Using igraph for Visualisations

Dr Jamsheed Shorish

The Australian National University
jamsheed.shorish@anu.edu.au

15 July 2013 - Beihang University
Introduction

- igraph is a network analysis and visualisation software package, currently for R and Python.
- It can be found at igraph.sourceforge.net.
- For our course, we will be using igraph for R.

Screenshot from the igraph website, depicting an Erdős - Rényi graph and associated colour-coded components, or clusters.
Installing igraph for R

- Installation of igraph for R is very simple—the command is:

 > install.packages('igraph')

- You may need to specify a particular directory if e.g. you don’t have privileges to install to the system location for R:

 > install.packages('igraph', lib='my/package/location')

- To load the library, use

 > library('igraph',lib)

- or

 > library('igraph', lib.loc='my/package/location')
Loading a Dataset

- The first thing to do is to get some data!
- For consistency I'll assume that all data is loaded in `graphml` format.
- This can be exported by the Python `networkx` package.
- To load a network dataset from a file, use:

```python
> G = read.graph('network.graphml', format = 'graphml')
```

- Confirm that your dataset is recognised by `igraph`:

```python
> G
IGRAPH D-W- 560 1257 --
\/
+ attr: label (v/c), id (v/c), weight (e/n ), id (e/c)
```
Layout of a Graph

- To visualise a network well, use the `layout` function of `igraph` to specify the layout prior to plotting.
- Different networks work best with different layouts—this is more art than science.
- As a suggestion, first use `layout.auto` to allow `igraph` to select an appropriate layout.
- For medium-sized networks, a force-directed layout such as `layout.fruchterman-reingold` or `layout.drl` can be used.
- For large connected networks, `layout.lgl` is ideal, or again `layout.drl` can be selected.
- Set a layout with:

```r
> layout = layout.auto
```
Plotting a Network

- To visualise the network, use the `plot` command.
- This may be very slow if you plot to the screen, so one recommendation is to plot to a graphics file instead.
- For example, to plot to a PNG file, use:

```r
> png('my_png.png', width = 1600, height = 900)
> plot(G, layout = layout, vertex.size=3, vertex.label=NA, asp=9/16)
> dev.off()
```
Plotting Hashtag Use

Using Vertex Labels

- The previous graph had no labels inserted—here is the same figure with labels, using the `V(G)$name` graph attribute:

```r
> plot(G, layout = layout, vertex.size=3, vertex.label=V(G)$name, asp=9/16)
```
Colouring by Attribute

- Plots can be coloured according to attributes:
- Select colours according to attribute values—for example, if an attribute `emotion` has two values `happy` and `sad`, do:

```r
> V(G)$color = ifelse(V(G)$emotion == "happy", "blue", "orange")
> plot(G, layout = layout, vertex.size = 3, vertex.label = NA, asp = 9/16)
```
Colouring by Attribute

- This will colour happy nodes blue, sad nodes orange, and will suppress vertex labels.
Weighting Edges

Networks with a weight attribute for edges can be plotted with heavier edges for heavier weights:

```r
> V(G)$color = ifelse(V(G)$emotion == "happy", "blue", "orange")
> plot(G, layout = layout, vertex.size=3, vertex.label=NA, edge.width=E(G)$weight, asp=9/16)
```
Changing Node Size

The sizes of nodes can also be used to distinguish between different attribute values. For example, we can resize nodes according to degree:

\[
V(G)\text{ size } = \text{degree}(G) \times 3
\]

\[
\text{plot}(G, \text{layout } = \text{layout}, \text{vertex.label=NA}, \text{edge.width=}$E(G)\text{ weight}, \text{asp}=9/16)
\]
More Advanced Plots

- There are many more options to allow for visualisations on the basis of network characteristics.
- For example, if a network has several components, then the components can be coloured differently and visualised:

```r
> components = clusters(G)$membership
> colours = sample(rainbow(max(components) + 1))
> V(G)$color = colours[components+1]
> plot(G, layout=layout, vertex.label=NA, vertex.size=3)
```
Advanced Plots: Clustering

Here is the result of the previous set of commands for an Erdős Rényi network, similar to the demonstration screenshot from the homepage of igraph: