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Abstract—In this paper, we study the use of multiple mobile
charging vehicles to charge sensors in a large-scale wireless
sensor network for a given monitoring period, where sensors can
be charged by the vehicles with wireless power transfer. Since
each sensor may experience multiple charges to avoid its energy
expiration for the period, we first consider a charging problem of
scheduling the multiple mobile vehicles to collaboratively charge
sensors so that none of the sensors will run out of its energy
and the sum of traveling distance (referred to as the service
cost) of these vehicles can be minimized. Due to NP-hardness of
the problem, we then propose a novel approximation algorithm
for it, assuming that sensor energy consumption rates do not
change over time. Otherwise, we devise a heuristic algorithm
through minor modifications to the approximation algorithm.
We finally evaluate the performance of the proposed algorithms
via simulations. Experimental results show that the proposed
algorithms are very promising, which can reduce upto 45% of
the service cost in comparison with the service cost delivered by
a greedy algorithm.

I. INTRODUCTION

Wireless sensor networks (WSNs) have played an impor-
tant role in many surveillance and monitoring applications
including environmental sensing, target tracking, structural
health monitoring, etc [17]. As conventional sensors are pow-
ered by batteries, their limited battery capacity obstructs the
large-scale deployments of WSNs. Although there have been
many energy saving approaches developed in the past decade
to minimize sensor energy consumptions or balance energy
expenditures among sensors [2], the lifetime of WSNs remains
a main performance bottleneck in real deployments of WSNs,
since wireless data transmission consumes substantial energy.

To mitigate the limited energy problem, researchers pro-
posed to enable sensors to harvest ambient energy from their
surroundings such as solar energy, vibration energy, wind en-
ergy, etc [11]. However, the temporally-spatially varying nature
of renewable energy resources makes the prediction of sensor
energy harvesting rates very difficult. For instance, it is shown
that the difference of energy generating rates in sunny, cloudy
and shadowy days can be upto three orders of magnitude
in a solar harvesting system [8]. Moreover, the harvesting
energy sources are intermittent and not always available. Such
unpredictability and intermittency pose enormous challenges
in the efficient usage of harvested energy for a myriad of
monitoring or surveillance tasks.

The recent breakthrough in the wireless power transfer

technique based on strongly coupled magnetic resonances has
drawn plenty of attentions [6]. Kurs et al. demonstrated that
it is possible to achieve an approximate 40% efficiency of
wireless power transfer for powering a 60W light bulb from
a distance of two meters without any wire lines and plugs [6].
Armed with this advanced technology, sensor can be charged
at steady and high charging rates. On the other hand, another
breakthrough in the ultra-fast charging battery materials further
fuels the feasibility of the wireless power transfer technique.
Scientists from MIT implemented a ultra-fast charging in
material LiFePO4, which can be charged at a rate as high
as 400 Coulombs per second [4]. The time of fully-charging
a battery thus can be shortened into a few seconds. Therefore,
wireless power charging is a promising technique to prolong
the lifetime of WSNs.

In this paper, we employ multiple mobile wireless chargers
to replenish sensors in a large-scale WSN with wireless power
transfer for a monitoring period T , so that none of the sensors
will run out of its energy. We consider a flexible sensor energy
charging paradigm that sensors are charged by the mobile
chargers in an on-demand fashion and their data routing is
decoupled from the energy replenishment. As each sensor in
the network must be charged many times to avoid its energy
expiration during T , the challenges for scheduling the mobile
chargers are: (1) when should we activate a charging task to
dispatch the mobile chargers to replenish sensor energy? (2)
which sensors are to be included in each charging task? (3)
given a set of to-be-charged sensors, which sensors should be
charged by which mobile charger? We tackle these challenges
by formulating a novel optimization problem and devising
efficient scheduling algorithms for it.

The main contributions of this paper can be summarized
as follows.

• Under the on-demand energy replenishment paradigm,
we first formulate a novel service cost minimization
problem of finding a series of charging schedulings
for the mobile chargers to maintain the perpetual op-
erations of sensors during period T , such that the total
traveling distance of the mobile chargers is minimized.
This objective is critical for the WSN maintenance
cost reduction.

• Due to NP-hardness of the problem, we then propose
an approximation algorithm with a provable approx-
imation ratio if energy consumption rates of sensors
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are fixed. Otherwise, we provide a novel heuristic so-
lution through minor modifications to the approximate
solution.

• We finally conduct extensive experiments by simula-
tions to evaluate the algorithm performance. Exper-
imental results demonstrate that the proposed algo-
rithms are very promising, which can reduce upto 45%
of the service cost by a greedy algorithm.

The rest of this paper is organized as follows. Section II
reviews related work. Section III introduces preliminaries.
Section IV devises an algorithm for a q-rooted TSP prob-
lem, which will be served as a subroutine of the proposed
algorithms. Sections V and VI propose approximation and
heuristic algorithms for the problem under fixed and variable
energy consumption rates, respectively. Section VII evaluates
the algorithm performance, and Section VIII concludes the
paper.

II. RELATED WORK

The wireless power transfer technology based on strongly
magnetic resonances has drawn a lot of attention and re-
searchers adopted the wireless energy replenishment to prolong
the lifetime of WSNs [10], [13], [14], [15], [20], [3], [16], [9],
[7], [12]. Most of them jointly considered data flow routing
and sensor energy replenishment. For instance, Shi et al. [10]
proposed to replenish sensor energy in a WSN by employing
a wireless charging vehicle to periodically visit each sensor.
They formulated a problem of maximizing the ratio of the
vacation time of the charging vehicle to the renewable energy
cycle time, by considering both data flow routing and the
charging time of each sensor, assuming that the data generating
rate of each sensor is unchanged. They later extended their
work to two more general settings that the charging vehicle
can charge multiple sensors simultaneously [13], or the vehicle
can replenish sensor energy and collect sensor data at the
meantime [14], [15]. Zhao et al. [20] also provided a joint
design of data gathering and energy replenishment by exploit-
ing sink mobility. To this end, for every fixed interval, they
first chose a set of to-be-charged sensors, and then delivered
a data gathering solution, such that the network utility is
maximized while maintaining perpetual network operations.
They extended their study by taking the energy consumption
of data sensing and reception into consideration [3].

The joint consideration of data flow routing and energy
replenishment in aforementioned works suffers from three
drawbacks in real WSN deployments due to unrealistic as-
sumptions. The first one is that most of them assumed
that the data generating rate of each sensor is fixed in the
entire network lifetime. However, sensor data rates usually
are application-dependent, and are very likely to experience
significant changes over time. For instance, in a flood detection
WSN, high data sampling rates of sensors are required to better
monitor water levels at different observation locations when
there is a storm. The second one is that they also assumed the
data flow conservation at each sensor node, that is, the amount
of data that each sensor sends out is equal to the amount
of data the sensor received plus the data it generates. This
assumption ignores data aggregation at intermediate nodes,
while data aggregation is an efficient technique to reduce data

traffic volume, as sensing data of different sensors usually are
temporally-spatially correlated [5]. The last one is the assump-
tion of all reliable communications between sensors, which
contrasts the well-known fact that wireless communication is
notoriously unreliable [19]. Retransmissions at some sensors
may result in substantial energy consumptions on them. Unlike
existing studies, in this paper we advocate that the sensor
energy replenishment should be decoupled from the design of
data flow routing protocols. The benefits by doing so include:
(1) the devised charging solutions can be applicable to sensor
networks for various purposes, including periodic monitoring,
event detections, surveillance coverage, etc. (2) sensors can be
free from the high computational and communicational over-
head introduced by complex energy management algorithms.
The producing of sensors can be simplified and their prices
thus can be reduced, which is critical for WSNs requiring
deploying hundreds even thousands of sensors. (3) there is
no need that we charge each sensor periodically. Only is there
such a need from sensors that will run out of their energy
soon, we then dispatch charging vehicles to replenish energy
to them, thereby significantly saving WSN operational costs.

There are also recent works that adopted the on-demand
sensor energy replenishment. Xu et al. [16] considered the
problem of scheduling k mobile chargers to replenish a set
of to-be-charged sensors, such that the maximum time spent
among the k chargers is minimized, for which they proposed
constant approximation algorithms. Ren et al. [9] recently
studied the employment of a single mobile charger to charge
on-demand sensors under the travel distance constraint. Liang
et al. [7] proposed an approximation algorithm for minimizing
the number of mobile vehicles needed for charging a set of to-
be-charged sensors, subject to the energy capacity constraint
on each mobile vehicle. Wang et al. [12] developed a hybrid
approach for scheduling multiple mobile chargers to charge
sensors: active and passive energy replenishment. Orthogonal
to these works, we consider minimizing the total traveling
distance of multiple mobile chargers to maintain the sensor
network perpetual operations for a period T , which is crucial
to reduce the network operational cost.

III. PRELIMINARIES

A. Network model

We consider a wireless sensor network consisting of n
sensors deployed in a two-dimensional space. Let V be the
set of sensors. There is one stationary base station in the
network and all sensing data from sensors will be relayed to the
base station directly or through multihop relays. Each sensor
vi ∈ V is powered by a rechargeable battery with energy
capacity Bi. Assume that the entire network monitoring period
is T (T typically is long). Since each sensor consumes its
energy on data sensing, processing, transmission and reception,
it is required to be charged periodically to avoid its energy
depletion.

In this paper we consider using q wireless mobile chargers
to replenish the sensors in the network, where mobile charger
l is located at depot rl, 1 ≤ l ≤ q. Let R = {r1, r2, · · · , rq}
be the set of depot locations of these q mobile chargers. To
determine charging trajectories of the q mobile chargers, we
define a weighted undirected graph G = (V ∪R,E;w), where
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for any two distinct nodes (sensors or depots) u and v in V ∪R,
there is an edge e = (u, v) ∈ E between them with their
Euclidean distance w(e) as its edge weight. Each time mobile
charger l is dispatched to charge some sensors, it always starts
from and ends at its depot rl for recharging its electricity
or refuelling its petrol. In other words, each charging tour of
mobile charger l in G is a closed tour including depot rl. For
any closed tour C in G, denote by w(C) the weighted sum
of the edges in C, i.e. w(C) =

∑
e∈E(C) w(e). We assume

that each mobile charger has enough energy to replenish all
sensors if needed in each charging tour. We consider a point-to-
point charging, i.e. to efficiently charge a sensor, some mobile
charger must be in the vicinity of the sensor and the sensor
will be charged to its fully capacity. Once a sensor is fully
charged, its lifetime can last from several weeks to months,
depending on its working load such as sensing rates, the
volume of data relayed, etc. Meanwhile, the q mobile chargers
can collaboratively finish a charging task within a few hours
(e.g. sensor batteries can be made with ultra-fast charging
battery materials [4]). We thus assume that the time spent by
the q mobile chargers per charging task, including the time
for charging sensors and the time on their traveling, is several
orders of magnitude less than the lifetime of a fully-charged
sensor. Therefore, we ignore the time spent per charging task.
The similar assumption has also been adopted in [18] and [20].
We further assume that the energy consumption of a sensor
during its charging tour is negligible, too.

B. Notations and Notions

A charging scheduling of q mobile chargers is to dispatch
each of the q mobile chargers from its depot to collabo-
ratively visit a set of to-be-charged sensors in the current
round, and each charger will return to its depot after finishing
its charging tour. Assume that at time tj , let closed tours
Cj,1, Cj,2, · · · , Cj,q be the charging tours of the q mobile
chargers, where tour Cj,l by mobile charger l contains its
depot rl and 1 ≤ l ≤ q. Let Cj = {Cj,1, Cj,2, · · · , Cj,q}.
Notice that it is likely that some tours Cj,l may contain none
of the sensors, and if so, V (Cj,l) = {rl} and w(Cj,l) = 0.
We represent each charging scheduling by a 2-tuple (Cj , tj),
where all sensors in tour Cj,l ∈ Cj will be charged to their full
energy capacities by mobile charger l, all the q mobile chargers
are dispatched at time tj , and 0 < tj < T . Denote by V (Cj,l)
and V (Cj) the set of nodes in Cj,l and Cj , respectively. Then,
V (Cj) = ∪

q
l=1V (Cj,l).

The charging cycle of a sensor vi ∈ V is the duration be-
tween its two consecutive chargings, and its maximum charging
cycle τi is the maximum duration between its two consecutive
chargings so that it will not run out of energy. Since different
WSNs adopt different sensing and routing protocols, different
sensors have different energy consumption rates and different
maximum charging cycles. If the energy consumption rate of
each sensor vi ∈ V does not vary for period T , denote by
ρi and τi its energy consumption rate and maximum charging
cycle, then τi =

Bi

ρi
, where Bi is its energy capacity. Note that

sensors with shorter charging cycles need to be charged more
frequently than sensors with longer charging cycles. Since each
time the q mobile chargers are dispatched to charge a set of
sensors, they will consume their electricity or petrol, thereby
incurring a service cost. We thus define the service cost of

the q mobile chargers as the sum of their travel distances for
charging sensors for a period T .

C. Problem definitions

We note that not every sensor must be replenished in
each charging round, as energy consumption rates of different
sensors may significantly vary. For instance, since the sensors
near to the base station have to relay data for other remote
sensors, their energy consumption rates are much higher than
that of the others. Therefore, we can see that a naive strategy
of charging all sensors per round will significantly increase the
service cost. Also, as the distance between some sensor and
its nearest depot in a large-scale sensor network can be far
away from each other, it is crucial to schedule the q mobile
chargers by taking both the maximum charging cycles and the
geographical locations of the sensors into account.

Assume that the location coordinates (xi, yi) of each
sensor vi ∈ V are given. Given a metric complete graph
G = (V ∪ R,E) with q mobile chargers located at q
depots in R, a distance function w : E �→ R

+, a mon-
itoring period T , and a maximum charging cycle function
τ : V �→ R

+, the service cost minimization problem with
fixed maximum charging cycles is to find a series of charging
schedulings (C1, t1), · · · , (Cp, tp) of the q mobile chargers such
that the total length of all closed tours (or the service cost),∑p

j=1 w(Cj) =
∑p

j=1

∑q

l=1 w(Cj,l), is minimized, subject
to that, for each sensor vi ∈ V , (i) the time gap between
its any two consecutive charging schedulings (Cj1 , tj1) and
(Cj2 , tj2) is no more than its maximum charging cycle τi, i.e.
|tj2 − tj1 | ≤ τi, vi ∈ Cj1 and vi ∈ Cj2 ; and (ii) the duration
from its last charging to the end of period T is also no more
than τi, where Cj = {Cj,1, Cj,2, · · · , Cj,q}, Cj,l is the charging
tour of mobile charger l located at depot rl, 1 ≤ l ≤ q, and
0 ≤ t1 < · · · < tp < T . This problem is NP-hard since it
can be reduced from the classical NP-hard Traveling Salesman
Problem (TSP), omitted.

So far we have assumed that the maximum charging cycle
of each sensor vi ∈ V in the entire period T is fixed. However,
in reality, it may experience significant changes over time. For
this general setting, we define the service cost minimization
problem with variable maximum charging cycles as follow.
Given a wireless sensor network, a period T , a set R of q
depots with q mobile chargers at which the mobile chargers
will be refueled/charged and starting from and ending its
charging tours, the maximum charger cycle τi(t) of each sensor
vi varying with time t with 0 < t ≤ T , the problem is to find
a series of charging schedulings of the q mobile chargers such
that the service cost by them is minimized, subject to that none
of the sensors runs out of energy within period T .

We finally consider a q-rooted TSP problem as follows,
which will be used as a subroutine. Assume that there is a set
of to-be-charged-sensors V c ⊆ V at some time point. Given
a subgraph Gc = (V c ∪ R,Ec;w) of G with |R| = q ≥ 1
and q mobile chargers, the problem is to find q closed tours
C1, C2, · · · , Cq in Gc, such that the total length of the q tours,∑q

l=1 w(Cl), is minimized, subject to that these q tours cover
all sensors in V c, i.e. V c ⊆

⋃q

l=1 V (Cl), and each of the q
tours contains a distinct depot in R. The q-rooted TSP problem
is NP-hard, since the classical TSP problem is a special case
of it when q = 1.
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IV. ALGORITHM FOR THE q-ROOTED TSP PROBLEM

In this section, we propose a 2-approximation algorithm for
the q-rooted TSP problem, which will serve as a subroutine of
the approximation algorithm for the service cost minimization
problem. The basic idea of the algorithm for the q-rooted TSP
problem is that we first find q-rooted trees with the minimum
total cost, and we then show that the total cost of the q-rooted
trees is a lower bound on the optimal cost of the q-rooted TSP
problem. We finally transform each of the trees into a closed
tour with the cost of each tour being no more than twice the
cost of its corresponding tree.

Before we proceed, we consider the q-rooted minimum
spanning forest problem: given a graph Gc = (V c∪R,Ec;w),
q = |R|, and w : Ec �→ R+, the q-rooted Minimum
Spanning Forest (q-rooted MSF) problem is to find q disjoint
trees T1, T2, · · · , Tq spanning all nodes in V c with each tree
containing a distinct depot in R, such that the total cost of the
q trees,

∑q
l=1 w(Tl), is minimized.

For the q-rooted MSF problem, we develop an exact
algorithm as follows. We start by constructing an auxiliary
graph Gr = (V c ∪ {r}, Er;wr) from Gc = (V c ∪ R,Ec;w)
by contracting the q depots in R into a single root r: (i)
remove the q depots in R and introduce a new node r; (ii)
for each rl ∈ R, introduce an edge (v, r) ∈ Er for each edge
(v, rl) ∈ Ec, where v ∈ V c; (iii) wr(v, r) = minl{w(v, rl)}.
We then find an MST T of Gr. We finally break T into q
disjoint trees T1, T2, · · · , Tq by un-contracting the roots in R.
This un-contraction means that an edge (v, r) is mapped to an
edge (v, rl), where wr(v, r) = w(v, rl). Note that each tree
Tl roots at depot rl. The detailed algorithm is presented in
Algorithm 1.

Algorithm 1 q-rooted MSF

Input: Gc = (V c ∪R,Ec;w), w : Ec �→ R
+, and q = |R|.

Output: a solution for the q-rooted MSF problem
1: Construct a graph Gr = (V c ∪ {r}, Er;wr) from Gc by

contracting the q depots in R into a single root r;
2: Find an MST T in Gr;
3: Decompose the MST T into q disjoint rooted trees

T1, T2, · · · , Tq by un-contracting depots in R.

Lemma 1: There is an exact algorithm for the q-rooted
MSF problem, which takes time O(n2), where n = |V c ∪R|.

Proof: Assume that trees T ∗1 , T
∗
2 , · · · , T

∗
q form an optimal

solution to the q-rooted MSF problem. We show that the trees
T1, T2, · · · , Tq delivered by Algorithm 1 are optimal. On
one hand, since the q trees T1, T2, · · · , Tq form a feasible
solution, then

∑q
l=1 w(T

∗
l ) ≤

∑q
l=1 w(Tl). On the other hand,

as each tree T ∗l contains a depot rl ∈ R, we can construct a
spanning tree T ′ in graph Gr by contracting the q depots into a
single root r, and w(T ′) =

∑q
l=1 w(T

∗
l ). As the MST T is the

minimum one, we have w(T ) ≤ w(T ′). Since
∑q

l=1 w(Tl) =
w(T ),

∑q

l=1 w(Tl) = w(T ) ≤ w(T ′) ≤
∑q

l=1 w(T
∗
l ).

Therefore,
∑q

l=1 w(Tl) =
∑q

l=1 w(T
∗
l ), i.e. the found trees

T1, T2, · · · , Tq form an optimal solution to the problem. The
time complexity of Algorithm 1 is analyzed as follows.
Constructing graph Gr takes time O(Ec) = O(n2). Finding
the MST T in Gr takes O(n2) time, while un-contracting the

MST T also takes time O(Ec) = O(n2). Algorithm 1 thus
runs in O(n2) time.

With the help of the exact algorithm for the q-rooted MSF
problem, we devise a 2-approximation algorithm for the q-
rooted TSP problem in Algorithm 2.

Algorithm 2 q-rooted TSP

Input: Gc = (V c ∪R,Ec;w), w : Ec �→ R
+, and q = |R|.

Output: A solution C for the q-rooted TSP problem
1: Find q optimal trees T1, T2, · · · , Tq for the q-rooted MSF

problem in Gc by calling Algorithm 1;
2: For each tree Tl, double the edges in Tl, find a Eulerian

tour C ′l , and obtain a less cost closed tour Cl by short-
cutting repeated nodes in C ′l . Let C = {C1, C2, · · · , Cq}.

We show that Algorithm 2 delivers a 2-approximate
solution by the following theorem.

Theorem 1: There is a 2-approximation algorithm for the
q-rooted TSP problem, which takes time O(|V c ∪R|2).

Proof: Assume that closed tours C∗1 , C
∗
2 , · · · , C

∗
q form

the optimal solution to the q-rooted TSP problem in Gc. For
each tour C∗l , we can obtain a tree T ′l by removing any edge
in C∗l . Then, w(T ′l ) ≤ w(C∗l ), where 1 ≤ l ≤ q. It is
obvious that trees T ′1, T

′
2, · · · , T

′
q form a feasible solution to

the q-rooted MSF problem. As trees T1, T2, · · · , Tq form the
optimal solution by Lemma 1,

∑q

l=1 w(Tl) ≤
∑q

l=1 w(T
′
l ) ≤∑q

l=1 w(C
∗
l ). Also, we can see that the total cost of each found

tour Cl is no more than twice the total cost of tree Tl, i.e.
w(Cl) ≤ 2w(Tl). Therefore,

∑q
l=1 w(Cl) ≤

∑q
l=1 2w(Tl) ≤

2
∑q

l=1 w(C
∗
l ). The time complexity analysis is straightfor-

ward, omitted.

V. APPROXIMATION ALGORITHM WITH FIXED MAXIMUM
CHARGING CYCLES

In this section, we devise an approximation algorithm for
the service cost minimization problem in a rechargeable sensor
network with fixed maximum charging cycles.

A. Overview of the approximation algorithm

Given a maximum charging cycle function: τ : V �→ R+

and a monitoring period T , if there is a series of mobile charger
schedulings for T such that no sensor expires, then we say
that these schedulings form a feasible solution to the service
cost minimization problem, i.e. for each sensor vi ∈ V , the
maximum duration between its any two consecutive chargings
is no more than τi. A series of feasible charging schedulings
of the q mobile chargers is an optimal solution if the service
cost of the solution is the minimum one.

The basic idea behind the proposed algorithm is to con-
struct another charging cycle function τ ′(·) for the sensors
based on the maximum charging cycle function τ(·), by
exploring the combinatorial property of the problem.

We construct a very special charging cycle function τ ′(·)
that charging cycles of the n sensors will form a geometric
sequence as follows. Let τ1, τ2, · · · , τn be the maximum charg-
ing cycles of sensors v1, v2, . . . , vn in the network. Assume
that τ1 ≤ τ2 ≤ · · · ≤ τn. Let τ ′1, τ

′
2, · · · , τ

′
n be the charging
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cycles of the sensors and τ ′i ≤ τ ′j if τi ≤ τj . We construct τ ′(·)
as follows. We partition the set V of the sensors into K + 1
disjoint subsets V0, V1, · · · , VK , where K = 	log2

τn
τ1

, and

sensor vi ∈ V with maximum charging cycle τi is contained
in Vk if 2kτ1 ≤ τi < 2k+1τ1. Then, k = 	log2

τi
τ1

. Let τ ′i =

2kτ1. We assign each sensor in Vk with the identical charging
cycle 2kτ ′1 = 2kτ1, 0 ≤ k ≤ K. Consequently, the charging
cycles of sensors in V0, V1, · · · , VK are τ1, 2τ1, · · · , 2

Kτ1,
respectively. We can see that the assigned charging cycle τ ′i of
sensor vi is no less than the half its maximum charging cycle
τi, since

τ ′i = 2�log
τi
τ1
�τ1 > 2log

τi
τ1
−1τ1 =

τi
2
, ∀vi ∈ V . (1)

B. Approximation algorithm

Given the charging cycle function τ ′(·), we can see that τ ′j
is divisible by τ ′i for any two sensors vi and vj if τi ≤ τj and
1 ≤ i < j ≤ n. For simplicity, assume that the monitoring
period T is divisible by the maximum assigned charging cycle
τ ′n, let T = 2mτ ′n = 2m2Kτ1, where m is a positive integer.
The solution delivered by the proposed algorithm consists of a
series of schedulings of the q mobile chargers. Specifically, we
first find a sequence of schedulings of the q mobile chargers
for a period τ ′n. Then, we repeat the found schedulings for the
next time period of τ ′n, and so on. We repeat these scheduling
sequence for the period T no more than 	T/τ ′n
−1 = 2m−1
times.

In the following, we construct a series of schedulings for a
period τ ′n = 2Kτ1. Recall that we have partitioned the sensor
set V into K + 1 disjoint subsets V0, V1, . . . , VK , and the
charging cycle of each sensor in Vk is 2kτ1 with 0 ≤ k ≤ K,
We further partition the period τ ′n into 2K equal time intervals
with each interval lasting τ1, and label them from the left to
right as the 1st, 2nd, . . ., and the 2K th time interval. Clearly,
all sensors in V0 must be charged at each of these 2K time
intervals; all sensors in V1 must be charged at every second
time interval; and all sensors in Vk (Vk �= ∅) must be charged
at every 2k time interval, 0 ≤ k ≤ K. Thus, there are
2K charging schedulings of the q mobile chargers and each
charging scheduling is dispatched at each time interval. Let
Cj = {Cj,1, Cj,2, · · · , Cj,q} be the set of closed tours of the q
mobile chargers at time interval j, where 1 ≤ j ≤ 2K . Assume
that each sensor is fully charged at time t = 0. The charging
schedulings of the q mobile chargers for a period τ ′n are as
follows.

The 1st group of q closed tours C1 = {C1,1, · · · , C1,q}
contain all sensors in V0 and the depot set R. The q mobile
chargers are dispatched at time τ1.

The 2nd group of q closed tours C2 = {C2,1, · · · , C2,q}
contain all sensors in V0 ∪ V1 and the depot set R. The q
mobile chargers are dispatched at time 2τ1.

...

The jth group of q closed tours Cj = {Cj,1, · · · , Cj,q}
contain all sensors in ∪(j mod 2k)=0Vk where 0 ≤ k ≤ K ′

and K ′ = 	log2 j
, and the depot set R with 1 ≤ j ≤ 2K .
The q mobile chargers are dispatched at time jτ1.

...

The 2K th group of q tours C2K = {C2K ,1, · · · , C2K ,q}
contain all sensors in ∪K

i=0Vi = V and the depot set R. The
q mobile chargers are dispatched at time 2Kτ1.

Thus, the series of charging schedulings for a period
τ ′n is (C1, τ1), . . . , (Cj , jτ1), . . . , (C2K , 2Kτ1), where 2-tuple
(Cj , jτ1) represents that the q mobile chargers are dis-
patched at time jτ1 and the set of to-be-charged sensors is
∪Cj,i∈CjV (Cj,i) = ∪(j mod 2k)=0Vk ∪R, where 0 ≤ k ≤ K ′,
K ′ = 	log2 j
, and 1 ≤ j ≤ 2K . Then, the charging
schedulings for period T = 2mτ ′n are

(C1, τ1), · · · ,(C
2K−1

, (2K − 1)τ1), (C
2K

, 2Kτ1)

(C1, τ′n + τ1), · · · ,(C
2K−1

, τ′n + (2K − 1)τ1), (C
2K

, τ′n + 2Kτ1),

.

.

.

(C1, (2m − 1)τ′n + τ1),· · · ,(C
2K−1

, (2m − 1)τ′n + (2K − 1)τ1).

Note that we do not perform a charging scheduling at time
T = 2mτ ′n as there is no such need. Given a set V (Cj) of to-
be-charged sensors and the depot set R, we find the charging
tours for the q mobile chargers by calling Algorithm 2. The
proposed algorithm is described in Algorithm 3.

Algorithm 3 MinTotalDistance
Input: G = (V ∪ R,E;w), maximum charging cycles τ �→

R
+, q mobile chargers, and a monitoring period T .

Output: A series of charging schedulings C for period T
1: Let τ1, τ2, · · · , τn be the sorted maximum charging cycles

of sensors v1, v2, . . . , vn in ascending order;
2: For each sensor vi, let τ ′i = 2�log2

τi
τ1 ;

3: Partition sensors in V into K + 1 disjoint subsets
V0, V1, · · · , VK , where sensor vi ∈ Vk if 2kτ1 =

2�log2
τi
τ1
�τ1, 0 ≤ k ≤ K, and K = 	log2

τn
τ1

;

4: C ← ∅; /* the solution */
5: /* Construct schedulings (C1, τ1), · · · , (C2K , 2Kτ1) */
6: for j ← 1 to 2K do
7: /* Construct the node set V (Cj) of the q closed tours

in Cj at time tj = jτ1 */
8: V (Cj)← R; /* depot set */
9: for k ← 0 to 	log2 j
 do

10: if (j mod 2k) = 0 then
11: V (Cj)← V (Cj) ∪ Vk

12: end if
13: end for
14: Find q tours Cj = {Cj,1, · · · , Cj,q} in the induced

subgraph G[V (Cj)] by applying Algorithm 2;
15: C ← C ∪ {(Cj , tj)};
16: end for
17: for m′ ← 2 to 	T/τ ′n
 do
18: for j ← 1 to 2K do
19: C = C ∪ {(Cj ,m

′ · τ ′n + tj)}
20: end for
21: end for

C. Algorithm analysis

We now show that Algorithm 3 delivers an approximate
solution. We also analyze its time complexity.

Lemma 2: Algorithm 3 delivers a feasible solution.

Proof: It is obvious that the solution delivered by
Algorithm 3 is feasible, as the charging cycle τ ′i of each
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sensor vi ∈ V in the solution is no more than its maximum
charging cycle τi, i.e. τ ′i ≤ τi. Thus, no sensors will die in the
period T , the claim then follows.

The following lemma provides an lower bound on the
optimal service cost, which is the cornerstone for bounding
the service cost of the solution delivered by Algorithm 3.

Lemma 3: Given the sensor set partitioning V0, V1, . . . , VK

based on the maximum charging cycles of sensors, each
sensor in Vk is assigned with a same charging cycle 2kτ1,
0 ≤ k ≤ K. Let OPT be the service cost of an optimal
solution to the service cost minimization problem. Denote by
D∗k = {D∗k,1, D

∗
k,2, · · · , D

∗
k,q} the optimal q closed tours for

the q-rooted TSP problem in the induced graph G[R∪V0∪V1∪
· · · ∪ Vk], then w(D∗k) =

∑q
l=1 w(D

∗
k,l) ≤

OPT
m·2K−k , assuming

that T = 2mτ ′n and 0 ≤ k ≤ K.

Proof: To show that w(D∗k) ≤
OPT

m·2K−k , we partition the
entire period T = 2mτ ′n = 2m·2Kτ1 into m·2K−k equal time
intervals with each lasting time tk = 2k+1τ1. These intervals
are (0, tk], (tk, 2tk], · · · , ((j − 1)tk, jtk], · · · , ((m2K−k −
1)tk, m2K−ktk], where the jth time interval is the interval
((j − 1) · tk, j · tk], 1 ≤ j ≤ m · 2K−k. Note that m2K−ktk =
m2K−k2k+1τ1 = T .

Assume that there is an optimal solution consisting of
charging schedulings (C∗1 , t

∗
1), · · · , (C

∗
p , t

∗
p) with 0 < t∗1 ≤

. . . ≤ t∗p < T . Recall that OPT is the sum of lengths of the p
charging schedulings (or the service cost of the q mobile charg-
ers), OPT =

∑p

s=1 w(C
∗
s ) =

∑p

s=1

∑q

l=1 w(C
∗
s,l). We further

partition the p charging schedulings into m2K−k disjoint
groups according to their dispatching times, where charging
scheduling C∗s is in group j if its dispatching time t∗s is within
time interval j, i.e. t∗s ∈ ((j − 1)tk, jtk], where 1 ≤ s ≤ p
and 1 ≤ j ≤ m2K−k. Denote by Gj and w(Gj) the set of
charging schedulings in group j and the cost sum of charging
schedulings in Gj , respectively, i.e. w(Gj) =

∑
C∗s∈Gj

w(C∗s ),

1 ≤ j ≤ m2K−k. Then,
∑m2K−k

j=1 w(Gj) = OPT . Among the
m2K−k groups, there must be a group Gj whose service cost
w(Gj) is no more than 1

m2K−k of the optimal cost OPT , i.e.

w(Gj) ≤
OPT

m2K−k
. (2)

We claim that each sensor in
⋃k

i=0 Vi must be charged at
least once by the charging schedulings in Gj by contradiction.
Assume that there is a sensor vi ∈

⋃k

i=0 Vi which will not be
charged by any charging scheduling in Gj . Following the node
set partitioning, the maximum charging cycle τi of vi must be
less than 2 ·2kτ1 = 2k+1τ1 by inequality (1), i.e. τi < 2k+1τ1.
On the other hand, since vi will not be charged by any charging
scheduling in group Gj while it is still survived, this implies
that its maximum charging cycle must be no less than tk, i.e.
τi ≥ tk = 2k+1 · τ1, this results in a contradiction. Thus, vi
must be charged by at least one charging scheduling in Gj .

We now construct feasible solution Ck =
{Ck,1, Ck,2, · · · , Ck,q} to the q-rooted TSP problem in
the induced subgraph G[R ∪ V0 ∪ · · · ∪ Vk] based on the
charging schedulings in Gj , such that the service cost w(Ck)
is no more than w(Gj). Since each closed tour in Gj contains
a depot rl ∈ R, we partition the closed tours in Gj by the

depot that each tour contains. To this end, we partition tours
in Gj into q disjoint subgroups Gj,1,Gj,2, · · · ,Gj,q , where
subgroup Gj,l includes all closed tours in Gj that contains
depot rl, 1 ≤ l ≤ q. For each subgroup Gj,l, since each tour
contains depot rl, the union of all close tours in Gj,l forms
a connected Eulerian graph. Then, we can derive a Eulerian
circuit C ′k,l from this Eulerian graph and w(C ′k,l) = w(Gj,l).
We further obtain a closed tour Ck,l including only nodes
in R ∪ V0 ∪ · · · ∪ Vk once from C ′k,l, by the removal of the
nodes not in R ∪ V0 ∪ · · · ∪ Vk and the nodes with multiple
appearances, and performing path short-cutting. Since edge
weights satisfy the triangle inequality, we have

w(Ck,l) ≤ w(C ′k,l) ≤ w(Gj,l), 1 ≤ l ≤ q. (3)

As each sensor in
⋃k

i=0 Vi is be charged at least once by the
charging schedulings in Gj , and tour Ck,l contains depot rl, we
have

⋃k

i=0 Vi ⊆
⋃q

l=1 V (Ck,l). Then, tours in Ck form a feasi-
ble solution to the q-rooted TSP problem in the induced graph
G[R ∪ V0 ∪ V1 ∪ · · · ∪ Vk]. Let D∗k = {D∗k,1, D

∗
k,2, · · · , D

∗
k,q}

be the optimal q closed tours. Then,
q∑

l=1

w(D∗k,l) ≤

q∑

l=1

w(Ck,l). (4)

Combining (2), (3), and (4), the lemma then follows.

Following Lemmas 2 and 3, we show the approximation
ratio of Algorithm 3 by the following theorem.

Theorem 2: There is a 2(K +2)-approximation algorithm
for the service cost minimization problem with fixed maxi-
mum charging cycles, which takes time O( τmax

τmin
n2 + T

τmin
n),

where K = 	log2
τmax

τmax

, τmax = maxni=1{τi} and τmin =

minni=1{τi}.

Proof: By Lemma 2, Algorithm 3 delivers a feasible
solution. The rest is to analyze its approximation ratio.

Recall that the charging schedulings delivered
by Algorithm 3 for the period T = 2mτ ′n are:
(C1, τ1), · · · , (C2K , 2Kτ1), (C1, τ

′
n + τ1), · · · , (C2K , τ ′n +

2Kτ1), · · · , (C1, (2m − 1)τ ′n + τ1), · · · , (C2K−1, (2m −
1)τ ′n + (2K − 1)τ1). The total service cost during T then is

(2m− 1)
2K∑

j=1

w(Cj) +
2K−1∑

j=1

w(Cj) ≤ 2m
2K∑

j=1

w(Cj). (5)

Let C(τ ′n) = {(C1, τ
′
1), (C2, τ

′
2), . . . , (C2K , τ ′n)}. From the

construction of C(τ ′n), we can see that there are 2K−1 identical
charging schedulings in C(τ ′n) with each only containing the
nodes in R ∪ V0, denote by D0 the charging scheduling and
w(D0) the service cost of the scheduling. In general, there
are 2K−1−k identical charging schedulings in C(τ ′n) with each
only containing the nodes in R ∪ V0 ∪ V1 . . . ∪ Vk, denote
by Dk the charging scheduling and w(Dk) the cost of the
scheduling with 0 ≤ k ≤ K−1. Finally, there is one charging
scheduling in C(τ ′n) containing the nodes in R∪V0∪· · ·∪VK =
R ∪ V , denote by DK the charging scheduling and w(DK)
the scheduling cost. We then rewrite the upper bound on the
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service cost in Inequality (5) as

2m
2K∑

j=1

w(Cj) = 2m(

K−1∑

k=0

2K−1−kw(Dk) + w(DK)). (6)

Denote by D∗k = {D∗k,1, D
∗
k,2, · · · , D

∗
k,q} the set of the

optimal q closed tours for the q-rooted TSP problem in the
induced graph G[R∪V0∪· · ·∪Vk]. Since Dk is a 2-approximate
solution by Theorem 1, w(Dk) ≤ 2w(D∗k), 0 ≤ k ≤ K. Also,
by Lemma 3, w(D∗k) ≤

OPT
m2K−k . We have

2m(

K−1∑

k=0

2K−1−kw(Dk) + w(DK))

≤ 4m(
K−1∑

k=0

2K−1−k OPT

m2K−k
+

OPT

m
) = 2(K + 2)OPT. (7)

We analyze the time complexity of Algorithm 3 as
follows. Partitioning the sensor set V into K + 1 disjoint
subsets V0, V1, . . . , VK takes O(n) time, based on the assigned
charging cycles for the n sensors. We then analyze the running
time of constructing 2K charging schedulings C1, C2, . . . , C2K
for the mobile chargers for a period of τ ′n as follows. Given
the sensor set C(Vj) for any j with 1 ≤ j ≤ 2K , it takes
O(|V (Cj)|

2) time to find a 2-approximate solution to the
q-rooted TSP problem by Theorem 1 in a complete graph
G[V (Cj)] induced by the nodes in V (Cj) while V (Cj) ⊆ V .
Thus, the time of constructing the 2K charging schedulings
is O(2Kn2) = O( τmax

τmin
n2), where τmax = maxni=1{τi} and

τmin = minni=1{τi}. Having these 2K closed tours, the rest
of closed tours can be obtained by repeatedly copying these
2K close tours but assigning them with different dispatch-
ing times. Thus, the time complexity of the solution C is
O( τmax

τmin
n2 + T

τ ′n
n) = O( τmax

τmin
n2 + T

τmin
n) time.

VI. HEURISTIC ALGORITHM WITH VARIABLE MAXIMUM
CHARGING CYCLES

So far we have developed an approximation algorithm
for the service cost minimization problem, assuming that
maximum charging cycles of sensors are fixed. In this section
we devise a novel heuristic algorithm for it without this
assumption as follows.

A. Dynamic maximum charging cycles of sensors

Within the period T , the energy consumption rates of
sensors may dynamically change over time, which results in
the changes of sensor maximum charging cycles eventually. To
respond to the variation, each sensor monitors its own energy
information including residual energy and energy consumption
rate periodically (e.g. every a few hours). Based on the energy
information, it can predicts its residual lifetime, using a light-
weight prediction technique as follows. Let ρ̂i(t + 1) be the
predicted energy consumption rate of sensor vi for time t+1,
ρ̂i(t+1) = γ ·ρi(t)+(1−γ) · ρ̂i(t), where γ is a constant with
0 < γ < 1, ρ̂i(t) and ρi(t) are the predicted and monitored
energy consumption rates of sensor vi at time t, respectively.
Assume that the residual energy of sensor vi at time t is rei(t),
we estimate its residual lifetime li(t) and maximum charging
cycle τi(t) by li(t) =

rei(t)
ρ̂i(t+1) and τ̂i(t) =

Bi

ρ̂i(t+1) , respectively.

The base station maintains the updated energy information
of each sensor. We assume that there is a variation threshold
of maximum charging cycle at each sensor, if the variation
is under the pre-defined threshold, nothing is to be done.
Otherwise, the sensor sends an updating request to the base
station and the base station takes proper actions.

B. Heuristic Algorithm

Assume that the base station receives maximum charging
cycle updatings from some sensors at time t, which implies that
the charging schedulings based on previous maximum charging
cycles may not be applicable any more, otherwise these sensors
will deplete their energy prior to their next charging cycles. For
example, assume a sensor has changed its maximum charging
cycle from a longer one to a shorter one, it might be dead if
the sensor still is charged with the previous longer charging
cycle since the sensor now can only last its operations for a
shorter cycle once it is fully charged.

The basic idea of the heuristic algorithm is as follows.
When the base station receives maximum charging cycle
updatings, it checks whether the previous series of schedulings
still are applicable for these updated maximum charging cy-
cles. If so, nothing needs to be done. Otherwise, the algorithm
re-computes a new series of schedulings by first applying the
approximation algorithm based on updated maximum charg-
ing cycles, followed by minor modifications to the solution
delivered by the approximation algorithm.

Assume that the previous maximum charging cycle of
sensor vi is τ̂i(t − 1) and it was charged at a charging
cycle τ̂ ′i(t − 1) in the previous series of schedulings, where
τ̂ ′i(t − 1) ≤ τ̂i(t − 1). At time t, the base station receives
the maximum charging cycle updating of sensor vi, which
changes from τ̂i(t− 1) to τ̂i(t). The base station then checks
the feasibility of the previous schedulings as follows. If
τ̂ ′i(t − 1) ≤ τ̂i(t) < 2τ̂ ′i(t − 1), the previous schedulings are
still feasible as sensor vi will be charged with a charging cycle
τ̂ ′i(t − 1) no more than its current maximum charging cycle
τ̂i(t). Otherwise (τ̂i(t) < τ̂ ′i(t − 1) or τ̂i(t) ≥ 2τ̂ ′i(t − 1)),
we re-compute a new series of schedulings based on updated
maximum charging cycles since the previous schedulings are
not feasible any more (i.e. τ̂i(t) < τ̂ ′i(t − 1)), or though the
schedulings still are feasible, they are not optimal in terms of
the service cost (i.e. τ̂i(t) ≥ 2τ̂ ′i(t− 1)). In the following, we
re-compute a new series of schedulings.

To re-compute a new series of schedulings, we first invoke
the proposed approximation algorithm based on the updated
maximum charging cycles. Assume that the updated maximum
charging cycles of the n sensors are τ̂1(t), τ̂2(t), · · · , τ̂n(t)
and their residual lifetimes are l̂1(t), l̂2(t), · · · , l̂n(t), where
0 < t < T . We further assume that the solution delivered by
the approximation algorithm based on the updated maximum
charging cycles is:
(C1, t + τ̂1(t)), (C2, t + 2τ̂1(t)), · · · , (C

2K
, t + 2Kτ̂1(t)),

(C1, t + τ̂′n(t) + τ̂1(t)), (C2, t + τ̂′n(t) + 2τ̂1(t)), · · · , (C
2K

, t + τ̂′n(t) + 2Kτ̂1(t)),

.

.

.

(C1, t + xτ̂′n(t) + τ̂1(t)), · · · , (Cy, t + xτ̂′n(t) + yτ̂1(t),

where t + xτ̂ ′n(t) + yτ̂1(t) < T , t + xτ̂ ′n(t) + (y +
1)τ̂1(t) ≥ T , and x and y are positive integers. The most
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updated charging cycles of the n sensors in the solution are

τ̂ ′1(t), τ̂
′
2(t), · · · , τ̂

′
n(t), where τ̂ ′i(t) = 2

�log2
τ̂i(t)

τ̂1(t)
�
τ̂1(t).

Note that the solution delivered may not be feasible, as
different sensors may have different residual energy, which
violates the condition of applying the approximation algorithm,
that is, all sensors must be fully charged initially. The residual
energy in some sensor vi may not support its operation until
its next charging time t + τ̂ ′i(t), i.e. l̂i(t) < τ̂ ′i(t). Denote
by V a the set of sensors with l̂i(t) < τ̂ ′i(t). We then
schedule the mobile chargers to replenish sensors in V a to
avoid their energy expiration, through adding a new charging
scheduling (C′0, t) and modifying the first 2K schedulings
from (C1, t + τ̂1(t)), (C2, t + 2τ̂1(t)), · · · , (C2K , t + 2K τ̂1(t))
to (C′1, t + τ̂1(t)), (C

′
2, t + 2τ̂1(t)), · · · , (C

′
2K , t + 2K τ̂1(t)).

Therefore, the solution delivered by the algorithm is:
(C′0, t), (C′1, t + τ̂1(t)), (C′2, t + 2τ̂1(t)), · · · , (C′

2K
, t + 2Kτ̂1(t)),

(C1, t+ τ̂′n(t)+ τ̂1(t)), (C2, t+ τ̂′n(t)+2τ̂1(t)), · · · , (C
2K

, t+ τ̂′n(t)+2Kτ̂1(t)),

.

.

.

(C1, t + xτ̂′n(t) + τ̂1(t)), · · · , (Cy, t + xτ̂′n(t) + yτ̂1(t).

The rest is to construct the first 2K + 1 charging schedulings.

Let V a
t = {vi|vi ∈ V a & l̂i(t) < τ̂1(t)}, which

implies that the residual lifetime of each sensor in V a
t is

less than τ̂1(t) and V a
t ⊆ V a. We construct a scheduling

(C0, t), in which all sensors in V a
t will be charged at time

t. We then, like the node set partition in the approximation
algorithm, partition the set V a \ V a

t into K + 1 disjoint sets
V a
0 , V

a
1 , · · · , V

a
K according to their residual lifetimes, where

K = 	log2
τ̂n(t)
τ̂1(t)


 and a sensor vi ∈ V a \ V a
t is contained

in V a
k if 2k τ̂1(t) ≤ l̂i(t) < 2k+1τ̂1(t). Note that the residual

lifetime l̂i(t) of each sensor vi in V a
k at time t is no less

than 2k τ̂1(t) but no greater than its charging cycle τ̂ ′i(t), i.e.
2k τ̂1(t) ≤ l̂i(t) < τ̂ ′i(t). To avoid the energy expiration of
sensor vi, we can add it into any one of the schedulings:
{(C0, t), (C1, t+τ̂1(t)), (C2, t+2τ̂1(t)), · · · , (C2k , t+2k τ̂1(t))}.
However, to minimize the service cost, we add sensor vi into a
nearest scheduling Cj , i.e. the nearest distance between sensor
vi and nodes in scheduling Cj is no less than the nearest
distance between it and nodes in any other scheduling Cl,
where 0 ≤ j, l ≤ 2k. The detailed construction of the 2K + 1
schedulings is as follows.

We construct the 2K+1 schedulings by iteratively invoking
Algorithm 1 for the q-rooted minimum spanning forest
problem. Denote by V (C

(k)
j ) and V (C

(k+1)
j ) the constructed

node sets of scheduling C′j before and after iteration k, respec-

tively, where 0 ≤ k ≤ K. Note that C(k)j = {C
(k)
j,1 , · · · , C

(k)
j,q }

and V (C
(k)
j ) =

⋃q
l=1 V (C

(k)
j,l ). After K + 1 iterations, we

let V (C′j) = V (C
(K+1)
j ). We finally obtain scheduling C′j

by applying Algorithm 2 for the q-rooted TSP problem
in the induced graph G[V (C′j)]. Consequently, each sensor
in V a

t ∪ V a
0 ∪ · · · ∪ V a

K = V a will be charged in time.
Initially, let V (C

(0)
0 ) = V a

t ∪ R and V (C
(0)
j ) = V (Cj), where

1 ≤ j ≤ 2K . At iteration k (0 ≤ k ≤ K), we first construct
an auxiliary graph G(k) = (V a

k ∪ R(k), E(k);w(k)) based
on node sets V a

k and V (C
(k)
0 ), V (C

(k)
1 ), · · · , V (C

(k)

2k
), where

there is a root r
(k)
j in R(k) representing node set V (C

(k)
j ),

0 ≤ j ≤ 2k, and E(k) = V a
k × V a

k ∪ V a
k × R(k). Then,

|R(k)| = 2k+1. For each edge (u, v) ∈ V a
k ×V a

k , w(k)(u, v) is
the Euclidean distance between nodes u and v. For each edge
(u, r

(k)
j ) ∈ V a

k × R(k), w(k)(u, r
(k)
j ) is the nearest Euclidean

distance between node u and nodes in V (C
(k)
j ). We then obtain

2k + 1 minimum cost rooted trees T
(k)
0 , T

(k)
1 , · · · , T

(k)

2k
, by

invoking Algorithm 1 on G(k), where tree T
(k)
j contains

root r
(k)
j and 0 ≤ j ≤ 2k. Note that each sensor in V a

k is

contained in a tree T
(k)
j and V a

k = V (T
(k)
0 ) ∪ V (T

(k)
1 ) ∪

· · · ∪ V (T
(k)

2k
) − R(k). Then, the sensors in tree T

(k)
j will be

charged in scheduling (C′j , t + jτ̂1(t)). To this end, we let

V (C
(k+1)
j ) = V (C

(k)
j ) ∪ V (T

(k)
j ) − {r

(k)
j } if 0 ≤ j ≤ 2k,

otherwise (2k+1 ≤ j ≤ 2K ), V (C
(k+1)
j ) = V (C

(k)
j ). We refer

to this heuristic algorithm as MinTotalDistance-var.

Theorem 3: There is a heuristic algorithm for the service
cost minimization problem with variable maximum charging
cycles, which takes O( τmax

τmin
n2 + T

τmin
n+

τ2
max

τ2
min

) time, where
n = |V |, τmax = maxni=1{τi}, and τmin = minni=1{τi}.

Proof: It is obvious that the heuristic algorithm delivers
a feasible solution. The time complexity analysis is similar to
the one in Theorem 3, omitted.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed algorithms through experimental simulations. We also
study the impact of important parameters on the algorithm
performance, including the network size, sensor charging cycle
distributions, and the ratio of the maximum charging cycle to
the minimum charging cycle.

A. Experimental environment

We consider a WSN consisting of from 100 to 500 sensors
in a 1, 000m × 1, 000m square area, in which sensors are
randomly deployed. The base station is located at the center
of the square. There are 5 depots in the WSN (q = 5) and
at each depot there is a mobile charger. To reduce the total
traveling distance of the q mobile chargers, one depot is co-
located with the base station, as the most energy-consuming
sensors in a WSN are usually close to the base station for
relaying data for other remote sensors. The rest of q−1 depots
are randomly distributed in the area. The entire monitoring
period is T = 1, 000 and period T is partitioned into equal
time slots with each lasting ΔT (ΔT typically is short, e.g.
ΔT = 10). We assume that the maximum charging cycle τi(t)
of each sensor vi ∈ V does not change within each time slot
ΔT . Even it does change, the difference can be neglected.

We adopt two distributions of sensor charging cycles: the
linear distribution and the random distribution. In the linear
distribution, the charging cycle τi of each sensor vi ∈ V is
chosen from an interval [τ̄i−σ, τ̄i+σ], where τ̄i and σ are the
average and variance of its charging cycle, respectively, and
σ = 2 in the default setting. The average charging cycle τ̄i
of sensor vi is proportional to its distance to the base station,
i.e. the sensors nearest to the base station have the minimum
average charging cycle τmin while the farthest sensors have the
maximum average charging cycle τmax. While in the random
distribution, its charging cycle τi is randomly chosen from the
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interval [τmin, τmax], where τmin = 1 and τmax = 50 in the
default setting. The linear distribution characterizes the sensor
energy consumptions in most WSN applications, in which data
transmission takes a large portion of sensor energy consump-
tion. Since sensors near to the base station have to relay sensing
data from remote sensors, they consume their energy much
quicker and result in a shorter charging cycle. Furthermore,
by adjusting the ratio τmax

τmin
, this model can also incorporate

data aggregation at intermediate sensors, i.e. a smaller value
of τmax

τmin
indicates a higher extent of data aggregation. On

the other hand, the random distribution captures the sensor
energy consumptions in multimedia sensor networks, where
camera sensors can consume substantial energy on image
processing [1]. Thus, the maximum charging cycle of one
sensor in such a network is not closely related to its distance
to the base station.

To compare the performance of the proposed algorithms,
we also implement a greedy charging algorithm. In the greedy
algorithm, each sensor sends a charging request to the base
station when it will deplete its energy soon. Once receiving
a request, the base station commands the q mobile chargers
to charge those sensors whose estimated residual lifetimes are
less than a given threshold Δl with Δl = τmin = 1. Each
value in figures is the average of the results by applying each
mentioned algorithm to 100 different network topologies with
the same network size.

B. Performance with fixed maximum charging cycles

In this subsection, we evaluate the performance of algo-
rithm MinTotalDistance against the greedy algorithm,
assuming that maximum charging cycles within T are fixed.
We first study the performance of the algorithms by varying
network size n from 100 to 500 under the two different
charging cycles distributions. Fig. 1 (a) shows that the service
cost delivered by algorithm MinTotalDistance is 55%
to 60% of the service cost by the greedy algorithm under
the linear distribution. In contrast, Fig. 1 (b) demonstrates
that the service cost by the former algorithm is 87% to 93%
of the service cost by the latter one. The rationale behind
is that, under the linear distribution, the sensors with short
charging cycles are near the base station, while under the
random distribution, the sensors with short charging cycles
are randomly located in the network, these q mobile chargers
must travel much longer to replenish them.
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Fig. 1. Performance of algorithms MinTotalDistance and Greedy by varying
network size when τmin = 1 and τmax = 50.

We then examine the performance of the two algorithms
by varying τmax from 1 to 50 while fixing τmin = 1.
Fig. 2 (a) clearly present that the service cost by algorithm
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Fig. 2. Performance of algorithms MinTotalDistance and Greedy by varying
the maximum charging cycle τmax when τmin = 1 and n = 200.
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Fig. 3. Performance of algo-
rithms MinTotalDistance-var and
Greedy by varying network size when
τmin = 1, τmax = 50, ΔT = 10
and σ = 2.
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Fig. 4. Performance of algo-
rithms MinTotalDistance-var and
Greedy by varying τmax when n =
200, τmin = 1, ΔT = 10 and σ = 2.

MinTotalDistance is almost identical to the one by the
greedy algorithm when the maximum charging cycle τmax is
no greater than 10. However, the service cost by the former
algorithm significantly outperforms that by the latter one when
τmax is larger than 10, and the gap between them becomes
bigger with the increase of τmax. This is because that when
the value of τmax is small (e.g. τmax = 5), most sensors
in the network have short charging cycles and the mobile
chargers have to visit most area in the network to charge
them. On the other hand, more sensors have longer charging
cycles when τmax becomes bigger. The proposed algorithm
MinTotalDistance takes both locations and charging cy-
cles of sensors into consideration while the greedy algorithm
only considers charging each sensor as less frequently as possi-
ble (i.e. replenish each sensor almost at its maximum charging
cycle). We also note that the approximation ratio 2(K + 2)
delivered by algorithm MinTotalDistance is small when
τmax is not large, where K = 	log2

τmax

τmin

, which indicates

that the service cost by algorithm MinTotalDistance
is fractional of the optimal. Fig. 2 (b) also show that the
performance of both algorithms are only marginally different
under the random distribution. Therefore, in the rest we only
evaluate their performance under the linear distribution.

C. Performance with variable maximum charging cycles

In this subsection, we first investigate the performance of
the proposed algorithm MinTotalDistance-var against
the greedy algorithm with variable maximum charging cycles.
Fig. 3 and Fig. 4 illustrate the performance of both algorithms
under the linear distribution, by varying network size n and the
maximum charging cycle τmax, from which we can see that
algorithm MinTotalDistance-var is still competitive as
it did under fixed maximum charging cycles.
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Fig. 5. Performance of algo-
rithms MinTotalDistance-var and
Greedy by varying ΔT when n = 200,
τmin = 1, τmax = 50, and σ = 2.
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Fig. 6. Performance of algo-
rithms MinTotalDistance-var and
Greedy by varying σ when n = 200,
τmin = 1, τmax = 50, and ΔT =
10.

We then study the stability of charging cycles on the
algorithm performance by varying parameter ΔT from 1 (i.e.
extremely unstable) to 20 (i.e. rather stable). Fig. 5 shows that
the service cost by algorithm MinTotalDistance-var is
almost identical to the one by the greedy algorithm when the
charging cycles are extremely unstable (ΔT = 1) and their
service costs decrease with the increase of the stability of the
sensor charging cycles (a larger ΔT ). We also note that al-
gorithm MinTotalDistance-var outperforms the greedy
algorithm significantly even when charging cycles are only
fixed in a short time slot ΔT (e.g. ΔT = 4 � τmax = 50),
which indicates that algorithm MinTotalDistance-var
can quickly adapt to charging cycle changes.

We finally investigate the impact of the variance σ of charg-
ing cycles on the algorithm performance by varying it from 0 to
50. Fig. 6 present that the service costs delivered by both algo-
rithms increase with a larger value of variance σ. In particular,
the service cost by algorithm MinTotalDistance-var
becomes as high as that by the greedy algorithm when σ is
quite large (e.g. σ = 50). The rationale behind this is that when
σ is large, it is more likely that the sensors far from the base
station can have short charging cycles, as the charging cycle
of sensor vi is chosen from a large interval [τ̄i − σ, τ̄i + σ],
thereby leading to the increase of the service cost of the q
mobile chargers.

VIII. CONCLUSIONS

In this paper, we studied the use of multiple mobile
chargers to charge sensors in a wireless sensor network in a
flexible on-demand manner, such that none of the sensors runs
out of its energy for a monitoring period T . To this end, we
first formulated a novel service cost minimization problem,
by finding a series of charging schedulings of these mobile
chargers to maintain the perpetual operations of sensors so
that the total traveling distance of these chargers during T
is minimized. As this optimization problem is NP-hard, we
then devised an approximation algorithm for it with a provable
approximation ratio if maximum charging cycles of sensors
are fixed. Otherwise, we developed a novel heuristic solution
through minor modifications to the approximate solution. We
finally conducted extensive experiments through simulations
to evaluate the performance of the proposed algorithms and
experimental results show that the proposed algorithms are
very promising.
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