Transistors at Radio Frequency

- ► How to describe transistors at radiofrequency.
- Equivalent circuits and S-parameters
- Y-parameters and SOLVE
- Stability of transistor amplifiers (brief)
- ► The Klapp RF Oscillator
- SOLVE Example: The Klapp Oscillator

Transistors at Radio Frequency

- Transistors are more complex at high frequencies due to the effects of internal parasitic inductance and capacitance.
- Always try first to seek S-parameters from manufacturers.
- Or use a simulation package that has them in its database.
- ► Failing all this.. do a model. Here's how.
- We try to glean enough information from datasheets and independent measurements to form a physical model to predict S-parameters.

BF199 VHF Transistor

Philips Semiconductors

NPN medium frequency transistor

FEATURES

- · Low current (max. 25 mA)
- · Low voltage (max. 25 V).

APPLICATIONS

· Output stage of a vision IF amplifier.

DESCRIPTION

NPN medium frequency transistor in a TO-92; SOT54 plastic package.

PINNING

PIN	DESCRIPTION	
1	base	
2	emitter	
3	collector	

Product specification

BF199

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	-	40	٧
V _{CEO}	collector-emitter voltage	open base	-	-	25	V
I _{CM}	peak collector current		-	-	25	mA
Ptot	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	-	-	500	mW
h _{FE}	DC current gain	$I_C = 7 \text{ mA}; V_{CE} = 10 \text{ V}$	38	-	-	
f _T	transition frequency	$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}; f = 100 \text{ MHz}$	-	550	-	MHz

Radio Frequency Transistor circuit model

BF199 Datasheet

Product specification

NPN medium frequency transistor

BF199

LIMITING VALUES

Philips Semiconductors

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	40	v
VCEO	collector-emitter voltage	open base	-	25	v
VEBO	emitter-base voltage	open collector	-	4	v
lc .	collector current (DC)		-	25	mA
I _{CM}	peak collector current		-	25	mA
Ptot	total power dissipation	T _{amb} ≤ 25 °C; note 1	-	500	mW
Tstg	storage temperature		-65	+150	°C
Тį	junction temperature		-	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Note

1. Transistor mounted on an FR4 printed-circuit board.

THERMAL CHARACTERISTICS

	SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
1	R _{h j-a}	thermal resistance from junction to ambient	note 1	250	ĸw

Note

1. Transistor mounted on an FR4 printed-circuit board.

CHARACTERISTICS

Tarrb = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
lcao	collector cut-off current	IE = 0; VCB = 40 V	-	-	100	nA
leao	emitter cut-off current	I _C = 0; V _{EB} = 4 V	-	-	100	nA
h _{FE}	DC current gain	I _C = 7 mA; V _{CE} = 10 V	38	-	-	
VBE	base-emitter voltage	I _C = 7 mA; V _{CE} = 10 V	-	775	925	mV
Cre	feedback capacitance	I _C = 0; V _{CB} = 10 V; f = 1 MHz	-	-	0.5	рF
fT	transition frequency	I _C = 5 mA; V _{CE} = 10 V; f = 100 MHz	-	550	-	MHz

Networks: Y-parameters vs S-parameters

> Y-parameters and S-parameters are related: $y_i = \frac{(1+S_{22})(1-S_{11}) + S_{12}S_{21}}{\Lambda Z_0}$ $y_r = \frac{-2S_{12}}{\Lambda Z_0}$ $y_f = \frac{-2S_{21}}{\Lambda Z_0}$ $y_o = \frac{(1+S_{11})(1-S_{22}) + S_{12}S_{21}}{\Delta Z_0}$ where $\Delta = (1 + S_{11})(1 + S_{22}) - S_{21}S_{12}$.

Definition of Y-parameters

Need these for employ solve.

$$I_i = y_i V_{eb} + y_r V_{ec}$$

$$I_o = y_f V_{eb} + y_o V_{ec}$$

Using Solve For Transistors

Example: A BF199 Common Emitter Amplifier

- Use the large signal equivalent (left) to set the bias point.
- Use the small signal equivalent (right) to set up SOLVE.

Stability Criteria

Is the transistor stable in isolation? Linville criterion

$$C = \frac{|y_r y_f|}{2g_i g_r - real(y_r y_f)}$$

Often we need to know if a transistor amplifier is stable.

► If a transistor with given y-parameters is loaded by source and load admittances $Y_S = G_S + jB_S$ and $Y_L = G_L + jB_L$, then the transistor circuit is unconditionally stable if,

$$K = \frac{2(g_i + G_S)(g_o + G_L)}{|y_r y_f| + real(y_r y_f)} > 1$$

The Stern Stability Criterion

A number of useful related formulae.. see the web brick.

Klapp RF Oscillator

- Model the transistor using S and Y parameters in exactly the same way as the transistor amplifier.
- In the project the oscillator is a VCO: the MC145170 PLL has to control the frequency of the oscillator by applying a voltage to a varactor diode or voltage variable capacitor (VVC).
- > We need to prove that the oscillator will oscillator and at what frequency.
- In SOLVE we inject a current into the tank circuit of the oscillator and determine the frequency at which the ractance of the input impedance is zero and the resisitance is negative. WHY?

Varactor Diode

Diode capacitance $C_T = f(V_R)$ f = 1 MHz

Klapp RF Oscillator

Using SOLVE: Compute S-parameters and Y-parameters

```
% The parameters of the oscillator circuit
%Step 1 Run S_parameters to generate the S-parameters for
% the transistor.
clear all
S_parameters_BF199
det = (1 + S11) \cdot (1 + S22) - S21 \cdot S12;
%Step 2 calculate the y-parameters
yi = ((1 + S22) \cdot (1 - S11) + S12 \cdot S21) \cdot /det/Z0;
yr = -2*S12./det/Z0;
vf = -2*S21./det/Z0;
y_0 = ((1 + S_{11}) \cdot (1 - S_{22}) + S_{12} \cdot S_{21}) \cdot (det/Z_0);
                   %number of nodes
N = 6;
y = zeros(N,N,Nvals); %The admittances
omega = 2*pi*frequency;
```


Using SOLVE: Set circuit values

```
CT = 2e - 12;
LT = 8000.e-9;
CLT = .1e - 12;
\overline{Z}CLT = 1./j./omega/CLT;
ZLT = 1.+j*omega*LT;
ZT = (ZCLT.*ZLT)./(ZCLT + ZLT) + 1./j./omega/CT;
YT = 1./ZT;
C1 = 10.0e - 12;
Z1 = 1/j./omega/C1;
C2 = 20.0e - 12;
Z2 = 1/j./omega/C2;
R1 = 43.;
R2 = 3300.;
RL = 50.;
```


Using SOLVE: Set SOLVE admittances

```
y(1,2,:) = YT;
y(2,1,:) = YT;
y(3,2,:) = 1./Z1;
y(2,3,:) = 1./Z1;
y(4,2,:) = yi+yr;
y(5,2,:) = -yr;
y(2,3,:) = 1./Z1;
y(3,2,:) = 1./Z1;
y(4,3,:) = 1/R1;
y(3,4,:) = 1/R1;
y(6,3,:) = 1/R2 + 1./Z2;
y(3,6,:) = 1/R2 + 1./Z2;
y(2,4,:) = yi+yf;
y(5,4,:) = yr+yo;
y(3,4,:) = 1/R1;
y(4,3,:) = 1/R1;
y(2,5,:) = -yf;
y(4,5,:) = yf+yo;
y(6,5,:) = 1/RL;
y(5,6,:) = 1/RL;
```


KLAPP oscillator input impedance

