1, 0.0) 5.68 ± 0.01 11.00 ± 0.02 7.57 ± 0.03 7.18 ± 0.01

(ρ+, ρ−) = (0.1, 0.1) 5.86 ± 0.11 11.30 ± 0.04 5.96 ± 0.04 5.84 ± 0.04

(ρ+, ρ−) = (0.1, 0.2) 5.88 ± 0.07 11.93 ± 0.05 5.40 ± 0.03 5.39 ± 0.02

(ρ+, ρ−) = (0.1, 0.3) 5.97 ± 0.04 12.33 ± 0.07 5.16 ± 0.02 5.18 ± 0.01

(ρ+, ρ−) = (0.1, 0.4) 6.23 ± 0.06 13.20 ± 0.16 5.03 ± 0.03 5.05 ± 0.02

(ρ+, ρ−) = (0.1, 0.49) 6.42 ± 0.07 14.02 ± 0.21 4.96 ± 0.03 5.00 ± 0.03

(ρ+, ρ−) = (0.2, 0.0) 5.62 ± 0.01 10.99 ± 0.02 7.46 ± 0.03 7.10 ± 0.02

(ρ+, ρ−) = (0.2, 0.1) 6.07 ± 0.14 11.43 ± 0.05 5.85 ± 0.04 5.76 ± 0.03

(ρ+, ρ−) = (0.2, 0.2) 5.99 ± 0.07 12.00 ± 0.05 5.42 ± 0.03 5.39 ± 0.02

(ρ+, ρ−) = (0.2, 0.3) 5.96 ± 0.04 12.62 ± 0.07 5.15 ± 0.02 5.18 ± 0.02

(ρ+, ρ−) = (0.2, 0.4) 6.35 ± 0.07 13.62 ± 0.18 5.04 ± 0.03 5.08 ± 0.03

(ρ+, ρ−) = (0.2, 0.49) 6.84 ± 0.10 14.63 ± 0.23 5.09 ± 0.04 5.12 ± 0.04

(ρ+, ρ−) = (0.3, 0.0) 5.61 ± 0.01 11.01 ± 0.03 7.44 ± 0.03 7.04 ± 0.02

(ρ+, ρ−) = (0.3, 0.1) 5.86 ± 0.11 11.59 ± 0.05 5.76 ± 0.04 5.72 ± 0.03

(ρ+, ρ−) = (0.3, 0.2) 6.04 ± 0.08 12.27 ± 0.07 5.38 ± 0.04 5.38 ± 0.03

(ρ+, ρ−) = (0.3, 0.3) 6.11 ± 0.05 13.24 ± 0.12 5.22 ± 0.03 5.19 ± 0.03

(ρ+, ρ−) = (0.3, 0.4) 6.76 ± 0.09 14.52 ± 0.19 5.22 ± 0.04 5.19 ± 0.04

(ρ+, ρ−) = (0.3, 0.49) 7.78 ± 0.17 16.22 ± 0.27 5.55 ± 0.06 5.48 ± 0.05

(ρ+, ρ−) = (0.4, 0.0) 5.62 ± 0.02 11.03 ± 0.03 7.48 ± 0.04 7.01 ± 0.03

(ρ+, ρ−) = (0.4, 0.1) 6.10 ± 0.12 11.73 ± 0.06 5.74 ± 0.04 5.68 ± 0.03

(ρ+, ρ−) = (0.4, 0.2) 6.10 ± 0.06 12.76 ± 0.10 5.34 ± 0.04 5.33 ± 0.03

(ρ+, ρ−) = (0.4, 0.3) 6.54 ± 0.07 14.23 ± 0.17 5.28 ± 0.05 5.24 ± 0.04

(ρ+, ρ−) = (0.4, 0.4) 8.09 ± 0.20 16.39 ± 0.26 5.91 ± 0.14 5.62 ± 0.06

(ρ+, ρ−) = (0.4, 0.49) 12.09 ± 0.35 24.95 ± 0.64 27.12 ± 1.67 6.69 ± 0.03

(ρ+, ρ−) = (0.49, 0.0) 5.59 ± 0.02 11.08 ± 0.03 7.37 ± 0.04 6.91 ± 0.03

(ρ+, ρ−) = (0.49, 0.1) 5.96 ± 0.10 12.03 ± 0.06 5.64 ± 0.04 5.62 ± 0.03

(ρ+, ρ−) = (0.49, 0.2) 6.46 ± 0.09 13.23 ± 0.11 5.50 ± 0.06 5.45 ± 0.04

(ρ+, ρ−) = (0.49, 0.3) 7.33 ± 0.12 15.50 ± 0.18 5.63 ± 0.06 5.49 ± 0.04

(ρ+, ρ−) = (0.49, 0.4) 13.37 ± 0.50 26.13 ± 0.74 30.22 ± 1.54 6.77 ± 0.06

(ρ+, ρ−) = (0.49, 0.49) 41.04 ± 2.03 47.96 ± 0.75 48.70 ± 1.28 7.36 ± 0.30

Table 17. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on covtype-binary injected with

random label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.



Learning from Corrupted Binary Labels via Class-Probability Estimation

Noise 1 - AUC (%) BER (%) ERRmax(%) ERRoracle(%)

None 39.62 ± 0.00 42.46 ± 0.00 4.93 ± 0.00 4.93 ± 0.00

(ρ+, ρ−) = (0.0, 0.1) 39.91 ± 0.03 42.49 ± 0.08 9.80 ± 1.15 4.93 ± 0.00

(ρ+, ρ−) = (0.0, 0.2) 39.99 ± 0.06 42.53 ± 0.11 14.58 ± 1.92 4.93 ± 0.00

(ρ+, ρ−) = (0.0, 0.3) 39.96 ± 0.06 42.56 ± 0.08 14.37 ± 2.72 4.93 ± 0.00

(ρ+, ρ−) = (0.0, 0.4) 40.10 ± 0.06 42.70 ± 0.06 27.22 ± 8.16 4.93 ± 0.00

(ρ+, ρ−) = (0.0, 0.49) 40.15 ± 0.06 42.84 ± 0.08 21.09 ± 2.95 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.0) 39.69 ± 0.03 42.46 ± 0.03 6.61 ± 0.66 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.1) 39.95 ± 0.06 42.48 ± 0.07 9.38 ± 1.65 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.2) 40.02 ± 0.07 42.54 ± 0.11 18.12 ± 1.75 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.3) 40.02 ± 0.09 42.55 ± 0.06 15.87 ± 2.80 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.4) 40.21 ± 0.07 42.82 ± 0.10 29.50 ± 8.24 4.93 ± 0.00

(ρ+, ρ−) = (0.1, 0.49) 40.23 ± 0.09 42.93 ± 0.11 26.25 ± 2.71 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.0) 39.69 ± 0.03 42.39 ± 0.02 6.23 ± 0.66 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.1) 39.95 ± 0.04 42.49 ± 0.09 15.03 ± 2.16 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.2) 40.04 ± 0.08 42.63 ± 0.11 19.19 ± 1.62 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.3) 40.05 ± 0.10 42.61 ± 0.10 17.60 ± 2.82 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.4) 40.42 ± 0.11 43.01 ± 0.10 30.41 ± 8.32 4.93 ± 0.00

(ρ+, ρ−) = (0.2, 0.49) 40.44 ± 0.12 43.40 ± 0.17 32.37 ± 5.50 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.0) 39.77 ± 0.03 42.36 ± 0.05 7.30 ± 0.61 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.1) 40.05 ± 0.07 42.53 ± 0.09 21.20 ± 8.22 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.2) 40.16 ± 0.12 42.74 ± 0.13 21.55 ± 2.08 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.3) 40.22 ± 0.13 42.79 ± 0.13 20.65 ± 3.46 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.4) 40.63 ± 0.12 43.28 ± 0.12 33.99 ± 8.64 4.93 ± 0.00

(ρ+, ρ−) = (0.3, 0.49) 41.12 ± 0.24 44.43 ± 0.66 43.34 ± 6.98 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.0) 39.79 ± 0.04 42.39 ± 0.05 8.47 ± 1.01 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.1) 40.06 ± 0.06 42.61 ± 0.10 15.47 ± 2.57 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.2) 40.24 ± 0.12 42.83 ± 0.13 23.22 ± 2.33 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.3) 40.44 ± 0.20 43.08 ± 0.13 25.10 ± 2.55 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.4) 41.23 ± 0.18 43.81 ± 0.16 46.38 ± 8.74 4.93 ± 0.00

(ρ+, ρ−) = (0.4, 0.49) 43.59 ± 1.18 47.74 ± 0.98 46.10 ± 7.06 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.0) 39.83 ± 0.04 42.44 ± 0.04 9.68 ± 0.93 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.1) 40.16 ± 0.06 42.68 ± 0.13 18.99 ± 3.78 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.2) 40.52 ± 0.20 43.19 ± 0.22 38.06 ± 8.22 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.3) 40.80 ± 0.26 43.40 ± 0.19 27.14 ± 4.51 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.4) 41.87 ± 0.41 44.37 ± 0.25 58.90 ± 9.60 4.93 ± 0.00

(ρ+, ρ−) = (0.49, 0.49) 49.83 ± 2.09 48.93 ± 1.05 47.44 ± 9.51 5.79 ± 0.84

Table 18. Mean and standard error (standard deviation scaled by
√
τ ) of performance measures on kddcup98 injected with random

label noise τ = 100 times.The case ρ− = 0 corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the
misclassification errors of the classifiers formed by thresholding using ρ̂+, ρ̂−, and by the ground-truth ρ+, ρ− respectively.


