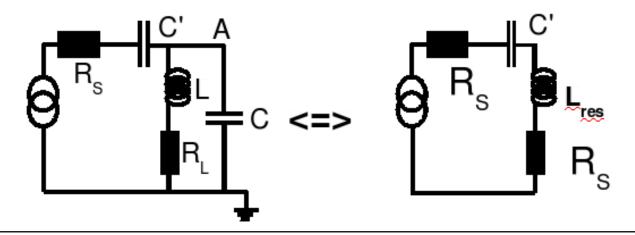
Matching Networks, Q, Smith Charts

- Matching networks and Filters
- Definition of Q.
- Design of matching networks using Q.
- ► L, T, Pi (high Q) and low Q networks

Matching Networks and Filters

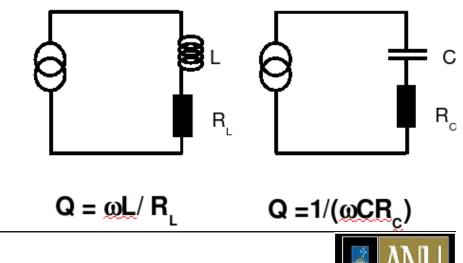
- For convenience we divide frequency dependent (dispersive) four port devices into either matching or tuning networks and filters.
- As we saw in the last lecture, we need to match a source to a load for **both** power transfer and take into account the characteristic impedance of any transmission line connecting them.
- > To do this we use matching networks.
- Matching networks are basic building blocks in all RF circuits.
- Matching networks are required where the source and load impedances contain an appreciable reactance e.g. matching to antennas, transistor amplifiers and oscillators.
- Matching networks only work at one frequency, although they can be designed to be **slightly** broadband.
- Matching networks can be designed as filters.


Filters

- Filters are four port devices with a frequency response tailored for a particular purpose.
- Examples are low pass, high pass, stop band, bandpass.
- > The main concern with filters is their frequency response.
- > They may also match by absorbing stray reactances into the filter.
- ► Filter design is covered by examples in Bowick.

Matching Networks: Simple Example

- Simple visual picture of matching
- > Match R_S to R_L .
- > Choose the L and C so that the parallel resonance as seen at A produces an inductive impedance with a resistive part equal to R_S .
- \blacktriangleright Choose C' to cancel the inductive residual reactance.



Definition of Q

- Q is the radian frequency multiplied by the ratio of electromagnetic energy stored to power dissipated in a reactance.
- Q is a measure of the energy stored in a reactance to that being dissipated.

$$Q = \frac{\omega \, Energy}{Power \, lost}$$

> For a lossless reactance $Q = \infty$.

Proof

 \blacktriangleright Consider the power dissipated in R_L and R_C

$$P_L = \frac{1}{2}I^2 R_L; P_C = \frac{1}{2}I^2 R_C$$

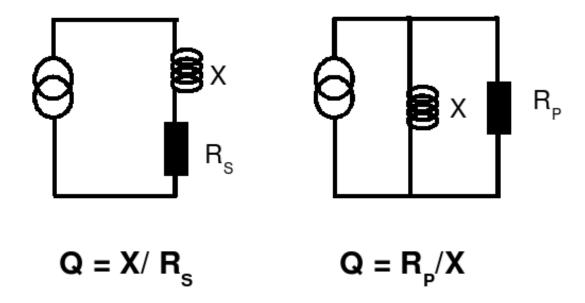
> The energy in an inductor and a capacitor are given respectively by,

$$E_L = \frac{1}{2}LI^2; \quad E_C = \frac{1}{2}CV^2 = \frac{1}{2\omega^2 C}I^2$$

> $Q = \omega$ times ratios of energy to power dissipated are given by,

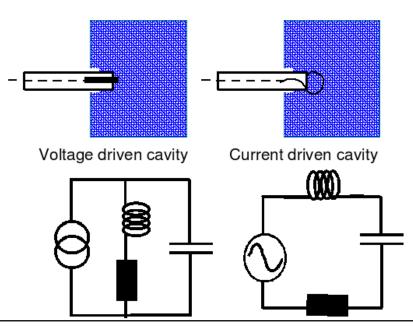
► For an inductive reactance,

$$Q = \frac{\omega(LI^2/2)}{(R_L I^2/2)} = \frac{\omega L}{R_L}$$


► For an capacitive reactance,

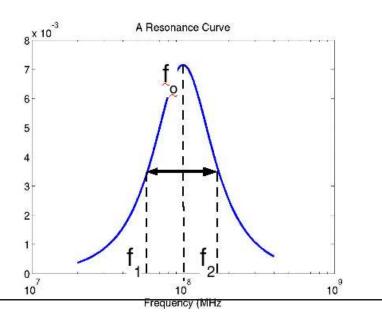
$$Q = \frac{\omega(I^2/(2\omega^2 C))}{(R_C I^2/2)} = \frac{1}{\omega C R_C}$$

Properties


- The formula for Q depends on whether we imagine the R to be in series with or in parallel with the reactance. Just an issue of convenience.
- \blacktriangleright R in series with X, then $Q = X/R_s$
- > R in parallel with X, then $Q = R_p/X$
- > Notice that R_s is not the same as R_p but they are related (an exercise).

But What is Q and How to Measure it?

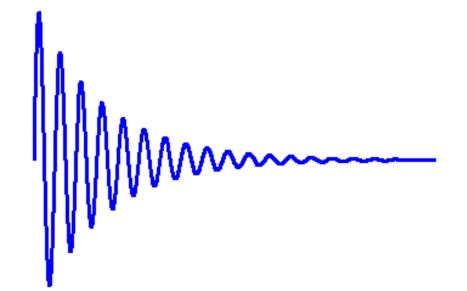
- Place a high component in parallel or series and measure the resonance curve
- Q determines how much oscillating radiofrequency energy per unit power consumption can be supported by a passive circuit in **isolation**.
- Careful not to load the circuit when you measure Q.



How to Measure Q?

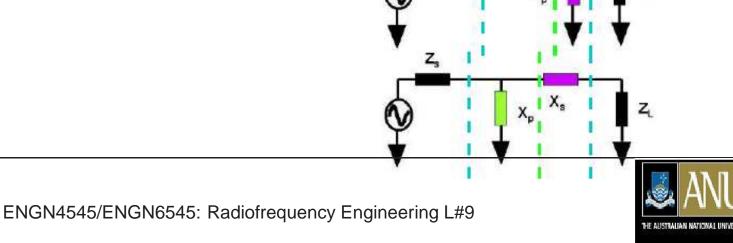
- > By using the typical **Resonance curve**.
- > At the half power frequencies f_1 and f_2 of the cavity resonance.

$$Q = \frac{f_o}{f_2 - f_1}$$


> $f_2 - f_1$ gives the **3dB bandwidth** of the network.

But What is Q and How to Measure it?

- Count the oscillations of a decaying signal in a resonator!
- ► How does this work????


Matching Networks

- Use a matching network to match a source to a load for maximum transferred power.
- $\succ Z_L = Z_S^*$
- Two different types we consider: L-networks and Pi/T networks
- Consist entirely of Ls and Cs.
- How to deal with reactive source and load impedances? Either treat by absorption or resonance
- Dont forget that if there is a transmission line in between the source and the load network then there are two matching networks: one to match the source impedance to Z_o and one to match Z_o to the load impedance.

L-Networks

- Consist of two matching elements.
- > Choose shunt arrangement at Z_L (resp. Z_S) if $R_S < R_L$ (resp. $R_L < R_S$). Use series arrangement on the other side.
- Try to absorb source and load reactances into the matching impedance reactances.
- Since the impedances seen in either direction through the green line must be complex conjugates of each other, then the Q is the same for the circuits on either side of the green line.
- What about the blue lines?

L-Networks

> The relationships between the r_S, x_S and r_L, x_L are given by

$$\frac{r_L}{r_S} = 1 + Q^2, \ \frac{x_L}{x_S} = \frac{1 + Q^2}{Q^2}. \ \text{R}_L \text{ shunt. } \text{R}_S \text{ series.}$$

$$\frac{r_S}{r_L} = 1 + Q^2, \ \frac{x_S}{x_L} = \frac{1 + Q^2}{Q^2}. \ \text{R}_S \text{ shunt. } \text{R}_L \text{ series.}$$
Q obtained from,
$$Q = \sqrt{\frac{r_L}{r_S} - 1}.$$

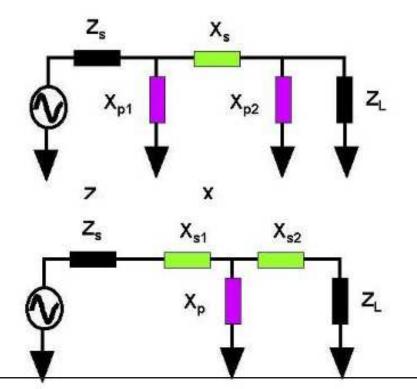
$$Q = \sqrt{\frac{r_S}{r_L} - 1}.$$

$$Q = \sqrt{\frac{r_S}{r_L} - 1}.$$

L-Networks: Summary

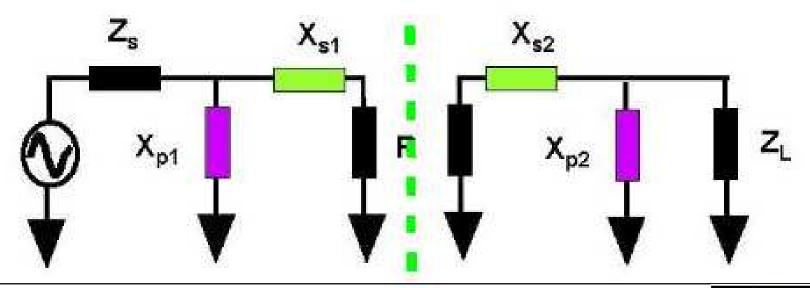
- Place the shunt of the L-network across the highest resistance and the series of the L-network in series with the lower resistance.
- Compute the Q required to match the source and load resistances.
- \blacktriangleright Use the Q to find x_S and x_L from r_S and r_L .
- Remember to place inductors in series with capacitors and vice versa in order to allow for complex conjugates.
- > Absorb or resonate the source and load stray reactances X_S and X_L of the matching network with x_S and x_L .
- Whether we absorb or resonate depends on how large the strays are.

L-Networks: Limitations

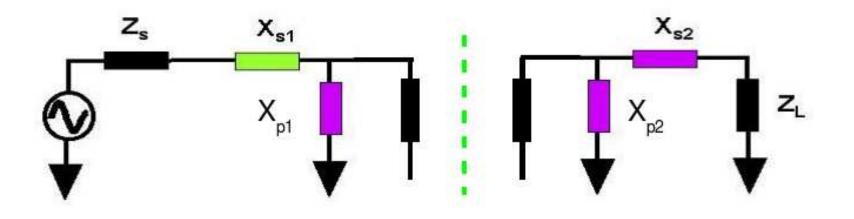

- ► The value of Q arises from the calculation.
- In radiofrequency transmitter and receiver design, the simplest pre-antenna filter is going to be a matched filter like an L-network...
- But what if we need to specify Q?
- **Solution:** T and Pi networks.

T and Pi: High Q Networks

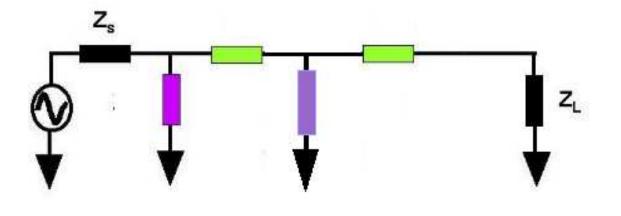
► Can allow us to choose Q.


> Q however is always **higher** than for an L-network. Why?

Analysis of T and Pi Networks


- ► Choose Q.
- Consider the T or Pi network to be a pair of back to back L networks.
- The virtual resistance in a Pi network must be smaller that those on the source and load.

T Networks


The virtual resistance in a T network must be larger that those on the source and load.

Low Q Networks

- > Q however is always **lower** than for an L-network.
- OK for broadband match.

