Transceiver 1

- > Worth 40% of mark.
- \succ Mark of 80% of this for the report describing all.
- Mark of 20% of this for the logbook, scrap book and description and dead bug results for the frequency synthesiser.
- > $\approx 15 20\%$ within this for the PCB layout design and description (Eagle files).
- \succ 0% for the working circuit.

ENGN4545/6545: Radiofrequency Engineering L#20

1

Lecture #20 Overview

Antennas – Radiation pattern, Gain, Friis transmission, Impedance, Radiated power, Aperture, Received power.

🐥 Satellites

🐥 Link budgets

Antennas

Can be thought of as an opened out transmission line.

Dipole Antennas

The dipole antenna is the fully opened out symmetric twin wire transmission line.

The Monopole Antenna

- The monopole antenna is a half a dipole antenna that protrudes from an earth plane.
- The impedance of a monopole is a half of that of the same dipole antenna. WHY?

How to connect a monopole antenna?

Antennas

- Antennas look like a linear impedance to a transmitter -Radiation impedance, $Z = Z_{ANT}$ (-same for reception)
- Antennas look like a *Thevenin source* (or Norton) to a receiver. What is the O.C. voltage of the source? - Depends on many things.. local signal strength, antenna tuning and orientation.

Antenna Radiated Power

Antennas look like a linear impedance to a transmitter -Radiation impedance, $Z = Z_{ANT}$ (-same for reception)

Therefore the antenna radiated power is given by,

$$P_{rad} = \frac{1}{2} Re \left[\frac{|V_{ant}^2|}{Z_{ant}} \right] = \frac{1}{2} R_{ant} |I_{ant}|^2$$

Antenna Radiation Pattern

Suppose we have a hypothetical point source radiator.

 \clubsuit Then the power radiated leads to a power flux S as follows

$$S = \frac{P_{rad}}{4\pi r^2}$$

Recall the Poynting flux

$$\mathrm{S} = rac{1}{2\mu_o}\mathrm{E} imes \mathrm{B} ~(\mathrm{Watts}/\mathrm{m}^2)$$

Antenna Radiation Pattern of a Transmitting Antenna

- The form of the Poynting flux suggests that there is no such thing as an antenna with an isotropic radiation pattern.
- Real antennas beam or focus electromagnetic energy. Thus there are preferred directions in which they radiate and receive their energy.
- The radiation pattern of a transmitting antenna is the angular three dimensional plot of the normalised Poynting Flux

$$R_P(\theta, \phi) = \frac{|\mathbf{S}|}{|max[\mathbf{S}|]}$$

Antenna Radiation Pattern of a Receiving Antenna

The radiation pattern of a receiving antenna is the angular three dimensional plot of the normalised received power when the antenna is rotated with respect to an incident plane electromagnetic wave

Theorem about Radiation Patterns of Antennas

For any given antenna, the radiation pattern for transmission is the same as that for reception

Follows by reciprocity.

Radiation Pattern of a Dipole Antenna

ENGN4545/6545: Radiofrequency Engineering L#20

Radiation Pattern of a Dipole Antenna

Antenna Gain

- The antenna gain is the ratio of the maximum power flux density S of the antenna to that for the isotropic radiator with the same terminal power.
- Even though the isotropic radiator does not exist, it would have unity gain.
- An antenna radiation pattern looks as follows,

ENGN4545/6545: Radiofrequency Engineering L#20

Antenna Gain

If b and a represent the magnitudes of the electric field, then the gain is defined as,

$$G = \frac{b^2}{a^2} = \frac{S_{max}}{S_{isotropic}}$$

where $S_{isotropic}$ is the isotropic radiator power flux density $(Watts/m^2)$ for the *same* power at the antenna terminals.

In dB with respect to isotropic (dBi)

$$G(dBi) = 10 \log_{10} \left(\frac{S_{max}}{S_{isotropic}} \right)$$

This formula neglects the *insertion loss* in the antenna.

Antenna Gain: Beam Solid Angle

The Beam solid angle is defined as

$$\Omega_A = \int_{4\pi} \int d\Omega \frac{|\mathbf{S}|}{|max [|\mathbf{S}|]}$$

The Antenna Directivity is defined as,

$$D = \frac{4\pi}{\Omega_A}$$

Free Directivity is just the antenna Gain not including insertion loss (K).

$$G = kD$$

Antenna Gain: Beam Solid Angle

- Let us define $\Delta \theta_B$ to be the angle subtended by the beam solid angle.
- We assume that the radiation pattern has cylindrical symmetry around the radius vector that points along the direction of maximum Poynting flux.

Antenna Gain: Beam Solid Angle

 \clubsuit The beam solid angle Ω_A is related to $\Delta \theta_B$ by,

$$\Omega_A = \int_0^{\Delta \theta_B/2} \int_0^{2\pi} \sin \theta d\theta d\phi = 2\pi \left(1 - \cos \frac{\Delta \theta_B}{2} \right)$$

 \clubsuit The angle ϕ is measured around the r-axis and θ from the r-axis.

♣ For an antenna with sufficiently high gain where x is small, $\cos x \approx 1 - x^2/2$, so that

$$\Omega_A = \frac{\pi}{4} (\Delta \theta_B)^2$$

Antenna Gain

For small beamwidths,

$$D = \frac{4\pi}{\Omega_A} = \frac{4\pi r^2}{\pi \frac{\Delta \theta_B r^2}{2}} = \frac{16}{\Delta \theta_B^2}$$

http://www.ece.rutgers.edu/ orfanidi/ewa/ch14.pdf p. 497

Equivalent Isotropic Radiated Power.

- Equivalent Isotropic Radiated Power (EIRP) is the power applied at the terminals of an isotropic antenna.
- EIRP is often used to specify a legal emitted power limit at a certain frequency.
- EIRP limits the allowed terminal power of an antenna such that the maximum flux density so produced is less than or equal to that of an isotropic radiator with a terminal power equal to the EIRP.

$$P_{allowed at antenna terminals} = \frac{EIRP}{G}$$

ENGN4545/6545: Radiofrequency Engineering L#20

Maximum Radiated Power Flux Density of an Antenna

The maximum power flux density of a radiating antenna is just given by the gain multiplied by the power of the isotropic radiator excited with the same terminal power.

$$S_{MAX} = \frac{GP_{transmitted}}{4\pi r^2}$$

Effective Aperture of a Dish Antenna

- Imagine a planar light beam illuminating a round hole on a black screen at normal incidence.
- The Rayleigh condition for a diffraction limited aperture describes the angle of expansion of the beam on exit from the hole.

$$\Delta \theta_B = \frac{4\lambda}{\pi d}$$

where λ is the wavelength, $\Delta \theta_B$ is the opening angle of the beam and d is the diameter of the aperture.

18.3 m INTELSAT Standard A Earth Station

ENGN4545/6545: Radiofrequency Engineering L#20

Effective Aperture of a Dish Antenna

- Such a beam can also be formed by a parabolic dish of diameter d which is excited at its focus.
- The antenna gain G of the dish is given by

$$G = \frac{16}{\Delta \theta_B^2} = \left(\frac{\pi d}{\lambda}\right)^2$$

$$A_e = \frac{\pi d^2}{4} = \frac{G\lambda^2}{4\pi}$$

$$\clubsuit$$
 For a dish antenna, $A_e = \frac{G\lambda^2}{4\pi}$

- Consider communications between a dish and an arbitrary antenna each matched to a pair of signal generators.
- \clubsuit If the dish transmits and the antenna receives then $P_A = \frac{A_A G_D P}{4\pi r^2}$
- \clubsuit If the antenna transmits and the dish receives then $P_D = \frac{A_D G_A P}{4\pi r^2}$
- A By reciprocity $P_A = P_D$, therefore $A_A/G_A = A_D/G_D$.
- A Because $A_D = \frac{G_D \lambda^2}{4\pi}$, then $A_A = \frac{G_A \lambda^2}{4\pi}$ Q.E.D

Consider communications between a dish and an arbitrary antenna each matched to a pair of signal generators.

The two antenna system is a four port network so that,

 $I_D = y_D V_D + y_{DA} V_A$

 $I_A = y_{AD}V_D + y_A V_A$

- We must assume that the dish absorbs all the radiation incident upon it in both its terminating impedances
- Effectively we are going to show that any antenna can do the same as a dish antenna... Dish antennas are just convenient mathematical objects.

Step 1: Let the antenna be the transmitter and the dish the receiver.

$$I_D = y_{DA}V_A$$

🐥 Step 1: Substitute

$$I_D^2 R_D = \frac{A_D G_A V_A^2}{16\pi R_A r^2}$$

$$I_D^2 = |y_{DA}|^2 |V_A|^2$$
 so

$$|y_{DA}|^2 R_A R_D = \frac{A_D G_A}{16\pi r^2}$$

Step 2: Let the dish be the transmitter and the antenna the receiver.

$$I_A = y_{AD}V_D$$

 $2.\frac{1}{2}I_A^2 R_A = \frac{A_A G_D P_D}{4\pi r^2}$

Power balance:

Step 2: Substitute

$$I_A^2 R_A = \frac{A_A G_D V_D^2}{16\pi R_D r^2}$$

$$I_A^2 = |y_{DA}|^2 |V_D|^2$$
 so

$$|y_{AD}|^2 R_D R_A = \frac{A_A G_D}{16\pi r^2}$$

Compare the results of steps 1 and 2.

$$|y_{DA}|^2 R_A R_D = \frac{A_D G_A}{16\pi r^2}; \qquad |y_{AD}|^2 R_A R_D = \frac{A_A G_D}{16\pi r^2}$$

Divide these two equations...

$$\frac{|y_{DA}|^2}{|y_{AD}|^2} = \frac{A_D G_A}{A_A G_D}$$

♣ Thus provided that reciprocity holds, we may finally write, $A_A = \frac{A_D G_A}{G_D} = \frac{G_D \lambda^2 G_A}{4\pi G_D} = \frac{G_A \lambda^2}{4\pi}$

Antenna Aperture: Useful to compute received power.

The effective aperture of any antenna is given by:

$$A_e = \frac{G\lambda^2}{4\pi}$$

where λ is the wavelength, G is the antenna gain.

- Effective aperture only depends on antenna gain and the wavelength of operation.
- ♣ E.G. A low gain monopole tuned to 3 MHz has an aperture $A_e = G\lambda^2/4/\pi \approx 100^2/4/\pi = 800m^2$!!!

Antenna Aperture

If an antenna is oriented for maximum signal and correctly tuned $Z_{load} = Z^*_{ANT}$, it will intercept a maximum signal power equal to:

$$P = S_i A_e$$

- A where S_i is the incident power flux density (Watts per m^2) and A_e is the *antenna effective aperture*.
- An antenna absorbs half this power into a matched load and reradiates (scatters) the other half WHY?.

Example: The gain of a satellite dish

♣ Consider a dish of diameter D for 4 GHz ($\lambda = 7.5cm$). How big must D be for a gain of 50 dBi?

$$A_e = \frac{\pi D^2}{4}$$

$$A_e = \frac{G\lambda^2}{4\pi}$$

 $\stackrel{\bullet}{\to}$ Thus we can compute the diameter. 50dBi = 10⁵

$$D = \sqrt{(G)}\frac{\lambda}{\pi} = \sqrt{(10^5)}\frac{\lambda}{\pi} = 7.55 \, m$$

The Friis Transmission Formula

- A We know how to calculate the power radiated by an antenna, the maximum flux density of an antenna from its gain and the power intercepted by an antenna from A_e
- If we assume that the antennas are aligned for maximum transmission and reception, then in free space,

$$P_r = \frac{G_t A_r P_t}{4\pi r^2}$$

where A_r is the receiving aperture of the receiving antenna.

 $\clubsuit \text{ Since } A_r = G_r \lambda^2 / (4\pi)$

$$P_r = G_t G_r P_t \left[\frac{\lambda}{4\pi r}\right]^2$$

Antennas (Cont.): Antenna Noise

- Random noise comes from the sky: E.G. The cosmic radiation background at $3^{o}K$.
- Black body radiation => it must be there at finite temperature even in a vacuum!
- This noise can be picked up by antennas. In a receiver it adds to the noise of the receiver electronics.
- ♣ PSD = $N_o = KT$ where K = $1.38 \times 10^{-23} J/^o K$ and T is the absolute temperature. Thus the noise power is

$$P_n = kTB$$

Such noise picked up by the antenna leads to the definition of antenna temperature.

Link Budget: Friis transmission

The Friis transmission formula describes e.m. propagation between line of sight antennas:

$$P_r = P_t \frac{G_1 G_2 \lambda^2}{(4\pi r)^2}$$

where P_t and P_r are the transmit and received powers, $G(=G_1,G_2)$ is the gains of the antennas at each end of the link, r is the distance between the antennas and λ the wavelength.

Note in particular the dB with respect to 1 mW.. dBm

$$P(dBm) = 10 \log_{10} \frac{P(Watts)}{.001}$$

Link Budget: Example

Determine required parabolic dish diameter of a 4 GHz earth station antenna if its system temperature is 100k for an S/N ratio of 20 dB, Bw 30MHz and satellite transponder power of 5 Watts, dish diameter 2 m and spacing between (GEO) satellites = 2^{o}

In dB...

$$G_{earth} = (-P_t + 20 + P_n) - G_{sat} - 10log_{10}[(\frac{\lambda}{4\pi 36000000})^2]$$
where $G_{sat} = \frac{4\pi A_{sat}}{\lambda^2} = 35.4dB$ and $A_{sat} = \pi D_{sat}^2/8 = 1.6m^2$ is the satellite antenna aperture (assuming 50% aperture efficiency).

Link Budget: Example

Using noise and transmitted powers (dBm)

 $P_n = 10 \log_{10}(KTB/.001) = -104$ $P_t = 10 \log_{10}(5/.001) = 37$

we obtain $G_{earth} = 39.3 dB$ and

$$A_{earth} = (10^{G_{earth}/10}) \frac{\lambda^2}{4\pi} => D_{earth} = 2\sqrt{(2A_{earth}/\pi)}$$

and $D_{earth} = 3.12m$.

Satellite Frequency Bands

SATELLITE FREQUENCY BANDS

- L BAND 1-2 GHZ MOBILE SERVICES
- S BAND 2.5-4 GHZ
- C BAND 3.7-8 GHZ
- X BAND 7.25-12 GHZ
- Ku BAND 12-18 GHZ
- Ka BAND 18-30.4 GHZ
 FIXED SERVICES
- V BAND 37.5-50.2 GHZ

MOBILE SERVICES FIXED SERVICES MILITARY FIXED SERVICES FIXED SERVICES

General Satellite System Block Diagram.

Typical ground terminal

Full L-Band IF Satellite Station Components

