WAVES and IMPEDANCE

- ► Simple Wave Motion
- Kirchhoff's Current and Voltage Laws
- ► Impedance
- ► Skin effect

Maxwell's Equations: Integral Form

Gauss's law for the electric field. Charge is the source of electric field:

$$\oint_{A} \mathbf{E}.\mathbf{dA} = \frac{q}{\epsilon_0}$$

Faraday's law. A changing magnetic flux causes an electromotive force:

$$\oint_{\gamma} \mathbf{E}.\mathbf{dl} = -\int_{A} \frac{\partial \mathbf{B}}{\partial t}.\mathbf{dA}$$

Gauss's law for the magnetic field. Magnetic fields are source free:

$$\oint_{A} \mathbf{B}.\mathbf{dA} = \mathbf{0}$$

> Ampere's law:

$$\oint \mathbf{B}.\mathbf{dl} = \int \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) .\mathbf{dA}$$

Maxwell's Equations: Differential Form

Gauss's law for the electric field. $\nabla \mathbf{E} = -\frac{\rho}{\rho}$ ϵ_0 **Faraday's law.** $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ Gauss's law for the magnetic field. $\nabla \mathbf{B} = 0$ > Ampere's law: $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$

> The solution of the wave equation for monochromatic waves.

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} : Solution \quad \Psi \left(kx - \omega t \right)$$

Sine waves

$$\Psi (kx - \omega t) = A \exp i(kx - \omega t)$$

where A is the amplitude.

> Substitute in the wave equation:

$$\omega^2/k^2 = c^2$$

 \blacktriangleright k is the wave number or wave vector or propagation factor and ω is the radian frequency.

$$k = \frac{2\pi}{\lambda}, \quad \omega = 2\pi f$$

The exponential form represents sine wave propagation of unit amplitude and with a phase (radians) given by,

$$\phi = kx - \omega t$$

- > Waves with k > 0, propagate toward positive x.
- > Waves with k < 0, propagate toward negative x.

- Waves experience a time delay as they propagate along the medium. The wave fields are said to be *retarded*
- Sinusoidal waves undergo a phase lag or phase shift
- In the complex model in dissipative media, the velocity can be complex.
- Expresses the fact that the wave is attenuated. (example: transmission lines).
- > Only k and not ω is complex. Why?

$$k = k_o + i\gamma$$

► Waves with opposite signs of k interfere and for Standing waves. If $k_1 = +k$ and $k_2 = -k$ then,

 $\Psi(x,t) = A_1 \exp i(kx - \omega t) + A_2 \exp i(-kx - \omega t)$

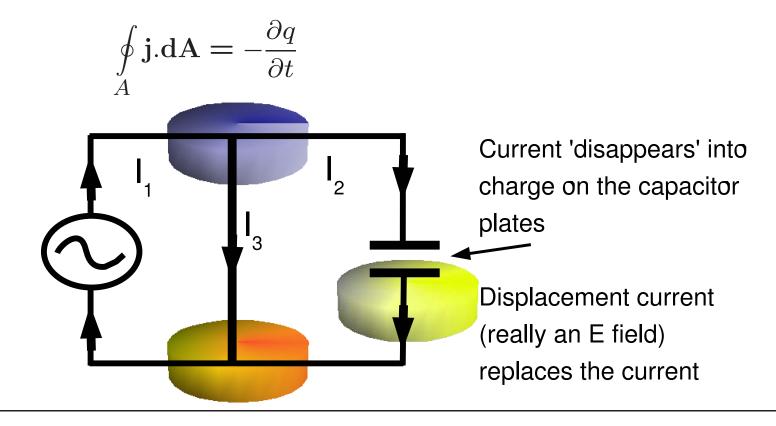
 \blacktriangleright if $A_1 = A_2$ then

 $\Psi(x,t) = A_1 \left[\exp i(kx - \omega t) + \exp i(-kx - \omega t) \right] = 2A_1 \cos kx \exp(-i\omega t)$

- Oscillates in time, but the spatial dependence is stationary.
- > What if A_1 and A_2 are not equal?
- JAVA Applets..

Kirchhoff's Current Law 1

Based on charge conservation in the short wavelength, zero time delay limit.



Kirchhoff's Current Law 2

- ► Let the surface include a junction as in the figure.
- The conservation of current on the surface just implies that the current entering a node is equal to that leaving a node.

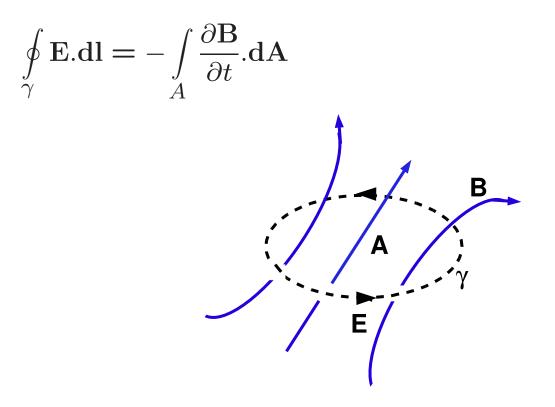
 $\Sigma_k I_k = 0$

where $I_k = \int j_k dA$ and the current density of the *kth* branch is integrated over the cross-section of the wire.

Through a capacitor the current is continued as a displacement current.

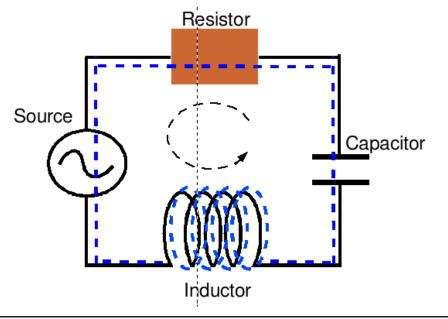
Kirchhoff's Voltage Law 1

Kirchhoff's voltage law is based on Faraday's law.



Kirchhoff's Voltage Law 2

- > We study *small circuits* at **radiofrequencies**.
- In this case...
 - The current is taken to be the same in the entire circuit.
 - Retardation is to be neglected in the calculation of the fields.
- Call this limit **low frequencies** (following Ramo)



Digression: Impedance

- In order to apply Faraday's law we need to define the physical boundaries of the circuit elements that we wish to study.
- These circuit components are of course resistors, inductors, capacitors and transformers.
- Other components such as transmission lines, transmission line transformers, directional couplers and phase hybrids require at least indirectly some wave notions

Impedance 1: Wires (and Metals) at Low Frequencies

- > Rule 1. Because identically: $j = \sigma E$, there is **no free inside a conductor**.
- Apply Current conservation, Ohm's law and the Gauss's law for the electric field in succession...

$$\oint_{A} \mathbf{j}.\mathbf{dA} = \oint_{A} \sigma \mathbf{E}.\mathbf{dA} = -\frac{\partial q}{\partial t} = -\oint_{A} \frac{1}{\epsilon_0} \frac{\partial \mathbf{E}}{\partial \mathbf{t}}.\mathbf{dA}$$

➤ This implies that ...

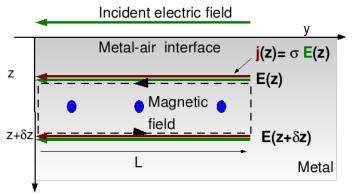
$$\frac{\partial \mathbf{E}}{\partial t} = -\frac{\sigma}{\epsilon_0} \mathbf{E}$$

> The solution to this equation is $E = E_0 \exp(-\sigma/\epsilon_0 t)$

- For copper $\sigma/\epsilon_0 = 6.55 \times 10^{18} s^{-1}$. So that surplus charge must decay in about 10^{-19} seconds.
- Under no conditions can charge appear inside a metal

Impedance 2: Wires (and Metals) at Low Frequencies: Skin Effect

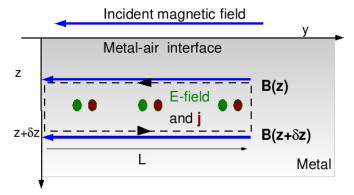
- Current j and therefore electric field however can (slightly) penetrate a metal.
- Consider the following diagram showing an electric field impinging on a metal slab...



$$(E_y(z + \delta z) - E_y(z))L = j\omega L\delta z B_x(z)$$
$$\frac{\partial E_y(z)}{\partial z} = j\omega B_x(z)$$

Impedance 3: Wires (and Metals) at Low Frequencies: Skin Effect

Consider the following diagram showing an magnetic field impinging on a metal slab...



$$(B_x(z+\delta z) - B_x(z))L = L\delta z \left[\mu_0 j_y(z) - \frac{j\omega}{c^2} E_y(z)\right]$$
$$\frac{\partial B_x(z)}{\partial z} = \mu_0 j_y(z) - \frac{j\omega}{c^2} E_y(z)$$

Impedance 4: Wires (and Metals) at Low Frequencies: Skin Effect

- The current density can be replaced by the electric field using Ohm's law... ^{∂Ey(z)}/_{∂z} = jωB_x(z) ^{∂Bx(z)}/_{∂z} = [μ₀σ - ^{jω}/_{c²}] E_y(z)

 Take ∂/∂z in the second equation and substitute in first to obtain... ^{∂²Ey(z)}/_{∂z²} = [jωσμ₀ + k₀²] E_y(z)
- > where $k_0 = \omega/c$
- > Compute the ratio $k_0^2/(\omega \sigma \mu_0) = 10^{-9}$ at 1 GHz.
- Displacement current effects are negligible in good conductors.

Impedance 4: Wires (and Metals) at Low Frequencies: Skin Effect

► The wave equation for metals simplifies to...

$$\frac{\partial^2 E_y(z)}{\partial z^2} = j\omega\sigma\mu_0 E_y(z)$$

► The solution...

$$E_y(z) = \exp\left(-\frac{1+j}{\delta}z\right)$$

> where δ the **skin depth** is given by...

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}}$$

> Thus electromagnetic waves, **j**, **E**, **B**, ... only penetrate a distance δ into a metal. Check the magnitude of δ in lab and web exercises.

Impedance 5: Wires (and Metals) at Low Frequencies: Impedance per Square

From the previous derivation of the skin effect we arrive at the definition of the surface impedance.

Define the current per unit width (x direction) as I_s , then

$$I_{s} = \sigma E_{y}(0) \int_{0}^{\infty} dz \exp\left(-\frac{1+j}{\delta}z\right) = \frac{\sigma\delta}{1+j}E_{y}(0)$$

Incident electric field, **E**
Metal-air interface
(0)= $\sigma E(0)$
Total Current per width, I_s
E(z)
Metal

Impedance 6: Wires (and Metals) at Low Frequencies: Impedance per Square

