Bayes-Optimal Scorers for Bipartite Ranking
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Bipartite ranking

Input [ID samples from D over X x {£1}
Output Scorers: X = R
Performance Area under ROC curve (AUC):

AUCP(s) = Exp~g [[50X) > s(X)] + 5 [5(X) = s(X)]

where P = Pr[X]Y = 1],Q = Pr[X]Y = —1]
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AUC maximisation via surrogate losses
Definition of AUC involves 0-1 loss:
AUCP(5) = Bxepyeng | BX) > sOX)] + 31500 =s(X)1]
@ Difficult to directly maximise

Natural strategy: minimise the /-bipartite risk

LBiare¢(5) = Exwp xino [51(S(X) —s5(X)) juze_l(s(x/) _ s(X))}

for a surrogate loss ¢: {1} xR — R



The basic question

Bayes-optimal scorers for the /-bipartite risk:

D x _ . D
Spipart,c = Argmin Lo (s)
s: X—R

D, x D, x .
Want SBipaM C SBiparwl (minimally)

° SIB){;an,m — increasing transforms of 1 : x — Pr[Y = 1|X = x|

D x
’ ?
° SBipart./f !



Approach: reduction to classification

Reduce to classification on pairs:

Bipart(D
H“Blpart l (S ) H"Cig:i l (lef( )

Diff(s) : (x,x') = s(x) — s(x')

Bipart(D) = (P x Q0,0 %P, %)

Classification on Bipart(D) requires decomposable pair-scorers:

Specomp = {Diff(s) : s: X — R}

@ Restricted function class

Bipart(D),x

@ Hampers computing S, by pointwise analysis
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Key tool: proper composite losses

Call loss ¢ strictly proper composite if 3% : [0, 1] — R such that

D, x .
86 L= argxml[g IL’glalss,ﬂ (S) = {‘P ° 71}
51 X—

where 1 : x — Pr[Y = [|X = x]

@ Fundamental losses of class-probability estimation
@ Examples:

» Logistic: ¥:p — loglf%]7

» Exponential: ¥: p — %logl%p

» Squared: ¥ : p — min(1,max(0,p))



Characterisation of optimal solutions

For specific link function, agreement of Bayes-optimal solutions

Proposition

Given any strictly proper composite loss ¢ with a differentiable,
invertible link function ¥,

(FaeR )P v — 82*  —{Won+b:beR}

1 +e—av Bipart,f —
D x

c SBipart,Ol :




Surrogate regret

Surrogate regret bound also follows immediately

Proposition

Given any strictly proper composite loss ¢ satisfying the previous
conditions, 3 Fy : [0,1] — R4 such that

(VD,s: X = R)Fy (regretﬁipmm (s)) < regretgipmj(s),
where

regret]gipart,ﬁ (S ) = IL’{-B)ipart,f (lef(s)) - t:f}CIER IL‘]LB»)ipart,Z (lef(t )) .
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Proof sketch: characterising decomposability
Simple case: optimal pair-scorer is decomposable:

Bipart(D),*
Sg ) - 8Decomp

Lemma
The observation-conditional density Bipart(D) can be expressed

Npair = 6 o Diff(c "1 on)

where o (-) is the sigmoid function.

Consequently, for proper composite /,

sPiranP)* — o 5o Diff(o' on).

Decomposability relies on ¥ “cancelling” o



Other results

D, :
SBipaM for non-decomposable losses (with more effort)

Optimal scorers for p-norm push risk

@ Understanding “ranking the best” in terms of proper losses

Equivalences of minimisers for seemingly disparate risks:

argmin  Ex._px.o [CXP(—SPair(Xaxl))]
Spair - XXX —R

argmin Ex.p xr~o [exp(—(s(X) — s(X))]
s: X—R

argmin E(x v)p [exp(—Ys(X))]
s: X—=R
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