Bayes-Optimal Scorers for Bipartite Ranking

Aditya Krishna Menon Robert C. Williamson

National ICT Australia and The Australian National University

Bipartite ranking

Input IID samples from *D* over $\mathfrak{X} \times \{\pm 1\}$

Output Scorer $s: \mathcal{X} \to \mathbb{R}$

Performance Area under ROC curve (AUC):

$$AUC^{D}(s) = \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\llbracket s(\mathsf{X}) > s(\mathsf{X}') \rrbracket + \frac{1}{2} \llbracket s(\mathsf{X}) = s(\mathsf{X}') \rrbracket \right]$$

where
$$P = \Pr[X|Y = 1], Q = \Pr[X|Y = -1]$$

AUC maximisation via surrogate losses

Definition of AUC involves 0-1 loss:

$$AUC^{D}(s) = \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\llbracket s(\mathsf{X}) > s(\mathsf{X}') \rrbracket + \frac{1}{2} \llbracket s(\mathsf{X}) = s(\mathsf{X}') \rrbracket \right]$$

Difficult to directly maximise

Natural strategy: minimise the ℓ-bipartite risk

$$\mathbb{L}^{D}_{\mathrm{Bipart},\ell}(s) = \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\frac{\ell_1(s(\mathsf{X}) - s(\mathsf{X}')) + \ell_{-1}(s(\mathsf{X}') - s(\mathsf{X}))}{2} \right]$$

for a surrogate loss $\ell: \{\pm 1\} \times \mathbb{R} \to \mathbb{R}_+$

The basic question

Bayes-optimal scorers for the ℓ -bipartite risk:

$$S_{\operatorname{Bipart},\ell}^{D,*} = \underset{s: \ \mathcal{X} \to \mathbb{R}}{\operatorname{Argmin}} \ \mathbb{L}_{\operatorname{Bipart},\ell}^{D}(s)$$

Want $S_{\operatorname{Bipart},\ell}^{D,*} \subseteq S_{\operatorname{Bipart},01}^{D,*}$ (minimally)

- $S_{\mathrm{Bipart},01}^{D,*} \to \mathrm{increasing} \ \mathrm{transforms} \ \mathrm{of} \ \eta : x \mapsto \Pr[\mathsf{Y}=1 | \mathsf{X}=x]$
- $S^{D,*}_{\mathrm{Bipart},\ell} \rightarrow ?$

Approach: reduction to classification

Reduce to classification on pairs:

$$\mathbb{L}^{D}_{\mathrm{Bipart},\ell}(s) = \mathbb{L}^{\mathrm{Bipart}(D)}_{\mathrm{Class},\ell}(\mathrm{Diff}(s)),$$

$$\mathrm{Diff}(s) : (x,x') \mapsto s(x) - s(x')$$

$$\mathrm{Bipart}(D) = \left(P \times Q, Q \times P, \frac{1}{2}\right)$$

Classification on Bipart(D) requires decomposable pair-scorers:

$$S_{\text{Decomp}} = \{ \text{Diff}(s) : s \colon \mathcal{X} \to \mathbb{R} \}$$

- Restricted function class
- ullet Hampers computing $\mathcal{S}_{\ell}^{\operatorname{Bipart}(D),*}$ by pointwise analysis

Key tool: proper composite losses

Call loss ℓ strictly proper composite if $\exists \Psi : [0,1] \to \mathbb{R}$ such that

$$\mathcal{S}_{\ell}^{D,*} = \operatorname*{argmin}_{s \colon \mathcal{X} o \mathbb{R}} \mathbb{L}^{D}_{\mathrm{Class},\ell}(s) = \{ \Psi \circ \boldsymbol{\eta} \}$$

where
$$\eta: x \mapsto \Pr[Y = 1 | X = x]$$

- Fundamental losses of class-probability estimation
- Examples:
 - ▶ Logistic: $\Psi : p \mapsto \log \frac{p}{1-p}$
 - Exponential: $\Psi: p \mapsto \frac{1}{2} \log \frac{p}{1-p}$
 - ► Squared: $\Psi : p \mapsto \min(1, \max(0, p))$

Characterisation of optimal solutions

For specific link function, agreement of Bayes-optimal solutions

Proposition

Given any strictly proper composite loss ℓ with a differentiable, invertible link function Ψ ,

$$(\exists a \in \mathbb{R}_+) \Psi^{-1} : v \mapsto \frac{1}{1 + e^{-av}} \Longrightarrow \mathcal{S}_{\mathrm{Bipart},\ell}^{D,*} = \{ \Psi \circ \eta + b : b \in \mathbb{R} \}$$
$$\subseteq \mathcal{S}_{\mathrm{Bipart},01}^{D,*}.$$

Surrogate regret

Surrogate regret bound also follows immediately

Proposition

Given any strictly proper composite loss ℓ satisfying the previous conditions, $\exists \ F_{\ell} : [0,1] \to \mathbb{R}_+$ such that

$$(\forall D, s \colon \mathcal{X} \to \mathbb{R}) F_{\ell} \left(\operatorname{regret}_{\operatorname{Bipart}, 01}^{D}(s) \right) \leq \operatorname{regret}_{\operatorname{Bipart}, \ell}^{D}(s),$$

where

$$\operatorname{regret}^D_{\operatorname{Bipart},\ell}(s) = \mathbb{L}^D_{\operatorname{Bipart},\ell}(\operatorname{Diff}(s)) - \inf_{t:\mathcal{X} \to \mathbb{R}} \mathbb{L}^D_{\operatorname{Bipart},\ell}(\operatorname{Diff}(t)).$$

Proof sketch: characterising decomposability

Simple case: optimal pair-scorer is decomposable:

$$\mathcal{S}_{\ell}^{\operatorname{Bipart}(D),*} \subseteq \mathcal{S}_{\operatorname{Decomp}}$$

Lemma

The observation-conditional density $\operatorname{Bipart}(D)$ can be expressed

$$\eta_{\text{Pair}} = \sigma \circ \text{Diff}(\sigma^{-1} \circ \eta)$$

where $\sigma(\cdot)$ is the sigmoid function.

Consequently, for proper composite ℓ ,

$$\mathcal{S}_{\ell}^{\operatorname{Bipart}(D),*} = \Psi \circ \sigma \circ \operatorname{Diff}(\sigma^{-1} \circ \eta).$$

Decomposability relies on Ψ "cancelling" σ

Other results

 $\mathcal{S}^{D,*}_{\mathrm{Bipart},\ell}$ for non-decomposable losses (with more effort)

Optimal scorers for *p*-norm push risk

Understanding "ranking the best" in terms of proper losses

Equivalences of minimisers for seemingly disparate risks:

$$\begin{array}{l} \underset{s_{\text{Pair}} \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}}{\operatorname{argmin}} \ \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\exp(-s_{\text{Pair}}(\mathsf{X}, \mathsf{X}')) \right] \\ \underset{s \colon \mathcal{X} \to \mathbb{R}}{\operatorname{argmin}} \ \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\exp(-(s(\mathsf{X}) - s(\mathsf{X}'))) \right] \\ \underset{s \colon \mathcal{X} \to \mathbb{R}}{\operatorname{argmin}} \ \mathbb{E}_{(\mathsf{X}, \mathsf{Y}) \sim D} \left[\exp(-\mathsf{Y} s(\mathsf{X})) \right] \end{array}$$