Lecture #19 Overview

link budgets

1

Satellite Communications

Originally proposed by Arthur C. Clarke (1945)

Therefore must be science fiction! (2001 a space odyssey is by now known to be science fiction...)

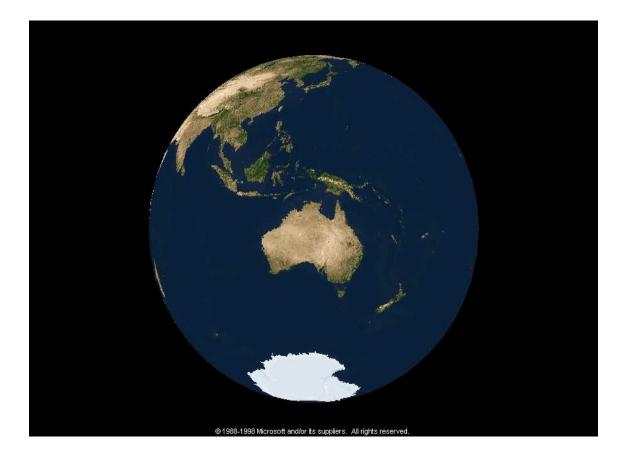
But 1951: Up went sputnik.

- Then in 1963: The first successful GEO satellite was in orbit (Syncom 2).
- Now there are hundreds of satellites in the geostationary or Clarke orbit.

Satellite Communications Systems

- Have made *transoceanic relaying* of television signals possible (e.g. Olympics, World Cup, Gulf War...)
- Most communication satellites are in geostationary orbit (GEO)
- This is a *circular* orbit in the Earth's *equatorial plane* and is around 36000km above the equator so that the orbital period is the same as Earth's spin rotation.
- So, a GEO satellite appears stationary from earth.
- ♣ (Note restricted by speed. Too fast ⇒ take off into space, too slow ⇒ fall back to earth.)

Earth as seen from geostationary orbit (36,000 kms)



THE AUSTRALIAN NATIONAL UNIVERSITY

ENGN3214: Telecommunications Systems L#19

So how do they stay up?

Satellite orbit is a balance between the centrifugal and gravitational forces (typical of planetary motion)

$$m\Omega^2 R = \frac{GM_em}{R^2}$$

where $\Omega = \frac{2\pi}{T}$ is the angular rotation speed, R is the satellite orbital radius, G = $6.67 \times 10^{-11} SI$ units, M_e the mass of the earth $5.98 \times 10^{24} kgs$ and m is the mass of the satellite.

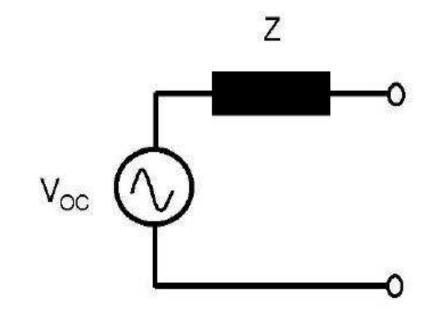
Orbital parameters do NOT depend on the mass of the satellite. Kepler's law:

$$\frac{R^3}{T^2} = \frac{GM_e}{4\pi^2}$$

+ For a GEO satellite, $R = 36000 kms => T = \sqrt{\frac{4\pi^2 R^3}{GM_e}} \approx 1 day.$

Antennas

- Antennas look like a linear impedance to a transmitter -Radiation impedance, $Z = Z_{ANT}$ (-same for reception)
- Antennas look like a *Thevenin source* to a receiver. What is the O.C. voltage of the source? - Depends on many things.. local signal strength, antenna tuning and orientation.



Antennas

If an antenna is oriented for maximum signal and correctly tuned $Z_{load} = Z^*_{ANT}$, it will intercept a maximum signal power equal to:

$$P = S_i A_e$$

+ where S_i is the incident power flux density (Watts per m^2) and A_e is the *antenna effective aperture*.

Antennas: Gain

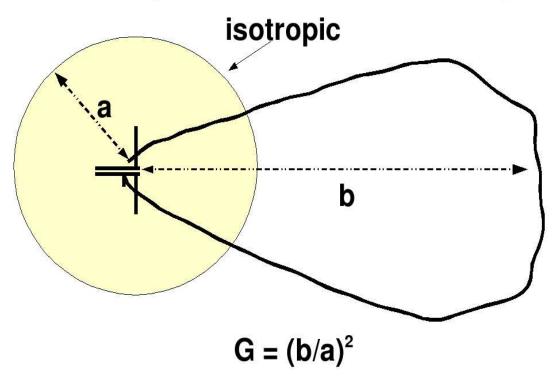
- Suppose we have a hypothetical point source radiator.
- \clubsuit Then the power radiated leads to a power flux S as follows

$$S = \frac{P_{rad}}{4\pi r^2}$$

- Such a source (even though it does not exist) has unity gain.
- Antennas beam or focus electromagnetic energy. Thus there are preferred directions in which they radiate and receive their energy.
- The antenna gain is the ratio of the maximum power flux density S of the antenna to that for the isotropic radiator with the same overall radiated or terminal power (unit: dBi=dB isotropic).
- Related quantity: equivalent isotropic radiated power or EIRP restricts the maximum radiated power flux equal to that of the isotropic antenna.

Antennas: Gain (Cont.)

Radiation patterns for fixed terminal power



Antennas (Cont.): Antenna Effective Aperture

The antenna effective aperture is given by:

$$A_e = \frac{G\lambda^2}{4\pi}$$

where λ is the wavelength, G is the antenna gain.

- Effective aperture only depends on antenna gain and the wavelength of operation.
- An antenna absorbs half this power into a matched load and reradiates (scatters) the other half WHY?.

♣ E.G. A low gain monopole tuned to 3 MHz has an aperture $A_e = G\lambda^2/4/\pi \approx 100^2/4/\pi = 800m^2!!!$

Antennas (Cont.): Antenna Effective Aperture

The Rayleigh condition for a diffraction limited aperture

$$\Delta \theta = \frac{4\lambda}{\pi D}$$

where λ is the wavelength and $\Delta \theta$ is the opening angle of the beam.

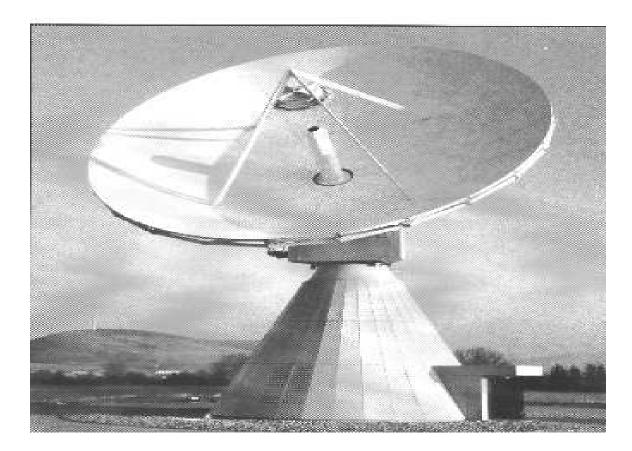
The antenna gain G is given by

$$G = \frac{16}{\Delta \theta^2}$$

🐥 Thus

$$G = \frac{\pi d}{\lambda^2}$$

18.3 m INTELSAT Standard A Earth Station



THE AUSTRALIAN NATIONAL UNIVERSITY

ENGN3214: Telecommunications Systems L#19

Example: The gain of a satellite dish

♣ Consider a dish of diameter D for 4 GHz ($\lambda = 7.5cm$). How big must D be for a gain of 50 dBi?

$$A_e = \frac{\pi D^2}{4}$$

$$A_e = \frac{G\lambda^2}{4\pi}$$

 \therefore Thus we can compute the diameter. 50dBi = 10^5

$$D = \sqrt{(G)}\frac{\lambda}{\pi} = \sqrt{(10^5)}\frac{\lambda}{\pi} = 7.55 \, meters!$$

Antennas (Cont.): Antenna Noise

- Random noise comes from the sky: E.G. The cosmic radiation background at $3^{o}K$.
- Black body radiation => it must be there at finite temperature even in a vacuum!
- This noise can be picked up by antennas. In a receiver it adds to the noise of the receiver electronics.
- ♣ PSD = $N_o = KT$ where K = $1.38 \times 10^{-23} J/^o K$ and T is the absolute temperature. Thus the noise power is

$$P_n = kTB$$

Such noise picked up by the antenna leads to the definition of antenna temperature.

Link Budget: Friis transmission

The Friis transmission formula describes e.m. propagation between line of sight antennas:

$$P_r = P_t \frac{G_1 G_2 \lambda^2}{(4\pi r)^2}$$

where P_t and P_r are the transmit and received powers, $G(=G_1,G_2)$ is the gains of the antennas at each end of the link, r is the distance between the antennas and λ the wavelength.

Note in particular the dB with respect to 1 mW.. dBm

$$P(dBm) = 10 \log_{10} \frac{P(Watts)}{.001}$$

Link Budget: Example

Determine required parabolic dish diameter of a 4 GHz earth station antenna if its system temperature is 100k for an S/N ratio of 20 dB, Bw 30MHz and satellite transponder power of 5 Watts, dish diameter 2 m and spacing between (GEO) satellites = 2°

In dB...

$$G_{earth} = (-P_t + 20 + P_n) - G_{sat} - 10log_{10}[(\frac{\lambda}{4\pi 36000000})^2]$$
where $G_{sat} = \frac{4\pi A_{sat}}{\lambda^2} = 35.4dB$ and $A_{sat} = \pi D_{sat}^2/8 = 1.6m^2$ is the satellite antenna aperture (assuming 50% aperture efficiency).

Link Budget: Example

Using noise and transmitted powers (dBm)

 $P_n = 10 \log_{10}(KTB/.001) = -104$ $P_t = 10 \log_{10}(5/.001) = 37$

we obtain $G_{earth} = 39.3 dB$ and

$$A_{earth} = (10^{G_{earth}/10}) \frac{\lambda^2}{4\pi} => D_{earth} = 2\sqrt{(2A_{earth}/\pi)}$$

and $D_{earth} = 3.12m$.

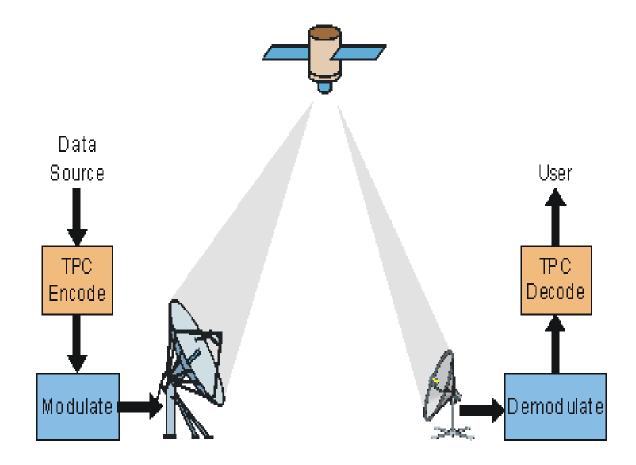
Satellite Frequency Bands

SATELLITE FREQUENCY BANDS

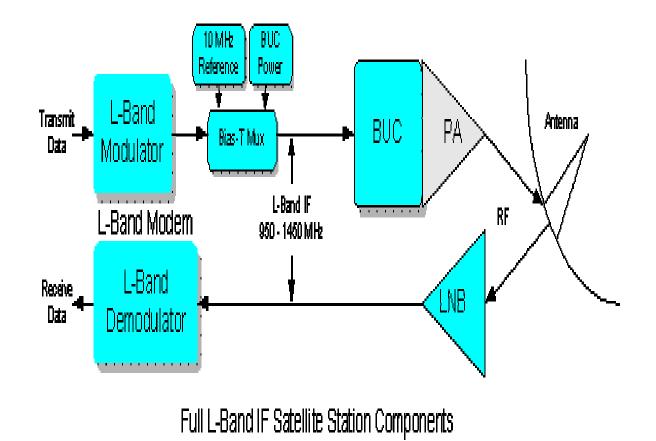
- L BAND 1-2 GHZ
- S BAND 2.5-4 GHZ
- C BAND 3.7-8 GHZ
- X BAND 7.25-12 GHZ
- Ku BAND 12-18 GHZ
- Ka BAND 18-30.4 GHZ
 FIXED SERVICES
- V BAND 37.5-50.2 GHZ

MOBILE SERVICES MOBILE SERVICES FIXED SERVICES MILITARY FIXED SERVICES FIXED SERVICES

General Satellite System Block Diagram.



Typical ground terminal



Satellite Communications Systems (cont.)

- The most desired frequency band for satellite communications is 6GHz on the uplink (Earth to satellite) and 4GHz on the downlink (satellite to earth).
- ♣ Why? In this range: 1) *equipment* is relatively inexpensive, 2) *cosmic noise* is small and 3) *rainfall* does not appreciably *attenuate* the signals (worse for higher $f \Rightarrow$ smaller wavelength of order of size of raindrops.)
- Unfortunately, these bands are already allocated to *terrestrial* microwave radio relay links so the power density on Earth from satellites operating in these bands is restricted.

Satellite Communications Systems (cont.)

Also need to carefully place receivers for satellites in these bands so that they do not receive interference signals from these microwave links.

A In the 6GHz/4GHz band, satellites are assigned a *spacing* of 2° .

- Many satellite transponders do not demodulate the received signal before retransmission. They simply amplify, down-convert (from say 6GHz to 4GHz) and then retransmit.
- As technology allows, satellites will also process the incoming signals (e.g. filter noise, reshape pulses) before retransmission. Will result in better BER.

