Hoare Logic: Part II

COMP2600 — Formal Methods for Software Engineering

Jinbo Huang

Australian National University
Factorial

\{ n \geq 0 \}\]

\texttt{fact := 1;}
\texttt{i := n;}
\texttt{while (i>0) do}
\begin{align*}
& \quad \texttt{fact := fact * i;} \\
& \quad \texttt{i := i-1}
\end{align*}
\{ \texttt{fact = n!} \}
First we need a loop invariant \(P \)

\[
\begin{align*}
\text{fact} & := 1; \\
i & := n; \\
\text{while} \ (i>0) \ \text{do} \\
& \quad \text{fact} := \text{fact} \times i; \\
& \quad i := i-1 \\
{\{ \text{fact} = n! \}}
\end{align*}
\]

After each iteration, \(\text{fact} = n \times (n-1) \times \cdots \times (i+1) \)

\(P \equiv (\text{fact} \times i! = n!) \) seems plausible

However, we want \((P \land i \leq 0) \Rightarrow (\text{fact} = n!) \)

Take \(P \equiv (\text{fact} \times i! = n! \land i \geq 0) \)
Check \(P \equiv (\text{fact} \ast i! = n! \land i \geq 0) \) is an invariant

That is,

\[
\{ P \land i > 0 \} \text{fact} := \text{fact} \ast i; \ i := i-1 \{P\}
\]

By assignment, we have

\[
\{ \text{fact} \ast (i-1)! = n! \land i - 1 \geq 0 \} \ i := i-1 \ \{ \text{fact} \ast i! = n! \land i \geq 0 \}
\]

Equivalently,

\[
\{ \text{fact} \ast (i-1)! = n! \land i > 0 \} \ i := i-1 \ \{ \text{fact} \ast i! = n! \land i \geq 0 \}
\]

By assignment again, we have

\[
\{ \text{fact} \ast i \ast (i-1)! = n! \land i > 0 \}
\]

\[
\text{fact} := \text{fact} \ast i
\]

\[
\{ \text{fact} \ast (i-1)! = n! \land i > 0 \}
\]

This precondition is precisely \(P \land i > 0 \)
Completing the proof

\[P \equiv (\text{fact} \times i! = n! \land i \geq 0) \]

Apply the while-rule:

\[
\{P\} \text{ while (i>0) } \ldots \{P \land i \leq 0\}
\]

By postcondition weakening,

\[
\{P\} \text{ while (i>0) } \ldots \{\text{fact} = n!\}
\]

Check that the \textit{initialisation establishes the invariant}:

\[
\{n \geq 0\}
\]

\[
\text{fact := } 1; \ i := n
\]

\[
\{\text{fact} \times i! = n! \land i \geq 0\}\]
Formally

\[P \equiv (\text{fact} \ast i! = n! \land i \geq 0) \]

1. \[\{1 \ast n! = n! \land n \geq 0\} \text{fact} := 1 \]
 \[\{\text{fact} \ast n! = n! \land n \geq 0\} \] (Assignment)

2. \[\{n \geq 0\} \text{fact} := 1 \{\text{fact} \ast n! = n! \land n \geq 0\} \] (1, Equivalence)

3. \[\{\text{fact} \ast n! = n! \land n \geq 0\} i := n \{P\} \] (Assignment)

4. \[\{\text{fact} \ast i \ast (i - 1)! = n! \land i > 0\} \text{fact} := \text{fact} \ast i \]
 \[\{\text{fact} \ast (i - 1)! = n! \land i > 0\} \] (Assignment)

5. \[\{P \land i > 0\} \text{fact} := \text{fact} \ast i \]
 \[\{\text{fact} \ast (i - 1)! = n! \land i > 0\} \] (4, Equivalence)

6. \[\{\text{fact} \ast (i - 1)! = n! \land i - 1 \geq 0\} i := i-1 \{P\} \] (Assignment)
7. \{fact \ast (i - 1)! = n! \land i > 0\} i := i-1 \{P\} \quad (6, \text{Equivalence})

8. \{P \land i > 0\} fact := fact \ast i; i := i-1 \{P\} \quad (5, 7, \text{Sequencing})

9. \{P\} \textbf{while} (i>0) \ldots \{P \land i \leq 0\} \quad (8, \text{While})

10. \{P\} \textbf{while} (i>0) \ldots \{fact = n!\} \quad (9, \text{Postcondition Weakening})

11. \{n \geq 0\} \textit{Program} \{fact = n!\} \quad (2, 3, 10, \text{Sequencing})
Completeness of Hoare Logic

All true Hoare triples can be proved (with expressive assertion language)

However, we may not be able to verify a proof!

Consider precondition strengthening rule:

\[P_s \Rightarrow P_w \quad \{P_w\} \quad S \quad \{Q\} \]

\[\{P_s\} \quad S \quad \{Q\} \]

Not all arithmetic truths \((P_s \Rightarrow P_w)\) can be proved (Gödel’s incompleteness theorem)

Hence, completeness is relative to access to arithmetic truths
Weakest Precondition

An assertion/condition maps program states to \(\{true, false\} \)

- \((x > y)(\sigma) = true\) iff \(x > y\) in state \(\sigma\)

Define assertion \(wp\) for all programs \(S\) and postconditions \(Q\)

- \(wp(S, Q)(\sigma) = true\) iff for all states \(\sigma'\),
 (executing \(S\) in \(\sigma\) results in \(\sigma'\)) \(\Rightarrow (Q(\sigma') = true)\)

With quantification, assertion language can express all \(wp(S, Q)\)

- Quantification required, e.g., to say “\(x\) is a multiple of \(y\)”:\(\exists i. x = i \ast y \)
- Formal proof uses Gödel’s \(\beta\) function to encode sequence of numbers (representing states) of arbitrary length with small number of variables
Properties of wp

Definition: $wp(S, Q)(\sigma) = true$ iff for all states σ', (executing S in σ results in σ') $\Rightarrow (Q(\sigma') = true)$

$\models \{ wp(S, Q) \} S \{ Q \}$

- wp is indeed a valid precondition

If $\models \{ P \} S \{ Q \}$ then $P \Rightarrow wp(S, Q)$

- wp is the weakest possible precondition

("\models" denotes "true" or "valid")
Proving Completeness of Hoare Logic

Need only show \(\vdash \{ wp(S, Q) \} S \{ Q \} \) for all \(S, Q \)

- If \(\vdash \{ P \} S \{ Q \} \) then \(P \Rightarrow wp(S, Q) \)
- So \(\vdash \{ P \} S \{ Q \} \) by precondition strengthening

Proof by structural induction

- Assignment
- Sequencing
- Conditional
- While

(“\(\vdash \)” denotes “provable”)
Proof of Completeness: Assignment

Need to show

\[\vdash \{ \text{wp}(x:=e, \, Q) \} \text{ } x:=e \{ Q \} \]

But

\[\text{wp}(x:=e, \, Q) = Q(e/x) \]

Hence result follows by assignment rule
Proof of Completeness: $S_1; S_2$

Need to show

\[\vdash \{ wp(S_1; S_2, Q) \} S_1; S_2 \{ Q \} \]

By induction,

\[\vdash \{ wp(S_2, Q) \} S_2 \{ Q \} \]

\[\vdash \{ wp(S_1, wp(S_2, Q)) \} S_1 \{ wp(S_2, Q) \} \]

By sequencing rule,

\[\vdash \{ wp(S_1, wp(S_2, Q)) \} S_1; S_2 \{ Q \} \]

Finally, $wp(S_1; S_2, Q) \Rightarrow wp(S_1, wp(S_2, Q))$, or

$wp(S_1; S_2, Q)(\sigma) \Rightarrow wp(S_1, wp(S_2, Q))(\sigma)$
Proof of Completeness: if b then S_1 else S_2

Need to show

$$
\vdash \{wp(if \ b \ then \ S_1 \ else \ S_2, Q)\} \ if \ b \ then \ S_1 \ else \ S_2 \ \{Q\}$$

By induction,

$$
\vdash \{wp(S_1, Q)\} \ S_1 \ \{Q\}, \{wp(S_2, Q)\} \ S_2 \ \{Q\}
$$

Define $P \equiv (b \land wp(S_1, Q)) \lor (\neg b \land wp(S_2, Q))$

By precondition equivalence and conditional rule,

$$
\vdash \{P \land b\} \ S_1 \ \{Q\}, \{P \land \neg b\} \ S_2 \ \{Q\}$$

$$
\vdash \{P\} \ if \ b \ then \ S_1 \ else \ S_2 \ \{Q\}
$$

Finally, by case analysis on b,

$$
wp(if \ b \ then \ S_1 \ else \ S_2, Q) \Rightarrow P
$$
Proof of Completeness: while b do S

Let $P = \text{wp}(\text{while } b \text{ do } S, Q)$

Lemma 1 $\neg b \land P \Rightarrow Q$

- P guarantees that Q holds in resulting state
- If $\neg b$ then while terminates immediately without modifying state
- Hence $\neg b \Rightarrow (P \Rightarrow Q)$
Proof of Completeness: while b do S

Let $P = \text{wp}(\text{while } b \text{ do } S, Q)$

Lemma 2
$b \land P \Rightarrow \text{wp}(S, P)$, or equivalently $\models \{b \land P\} S \{P\}$

- Let σ be initial state where $b \land P$ holds, σ' the state after S terminates (trivial if S doesn’t terminate). Wish to show $P(\sigma') = true$

- If while doesn’t terminate from σ', $P(\sigma') = true$ by definition of wp

- Let σ'' be state after while terminates
 - Consider the run of while from σ: $Q(\sigma'') = true$
 - Consider the run of while from σ': $P(\sigma') = true$ by definition of wp
Proof of Completeness: while b do S

Let $P = \text{wp}(\text{while } b \text{ do } S, Q)$

By induction,
\[\vdash \{\text{wp}(S, P)\} S \{P\} \]

By Lemma 2 ($b \land P \Rightarrow \text{wp}(S, P)$) and precondition strengthening,
\[\vdash \{b \land P\} S \{P\} \]

By while-rule, Lemma 1 ($\neg b \land P \Rightarrow Q$), and postcondition weakening,
\[\vdash \{P\} \text{while } b \text{ do } S \{Q\} \]
Hoare logic expresses *partial correctness*

\[\{ P \} \ S \ \{ Q \} \]

means

if \(P \) holds initially and \(S \) terminates
then \(Q \) holds afterwards

Does *not* guarantee that \(S \) terminates

All Hoare triples *are true* where \(S \) does not terminate

Hence no Hoare triple can express that \(S \) terminates

Can express that \(S \) does not terminate though:

- \(\{ true \} \ S \ \{ false \} \)

- Provable if *while* condition is an invariant
An Extension to Handle Total Correctness

\[[P] \ S \ [Q] \] means

if \(P \) holds initially
then \(S \) terminates and \(Q \) holds afterwards

Total correctness = partial correctness + termination

To assert termination alone:

\[[P] \ S \ [true] \]
Rules for Total Correctness

For deriving total correctness assertions

\[[P] \; S \; [Q] \]

all old rules continue to work, except one

- Assignment
- Precondition strengthening, postcondition weakening
- Sequencing
- Conditional
- While
Rules for Total Correctness

\[[Q(e)] \ x := e \ [Q(x)] \]

(Assignment)

Assumes evaluation of expression \(e \) always terminates

Fine for our toy language

- Require expression to always return a number

In general, depends on the language

- Can expression involve calls to functions, which may not terminate?
 - Even absent \texttt{while}-loops, recursion could cause nontermination
- What if there’s an error, e.g., division by zero?
Rules for Total Correctness

\[P_s \Rightarrow P_w \quad [P_w] \quad S \quad [Q] \]

\[[P_s] \quad S \quad [Q] \]

(Precondition Strengthening)

\[[P] \quad S \quad [Q_s] \quad Q_s \Rightarrow Q_w \]

\[[P] \quad S \quad [Q_w] \]

(Postcondition Weakening)

\[[P] \quad S_1 \quad [Q] \quad [Q] \quad S_2 \quad [R] \]

\[[P] \quad S_1; \quad S_2 \quad [R] \]

(Sequencing)

\[[P \land b] \quad S_1 \quad [Q] \quad [P \land \neg b] \quad S_2 \quad [Q] \]

\[[P] \quad \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \quad [Q] \]

(Conditional)
Termination of while

\[y > 0 \]

while \(y \leq r \) do

\[
\begin{align*}
 r &:= r - y; \\
 q &:= q + 1
\end{align*}
\]

\[true \]
Termination of \texttt{while}

\[y > 0 \]

\texttt{while} (\texttt{y} <= \texttt{r}) do
\begin{align*}
 \texttt{r} & := \texttt{r} - \texttt{y}; \\
 \texttt{q} & := \texttt{q} + 1
\end{align*}

\[\text{true} \]

Observations:

\begin{itemize}
 \item \texttt{q} := \texttt{q} + 1 \text{ irrelevant}
 \item \texttt{y} doesn't change, stays > 0
 \item \texttt{r} strictly decreases on each iteration
 \item Hence \texttt{y} <= \texttt{r} will eventually be false
\end{itemize}
Termination of while: General Condition

\[y > 0 \]

while (y <= r) do
 r := r - y;
 q := q + 1

\[true \]

Find a variant, an expression \(E \) such that

- \(E \) stays \(\geq 0 \) at beginning of each iteration
- \(E \) strictly decreases on each iteration

What’s a good \(E \) for this example?
Total Correctness of while

To show

\[
[P] \textbf{while } b \textbf{ do } S \ [P \land \lnot b]
\]

in addition to showing partial correctness, find \(E \) such that

- \(E \) stays \(\geq 0 \) at beginning of each iteration:
 \[P \land b \Rightarrow E \geq 0\]

- \(E \) strictly decreases on each iteration
 \[
 [P \land b \land (E = n)] S [P \land (E < n)]
 \]

\((n \text{ is auxiliary variable } \textit{not appearing elsewhere}, \text{ used to “remember” initial value of } E)\)
While-Rule for Total Correctness

\[P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] S [P \land (E < n)] \]
\[[P] \textbf{while} \ b \textbf{ do } S \ [P \land \neg b] \]

(While)

where \(n \) is an auxiliary variable \textit{not appearing elsewhere}
Using the Rule

\[P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] \ S \ [P \land (E < n)] \]

\[[P] \ while \ b \ do \ S \ [P \land \neg b] \]

Prove \([y > 0] \ while \ (y \leq r) \ do \ \{r := r-y; \ q := q+1\} \ [true]\]

1. \((y > 0) \land (y \leq r) \Rightarrow (r \geq 0)\) (Math)

2. \([(y > 0) \land (r < n)] \ q := q+1 \ [(y > 0) \land (r < n)]\) (Assignment)

3. \([(y > 0) \land (r - y < n)] \ r := r-y \ [(y > 0) \land (r < n)]\) (Assignment)

4. \((y > 0) \land (y \leq r) \land (r = n) \Rightarrow (y > 0) \land (r - y < n)\) (Math)

5. \([(y > 0) \land (y \leq r) \land (r = n)] \ r := r-y \ [(y > 0) \land (r < n)]\) (3, 4, Precondition Strengthening)

6. \([(y > 0) \land (y \leq r) \land (r = n)] \ r := r-y; \ q := q+1 \ [(y > 0) \land (r < n)]\)
7. $[y > 0]$ while ... $[(y > 0) \land (y > r)]$

(1, 6, While)

8. $[y > 0]$ while ... $[true]$

(7, Postcondition Weakening)
Using the Rule

\[
P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] S [P \land (E < n)] \\
[\{P\} \text{ while } b \text{ do } S [P \land \neg b]]
\]

\([n \geq 0]\)

\[
\begin{align*}
\text{fact} & := 1; \\
i & := n; \\
\text{while } (i > 0) & \text{ do} \\
\quad \text{fact} & := \text{fact} \ast i; \\
\quad i & := i - 1 \\
\end{align*}
\]

\([\text{fact} = n!]\)

Same invariant \(P \equiv (\text{fact} \ast i! = n! \land i \geq 0)\)

Variant \(E \equiv i\)

(\text{use } m \text{ instead of } n \text{ in while-rule})
While-Rule for Total Correctness: Soundness

\[P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] \quad S \quad [P \land (E < n)] \]
\[
\begin{array}{c}
\frac{}{[P] \text{ while } b \text{ do } S \ [P \land \neg b]}
\end{array}
\]

Premises imply \textit{partial correctness} of the \textit{while}:\

\[
[P \land b \land (E = n)] \quad S \quad [P \land (E < n)]
\]
\[
\Rightarrow [P \land b \land (E = n)] \quad S \quad [P] \quad \text{(postcondition weakening)}
\]
\[
\Rightarrow [P \land b] \quad S \quad [P] \quad \text{(} n \text{ doesn’t appear elsewhere)}
\]
\[
\Rightarrow \{P \land b\} \quad S \quad \{P\} \quad \text{(total correctness implies partial correctness)}
\]
\[
\Rightarrow \{P\} \text{ while } b \text{ do } S \quad \{P \land \neg b\} \quad \text{(soundness of original while-rule)}
\]

(All triples in the above chain of reasoning are semantic assertions)
While-Rule for Total Correctness: Soundness

\[P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] \ S \ [P \land (E < n)] \]

\[[P] \ \textbf{while} \ b \ \textbf{do} \ S \ [P \land \neg b] \]

Premises imply termination of the while: Show \textbf{while} \ b \ \textbf{do} \ S \ terminates from any state \(\sigma \) satisfying \(P \), by induction on the value of \(E \) in \(\sigma \)

- If \(\neg b(\sigma) \), done. Assume \(b(\sigma) \); have \(E(\sigma) \geq 0 \) by left premise

- Base case \((E(\sigma) = 0) \):
 - Behavior of \(S \) (or the while) does not depend on value of \(n \)
 - May as well assume \(n = 0 \) in \(\sigma \)
 - Right premise implies \(P \land (E < 0) \) after one iteration
 - This, together with left premise, implies \(\neg b \), hence termination of \textbf{while}
While-Rule for Total Correctness: Soundness

\[\begin{align*}
 P \land b & \Rightarrow E \geq 0 & & \left[P \land b \land (E = n) \right] S \left[P \land (E < n) \right] \\
 & \quad \quad \quad \quad \left[P \right] \textbf{while} \ b \textbf{ do } S \left[P \land \neg b \right]
\end{align*} \]

(While)

Premises imply \textit{termination} of the \textbf{while}: Show \textbf{while} \ b \textbf{ do } S terminates from any state \(\sigma \) satisfying \(P \), by induction on the value of \(E \) in \(\sigma \)

- Inductive step:
 - Hypothesis: \textbf{while} \ldots \text{ terminates from any state } \sigma' \text{ satisfying } P, \text{ if } E(\sigma') \leq k
 - Assume \(E(\sigma) = k + 1 \); may as well assume \(n = k + 1 \) in \(\sigma \)
 - Right premise implies \(P \land (E \leq k) \) after one iteration
 - Hence \textbf{while} \ldots \text{ terminates from that state, by induction hypothesis}
Total Correctness = Partial Correctness + Termination

Do our rules agree with this equation?

\[\vdash [P] S [Q] \Rightarrow \vdash \{P\} S \{Q\} \quad \text{and} \quad \vdash [P] S [true] \quad ? \]

\[\vdash [P] S [Q] \Rightarrow \models [P] S [Q] \quad \text{(Soundness)} \]
\[\Rightarrow \models \{P\} S \{Q\} \quad \text{(Semantics of Hoare Triples)} \]
\[\Rightarrow \vdash \{P\} S \{Q\} \quad \text{(Completeness of Rules for Partial Correctness)} \]

\[\vdash [P] S [Q] \Rightarrow \vdash [P] S [true] \quad \text{(Postcondition Weakening)} \]
Total Correctness = Partial Correctness + Termination

Do our rules agree with this equation?

\[\vdash \{ P \} S \{ Q \} \quad \text{and} \quad \vdash [P] S [true] \Rightarrow \vdash [P] S [Q] \]

(You won’t be asked to prove/disprove this)
While-Rule for Total Correctness: Completeness

\[P \land b \Rightarrow E \geq 0 \quad [P \land b \land (E = n)] \quad S \quad [P \land (E < n)] \]

\[[P] \quad \textbf{while} \quad b \quad \textbf{do} \quad S \quad [P \land \neg b] \]

(While)

Do we have a complete Hoare logic for total correctness?

If \([P]\ \textbf{while}\ldots\ [Q]\), can we always find a suitable \(E\) to prove it?

- Values of variables in the \texttt{while} can change with no apparent pattern
- Can we always map them to a decreasing number with a simple expression \(E\) (using only +, −, *)?
While-Rule for Total Correctness: Generalized Version

\[
P(z + 1) \Rightarrow b \quad P(0) \Rightarrow \neg b \quad [P(z + 1)] S [P(z)]
\]

\[
[\exists z. P(z)] \textbf{while } b \textbf{ do } S \ [P(0)]
\]

where auxiliary variable z ranges over natural numbers (i.e., $z \geq 0$)

Think of z as “remaining number of iterations before termination”
Using Generalized While-Rule

\[
\begin{align*}
P(z + 1) & \Rightarrow b \\
P(0) & \Rightarrow \neg b \\
\end{align*}
\]

\[\begin{align*}
[P(z + 1)] S [P(z)] \\
\text{where auxiliary variable } z \text{ ranges over natural numbers (i.e., } z \geq 0) \\
\end{align*}\]

Prove \([true] \text{ while } (i > 0) \text{ do } i := i-1 [true]\]

\[
P(z) \equiv (i = z) \lor (i < 0 \land z = 0). \text{ Assuming } z \geq 0, \text{ we have}
\]

- \(P(z + 1) = (i = z + 1) \lor (i < 0 \land z + 1 = 0) = (i = z + 1); \text{ this } \Rightarrow b\)
- \(P(0) = (i = 0) \lor (i < 0 \land 0 = 0) = (i \leq 0); \text{ this is } \neg b\)
- \([(i = z + 1) \lor (i < 1 \land z = 0)] i := i-1 [P(z)] \quad \text{(Assignment, Equiv.)} \]
- \([P(z + 1)] i := i-1 [P(z)] \quad \text{(Precondition Strengthening)}\)
Using Generalized While-Rule

\[P(z + 1) \Rightarrow b \quad P(0) \Rightarrow \neg b \quad [P(z + 1)] S [P(z)] \]

\[\exists z. P(z) \quad \textbf{while} \quad b \quad \textbf{do} \quad S \quad [P(0)] \]

where auxiliary variable \(z \) ranges over natural numbers (i.e., \(z \geq 0 \))

Prove \([true]\) \textbf{while} (i > 0) \textbf{do} i := i-1 \[true\]

\(P(z) \equiv (i = z) \lor (i < 0 \land z = 0) \)

Now apply generalized while-rule:

\[\exists z. (i = z) \lor (i < 0 \land z = 0) = [true] \]

\textbf{while} (i > 0) \textbf{do} i := i-1

\[[(i = 0) \lor (i < 0 \land 0 = 0)] = [i \leq 0] \]

Final step by postcondition weakening
Generalized While-Rule: Completeness

\[P(z + 1) \Rightarrow b \quad P(0) \Rightarrow \neg b \quad [P(z + 1)] \quad S \quad [P(z)] \]

\[[\exists z. \quad P(z)] \quad \textbf{while} \quad b \quad \textbf{do} \quad S \quad [P(0)] \]

where \(z \) ranges over natural numbers (i.e., \(z \geq 0 \))

Don’t we have the same issue—finding a decreasing expression?

• No, because we no longer need to \textit{express a function} that computes \(z \)

Given arbitrary numbers \(x_0, x_1, \ldots, x_k \) (representing sequence of states), there is a function \(\beta(m, n, i) \) such that \(\beta(m, n, i) = x_i \) for all \(0 \leq i \leq k \)

• Predicate \(\beta(m, n, z) = x \) \textit{implicitly} turns arbitrary sequence of states \((x) \) into a decreasing number \(z \)

Resulting Hoare logic is complete