

Abstract— Lack of automation in supply chain payment

systems is one of the missing points in the area of optimizations
and can cause inefficiencies in the total performance of the
chain. To overcome this problem, a new context-aware payment
method is introduced in this paper, based on pervasive and
ubiquitous computing technologies. The main architectural
structure is inspired from the Service-Oriented Context Aware
Middleware (SOCAM) along with the modification of existing
architectures in context-aware systems. It also provides
components to insure trusted interactions among members in a
supply chain. A new three-layered architecture has been
suggested to support this new approach. Software architecture
of the proposed payment system has been specified using the
Unified Modeling Language (UML) and its crucial properties
making the system safe and reliable have been verified using
formal methods. The verification of such approach using
Temporal Logic insures its progress and overall performance of
the future systems developed under this architecture.

Index Terms — Context-awareness, Formal Methods,

Software Architecture, Supply Chain Management.

I. INTRODUCTION
Ubiquitous computing introduces a new method of

computing after mainframes and distributed systems. It is
often known as the calmest technology for establishing
communication between humans (or other objects) with
computer systems, as it runs in the background of everyday
life of people and tries not to be sensed by human [1].

Currently, the most focused issue in ubiquitous/pervasive
computing is Context-awareness. A context-aware system is
able in adapting its operations to a given context, without
explicit user intervention and thus aims at increasing
usability and effectiveness by taking environmental context
into account [2]. As proposed by Dey and Abowd, “Context”
is defined as any information that can be used to characterize
the situation of entities (i.e., whether a person, place or
object) that are considered relevant to the interaction
between a user and an application, including the user and the
application themselves [2]. According to this definition, three

Manuscript received March 17, 2008.
Zahra Zamani is with the Algorithm and Computations Department,

Faculty of Engineering, University of Tehran, Tehran, Iran
(phone:0098-21-88308307; fax: 0098-21- ; email: zahrazamani@ut.ac.ir).

Maryam Bayat. is with the Computer Engineering Department,
Amirkabir University of Technology, Tehran, Iran (e-mail:
maryam.bayat@aut.ac.ir).

Ali Moeini. is Associate Professor with the Algorithm and Computations
Department, Faculty of Engineering, University of Tehran, Tehran, Iran
(email: moeini@ut.ac.ir).

Alireza Motevalian is with the Computer Engineering Department,
Amirkabir University of Technology, Tehran, Iran (e-mail:
motevalian@ce.sharif.edu).

distinct entities are usually identified concerning the context
concept, namely Places, People and Things. Each of these
entities can be characterized with attributes such as identity,
location, status and time.

Recent advances in ubiquitous/pervasive computing, have
led to the emergence of a new concept called Ubiquitous
Payment defined as ubiquitous, invisible and unobtrusive
payment, which is integrated into the environment and
regards the context of the payer. This means that the payment
process should neither interrupt the payer in his current action
nor should not interrupt running processes [3].

On the other hand, automation and optimization of Supply
Chain (SC) activities is a newly growing research area which
has been focused by many researchers recently. A Supply
chain is a coordinated system of organizations, people,
activities, information and resources being involved in
moving a product or service in physical or virtual manner
from the supplier to the customer. Supply chain activities,
therefore, transform raw materials and components into a
matured product that is delivered to the end customer [4].

Recently, efforts have been conducted to optimize the
supply chain activities and minimize the required time and
cost for producing a product/service in order to improve the
efficiency of the whole chain. However, a missing process in
these efforts, which has not been given its proper importance,
is the Payment process between the members of a supply
chain. As discussed in [5], a great majority of supply chains’
members are currently using paper-based payment systems to
perform their financial flows (including activities such as
initiating, tracking and reconciling paper-based invoices),
imposing additional cost to the supply chain as well as
causing serious problems in handling tremendous amounts of
financial transactions between the members. The potential
problems, caused by using paper-based payment systems in
companies within a supply chain are identified as follows [5]:

• Difficulties in efficiently tracking the accounts
payable (A/P) and receivable (A/R).

• Imposing extra cost for manually tracking
detailed information on stock coding (keeping
numbers) and items' quantity.

• Monitoring and enforcing conformance to
corporate spending policies are almost
impossible, since most of expending are done in
an ad hoc manner

• Payment is delayed due to the invoice
reconciliations.

Such problems urge the necessity of a payment
optimization process amongst supply chain members in order
to lead to a radical reduction in cost and time as to improve
the overall efficiency of the supply chain. This paper attempts

Context-Aware Payment for Supply Chains:
Software Architecture and Formal Verification

Zahra Zamani, Maryam Bayat, Ali Moeini, Alireza Motevalian

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

to highlight a new payment process based on ubiquitous
payment and context-awareness concepts in order to avoid
the mentioned problems in supply chain management. Some
of the architectural viewpoints of the proposed process have
been specified based on Garland and Anthony’s [11]
approach using Unified Modeling Language (UML). To
prove safety of the proposed architecture and more
importantly, to shows that systems implemented based on it
progress in an efficient way, we adopted a formal verification
technique. The main properties of the system are verified
using the Temporal Logic verification language and a set of
automatic verifying tools.

The main sections throughout this work are as follows:
Section 2 introduces the architecture of the proposed
payment system that is to be used beside a Supply Chain
Management (SCM) software; section 3 proceeds with the
specifications of this payment system using UML as the
specification language; verification of some important
properties of the proposed model (as a reactive model) is
presented in section 4; finally, section 5 draws some
concluding remarks.

II. CONTEXT-AWARE PAYMENT FOR SUPPLY CHAINS
(CAPSC)

Recent architectural updates on context-aware systems,
applying special solutions to realize the concept of
context-awareness, include the following sections:

a- Context Managing Framework; a hierarchical
framework which utilizes a layered architecture [6].

b- The layered architecture used in the Hydrogen
project [7].

c- Context Broker Architecture (CoBrA) the model
which uses agents to make context-aware
computations in smart spaces possible [8].

d- The peer-to-peer architecture for context-aware
computing, named Context Toolkit [9].

e- Service-oriented Context-aware Middleware(SOCAM),
the proposed architecture for prototyping and rapid
construction of mobile context-aware services [10].

The last item is a distributed middleware that utilizes
two-level ontology for defining and storing context data
received from the environment in a machine-readable form.
SOCAM arranges its components in a three-layered
architecture, a layer for context providers, one for context
interpreter and databases and the last layer for providing
services. Based on a logical interpretation of context
information, such middleware provides different services
using specific information about the environmental context to
make right decisions. Thus, the services utilizing SOCAM as
a mean to be aware about the environmental context are
usually called Context-aware Services.

Concerning the problem of building a context-aware
payment system for supply chains, the main architectural
structure of Service-Oriented Context Aware Middleware
(SOCAM) is used and modified to serve our special purpose.
We have employed the 3-layered architecture of SOCAM in
our method, adopted to meet our requirements. The main idea
of a context-aware payment for supply chains is illustrated in
Figure 1. In this figure the producer can participate as a SC
Member, requiring raw material from other SC members

(Suppliers) in order to produce its products/services. It is
assumed that the SCM software is governing the whole chain
by not only creating top-level strategies but also informing its
members about the unified plans. As a result the SCM
software coordinates the demands of producers with the
suppliers' products. In our new model, we assume that
ubiquitous technologies such as Radio-Frequency
Identification (RFID) Tags (capable of storing information)
are available and are used by all members of SC. Therefore,
the identification and payment information are stored on raw
materials, before being sent to the producer. At the
producer’s side, this information is read and sent
automatically to the Context-Aware Payment system.
Authentication of the received context based on Public Key
Infrastructure (PKI) is an important issue in the proposed
context-aware payment method that ensures authenticity of
the sender. (, i.e. legality of a member) Also, the payment
information received from the environment helps a SC trust
this method for accomplishing the desired payment process
in a ubiquitous, context-aware manner. After the
authentication phase, Context-Aware system performs
payments between the financial institutes of suppliers and
producers, based on context information received from the
environment.

Figure 1: Context-Aware Payment Concept for Supply Chains

Figure 2 shows the proposed architecture of

Context-Aware Payment for Supply Chains (CAPSC), which
incorporates SOCAM into the above mentioned model.
There are changes in each layer of SOCAM based on the new
approach. Unlike SOCAM architecture which utilizes
services, CAPSC architecture is based on agents in the top
layer for accomplishing payment business process along a
supply chain. The providers in the bottom layer are defined
more explicitly according to SC requirements and the middle
layer handles not only interpretation and storage, but also
authentication on the context. This three layered architecture
consists of Context-Sensing Layer, Perceptual Layer and
Payment Agent Layer, a concise description of them follows.

Figure 2: Context-Aware Payment for Supply Chains (CAPSC) Architecture

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

A. Context Sensing Layer
Components of this layer are responsible for sending and

receiving context information and are categorized as bellow:
a) Member Info Management Component (MIM): All

members in a SC must have trust on Certificate Authority
(CA) of the chain and hold a valid certificate from CA either
at the initial joining stage or whenever an existing certificate
expires. Members then introduce themselves (i.e. its digitally
signed identity information) to CAPSC using this
component. This information is sent to the Authentication
Component for authentication. The MIM should provide a
Universal Description Discovery and Integration
(UDDI)-like service helping members to locate the provided
web services and transferring all members’ information to the
Perceptual Layer for authentication.

b) Product Info Management Component (PIM):
Provides communication interfaces with different context
receivers. For example, if RFID Readers are used as context
receivers in the supply chain, then this component should
provide the CAPSC system with software interfaces which
are capable of reading data from different types of used RFID
Tags. Indeed, the PIM component knows the raw data
arrangement in a tag and retrieves different fields of data
carried by products in order to send them back to the
Perceptual Layer for authentication and storage.

B. Perceptual Layer
Authentication of raw context, interpretation of

authenticated data and sending notifications of special events
to related agents are performed by this layer which consists of
the following components:

a) Authentication Component: Communicates with the
SC’s trusted CA and authenticates product/member context
information by processing the included digital signature. If
the received information is distinguished as authenticated,
then it will be formatted as a Domain-Specific ontology using
Web Ontology Language (OWL) and stored in the Context
Database; otherwise it is discarded.

b) Reasoning Component: Reasoning and interpreting
new information from raw context is the main responsibility
of this component. To achieve this, a Context Database
component, containing the last raw context about
product/member, and a Context Knowledge-base component,
containing results of previous interpretations and historical
information about products, is provided in this layer. As an
example of a possible interpretation that could be done by
this component, one can mention the control of debts of a
particular member. When the debt reaches a predefined
threshold, the Reasoning Component notifies appropriate
agents to pay debts to proper members.

c) Context Database Component: Stores raw
member/product context information based on a
Domain-Specific ontology.

d) Context Knowledge-base Component: Maintains
previously interpreted context and historical product context
information.

C. Payment Agent Layer
It is supposed that instead of context-aware services in

SOCAM architecture, agents perform payments and
monitor/manage these transactions in CAPSC. Two general

categories of agents in the field of supply chain payment,
with the other component in this layer, are explained bellow:

a) Payment Management Agent Component: Manages
and monitors payment transactions. For example, receiving
debt notifications from the Perceptual Layer and initiating the
payment process to proper creditors, setting debt thresholds,
creating suitable reports for management and so forth.

b) Payment Agent Component: This type of agent
performs the actual payment process between financial
institutes of supply chain members. This class of components
is treated as external components providing suitable
interfaces for its initiators (i.e. Payment Management
Agents). As an example, one can name a component
performing payment using the Bank Internet Payment
System (BIPS) standard via internet.

c) Payment Knowledge-base Component: This
component stores historical data about payment transactions
performed in the system for further requirements such as
reporting.

III. CAPSC SOFTWARE ARCHITECTURE SPECIFICATION
Various approaches may be taken to adequately specify the

architecture of systems, such as IEEE1471, Garland and
Anthony, Philippe Kruchen’s4+1and others [11]. In addition
to architectural specification approaches, one can choose an
Architectural Definition Language (ADL) or a visual
modeling language such as UML as a tool for representing
various views of the selected specification approach. ADLs
have the advantage of logic and mathematic concepts to
specify different views of software architecture. It is
noteworthy that, visual specification tools let us easily
specify a software architecture using visual modeling.

By adapting Garland and Anthony's approach in
specifying large-scale software architectures such as CAPSC,
and since UML is commonly used as a specification language
due to the fact that understanding visual models is much
easier than formal statements, UML is chosen as an effective
architectural specification language in this project.

Based on the mentioned approach, three different
viewpoints of CAPSC architecture has been developed using
UML, namely Conceptual and Analysis viewpoints, Logical
Design viewpoints and Environmental viewpoints.
Conceptual and Analysis viewpoints are a set of highly
abstracted software descriptions, focused on modeling the
problem rather than the solution. As an example of the
developed models in this viewpoint, Figure 3 is included
bellow.

Figure 3: CAPSC Context View model from Conceptual and analysis
viewpoint

Payment

Modify Thershold

Member Addition
Member Deletation

<<include>>

Get Payment Report

Member EditionSC Member
(from Context V...)

Get Member Performance

Activate CA-Payment

<<include>>

SCM Software
(from Context V...)

Backup system

Time

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Logical Design viewpoints are a set of viewpoints targeted
at describing the software design. Figure 4 shows an instance
of the model.

Figure 4: Payment management agent, Component diagram from Logical
Viewpoint.

Environmental/Physical viewpoints, focuses on the

environment and physical aspects of the software, such as
database deployment, that can impact architectural qualities
of the system. For abstraction we included the full design of
this architecture in [12].

IV. CAPSC SOFTWARE ARCHITECTURE VERIFICATION
Formal methods are the term used to describe the

specification and verification of software and hardware
systems using mathematical logic. Formal methods are used
to give a description of the system to be developed, at any
level(s) of detail desired. This formal description can be
used to guide further development activities. It is also used
to verify that the requirements for the developing system
have been completely and accurately specified [13].

One of the complex domains in software systems are
reactive systems. The main role of these systems is to
maintain an interaction with their environment, and they
must therefore be described in terms of their on-going
behavior. Every concurrent and reactive system must be
studied by behavioral means. [14]

According to the definitions on reactive systems, we
considered CAPSC as a reactive system. Manna and Pnueli in
[15] recognized that reactive systems are of growing interest
and the Temporal Logic language is well-suited for their
formal verification. Usually, Temporal Logic can be
classified as the so-called linear-time logic which considers
behaviors modeled as a linear sequence of states.

After a system has been modeled, it is useful to provide
formal tools to check the validity of properties of the system
under specification. Temporal logics have been widely
recognized as a useful formalism to express liveness
(something good eventually happens) and safety (nothing bad
can happen) properties of complex systems [16].

Verification techniques differ according to the architecture
being described. The application of various methods such as
partial-order reduction, symbolic model checking,
symmetric-based, model checking, bit-hash, and
compositional verification to UML has been a vast field of
study. These methods are described and compared in [17] to
come up with a better result for compositional verification in
large-scale systems. The CAPSC architecture therefore will
have to use this kind of verification when joined with other
components of a supply chain. Meanwhile most of the
verification done on UML uses the model-checking method
because of its ease and speed in checking whether a property

holds for a system or not. (See [18], [19] for example)
UML is a semi-formal language, since its syntax and static

semantics are defined precisely, but its dynamic semantics
are not specified formally [20]. UML consists of different
diagrams each serving a special need. State diagrams are used
for describing dynamic aspects of a system behavior and
since behaviors are greatly considered in verification
techniques, therefore our proofs will mainly be focused on
these diagrams.

In this paper we have used Temporal Logic as the language
for specifying CAPSC properties. The systems behavior is
then to be verified automatically using tools developed for
this purpose. Various tools are available for the verification
of reactive systems with Linear Temporal Logic (LTL)
properties such as STeP [21], TABU [18], SMV [22],
UPPAAL [23] and SPIN [24]. Most of the tools, appearing in
this category, use model-checking as their base for
verification. Among these tools, we chose SPIN because of
its wide use and ability to verify properties using UML.

As described in [25] Hugo/RT is a UML model translator
for model checking theorem proving and code generation: A
UML model containing active classes with state machines,
collaborations, interactions, and OCL constraints can be
translated by Hugo, into the system languages of the
real-time model checker UPPAAL, the on-the-fly model
checker SPIN, the system language of the theorem prover
KIV and into Java and SystemC code. The input to HUGO is
an XMI file describing our CAPSC architecture. Among the
different components in HUGO, each concentrating on a
particular task, we will mainly need this tool to check the
consistency of our architecture along with deadlock checks.
The output of HUGO is also greatly helpful since it is in the
PROMELA form, the input to SPIN, our model checker for
verifying the systems' properties.

SPIN is one of the most advanced analysis and verification
tools available nowadays. An automatic translation from
UML State chart Diagrams to PROMELA (i.e. what we
used, Hugo) allows the UML model designer to
automatically verify correctness properties of UML State
chart Diagram specifications.[24] The tool checks the logical
consistency of a specification. It reports on deadlocks,
unspecified receptions, flags incompleteness, race
conditions, and unwarranted assumptions about the relative
speeds of processes. Spin can be used as a full LTL model
checking system, supporting all correctness requirements
expressible in linear time Temporal Logic, but it can also be
used as an efficient on-the-fly verifier for more basic safety
and liveness properties.

In order to verify the properties of CAPSC, a short
description of the two main categories of Temporal Logic
properties is given bellow:

1- Safety [26] : Property C is a safety property if the
following condition is satisfied for all t ε Σ :
if ݅׊ ب 0, ݑ׌ א Σ ݐ ݐ݄ܽݐ ݄ܿݑݏሺ݅ሻ א ݐ ݄݊݁ݐ ܥ א ܥ

2- Liveness [26]: Property C is a liveness property if
and only if ሼݐሺ݅ሻ: ݐ א Σ ݏ݅ ሽܥ . This property is
composed of five properties namely Guarantee,
Obligation, Response, Persistence and Reactivity.

Before explaining the properties, some global variables
and definitions are represented:

• ProductInfo: Used in product management.

SCM Software
Interface

Reasoning API

Payment

PayAPI

Payer KB
Manager

Reporting
uses

Performance
Monitoring

uses

Require Use

Sends

SC Member
Interface

useuse

use

use

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

• PaymentInfo: The actual payment to be
performed by payment agent.

• PaymentManagementInfo: Payment management
(PM) activities performed by PM agent.

• KBrequest: Performs storage/retrieval on
historical data.

• DBrequest: Performs storage/retrieval on DB
according to the request type.

• PKBrequest: Used for payment knowledge-base.
• Performance Request: A management request

used to monitor performance.
• ContextNotify: New context generation

notification.
• MemberInfo: Add/edit/delete member

information requests.
• Init: To initialize each component in CAPSC.
• Shutdown: To unload any component in CAPSC.
• Error: Error handling occurred in any component.

All these global variables are initially set to 0.
݅׊ :݁ݖ݈݅ܽ݅ݐ݅݊݅ א ሺ݅ሻݐ݅݊݅ |ݐ݊݁݊݋݌݉݋ܿ ൌ 1
݅׊ :݀ܽ݋݈݊ݑ א ሺ݅ሻݐ݅݊݅ |ݐ݊݁݊݋݌݉݋ܿ ൌ ሺ݅ሻ ݁ݖ݈݅ܽ݅ݐሺ݅݊݅ ڀ 0

՜ ሺ݊ݓ݋݀ݐݑ݄ݏ ൌ 1ሻሻ
We have expressed the properties needed for our system

for each component in the definitions bellow:
a) Member Info Management Component:
 - Safety Property: It is always the case that the system is
waiting to receive a change in member management
information.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ሺܾ݉݁݉݁݋݂݊ܫݎ ൌ 1ሻሻ
- Liveness Property: Eventually the component will progress
in all stages of its lifecycle.

݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ሺܾ݉݁݉݁݋݂݊ܫݎ ൌ 1 ሻ ר

 ൬ ࣱ ݁ݖ݈݅ܽ݅ݐ݅݊݅
ሺܾ݉݁݉݁݋݂݊ܫݎ ൌ 1ሻ൰ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

b) Product Info Management Component:
- Safety Property: It is always the case that the system is
waiting to receive new product information.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1ሻሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר

ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1 ሻ ר

 ൬ ࣱ ݁ݖ݈݅ܽ݅ݐ݅݊݅
ሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1ሻ൰ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

c) Authentication Component:
- Safety Property: It is always the case that the system is
waiting to receive product or member information from
context-sensing layer components.
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ሺሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1ሻ ݋݂݊ܫݎሺܾ݉݁݉݁ڀ ൌ 1ሻሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜
 ൫ሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1ሻ ݋݂݊ܫݎሺܾ݉݁݉݁ڀ ൌ 1ሻ ൯ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ሺ݋݂݊ܫݐܿݑ݀݋ݎ݌ ൌ 1ሻ ݋݂݊ܫݎሺܾ݉݁݉݁ڀ ൌ
1ሻሻ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

d) Interpreter Component:
- Safety Property: It is always the case that the system is
waiting to receive a notification from other components to
perform interpretation using new authenticated context. In
our case a notification for performance calculation from the

agent layer or context generation due to an update in context
database is performed.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ
൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ 1ሻ ݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ሺܿڀ ൌ 1ሻ൯ ש
൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ 1ሻ ר ሺ݁ݎ݋ݎݎ ൌ 1ሻ൯ ש
ሺሺܿݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ ൌ 1ሻ ר ሺ݁ݎ݋ݎݎ ൌ 1ሻሻሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ
1ሻ ݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ሺܿڀ ൌ 1ሻ൯ ר

 ሺ൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ 1ሻ ݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ሺܿڀ ൌ 1ሻ൯ ՜
ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ ר

 ሺሺ݁ݎ݋ݎݎ ൌ 0 ሻ ՜
 ൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ 1ሻ ݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ሺܿڀ ൌ 1ሻ൯ሻ ר

 ቀ݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ൫ሺܲ݁ݐݏ݁ݑݍܴ݁݁ܿ݊ܽ݉ݎ݋݂ݎ ൌ

1ሻ ݕ݂݅ݐ݋ܰݐݔ݁ݐ݊݋ሺܿڀ ൌ 1ሻ൯ቁ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

e) Context Database Component:
- Safety Property: It is always the case that the system is
waiting to receive authenticated information and retrieval
requests for database tasks.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ሺሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ ש ቀ൫ሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ൯ ר

ሺ݁ݎ݋ݎݎ ൌ 1ሻቁሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ ר

 ሺሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ ՜ ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ ר
 ሺ݁ݎ݋ݎݎ ൌ 0 ሻ ՜ ሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ ר

 ൫݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ሺݐݏ݁ݑݍ݁ݎܤܦ ൌ 1ሻ൯ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

f) Knowledge-base Component:
- Safety Property: It is always the case that the system is
waiting to receive historical context information from context
database and retrieve on the stored history.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ሺሺݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ש ቀ൫ሺݐݏ݁ݑݍ݁ݎܤܭ ൌ

1ሻ൯ ר ሺ݁ݎ݋ݎݎ ൌ 1ሻቁሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ሺݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ר

 ሺሺݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ՜ ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ ר
 ሺ݁ݎ݋ݎݎ ൌ 0 ሻ ՜ ሺݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ר

 ൫݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ሺݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ൯ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

g) Payment Management Agent:
- Safety Property: It is always the case that the system is
waiting for a management request (e.g. reporting,
context-aware payment activation, actual payment request)
Figure 5 shows the related state diagram.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱሺሺܲܽ݋݂݊ܫݐ݊݁݉݁݃ܽ݊ܽܯݐ݊݁݉ݕ ൌ
1ሻڀሺ݋݂݊ܫݐ݊݁݉ݕܽ݌ ൌ 1ሻሻٿ ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ
- Liveness Property:
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ൫ሺܲܽ݋݂݊ܫݐ݊݁݉݁݃ܽ݊ܽܯݐ݊݁݉ݕ ൌ
1ሻڀሺ݋݂݊ܫݐ݊݁݉ݕܽ݌ ൌ 1ሻ൯ ר

 ሺሺܲܽ݋݂݊ܫݐ݊݁݉݁݃ܽ݊ܽܯݐ݊݁݉ݕ ൌ 1ሻڀሺ݋݂݊ܫݐ݊݁݉ݕܽ݌ ൌ
1ሻሻ ՜ ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ ר

 ሺ݁ݎ݋ݎݎ ൌ 0 ሻ ՜ ൫ሺܲܽ݋݂݊ܫݐ݊݁݉݁݃ܽ݊ܽܯݐ݊݁݉ݕ ൌ
 1ሻڀሺ݋݂݊ܫݐ݊݁݉ݕܽ݌ ൌ 1ሻ൯ ר
 ൫݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ሺሺܲܽ݋݂݊ܫݐ݊݁݉݁݃ܽ݊ܽܯݐ݊݁݉ݕ ൌ
1ሻڀሺ݋݂݊ܫݐ݊݁݉ݕܽ݌ ൌ 1ሻ൯ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

h) Payment Knowledge-base:
- Safety Property: It is always the case that the system is
waiting to receive historical payment information and
retrieve on the stored history.
 ሺሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ሻ ࣱ ൬ሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ש ቀ൫ሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ

1ሻ൯ ר ሺ݁ݎ݋ݎݎ ൌ 1ሻቁ൰

- Liveness Property: Eventually the component will progress
in all stages of its lifecycle.
݁ݖ݈݅ܽ݅ݐ݅݊݅) ൌ ݊ݓ݋݀ݐݑ݄ݏڀ 0 ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ൌ 1ሻ ՜ ሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ר
 ሺሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻሻ ՜ ሺ݁ݎ݋ݎݎ ൌ 1ሻሻ ר

 ሺ݁ݎ݋ݎݎ ൌ 0 ሻ ՜ ሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻ ר
 ሺ݅݊݅݁ݖ݈݅ܽ݅ݐ ࣱ ሺܲݐݏ݁ݑݍ݁ݎܤܭ ൌ 1ሻሻ ڀ Ո݊ݓ݋݀ݐݑ݄ݏ

Figure 5: Payment Management Agent Component’s State Diagram

 Figure 5 illustrates the main states involved in a Payment
management Agent component. The components lifecycle is
considered in specifying the systems properties. We have
expressed both safety and progress requirements of the entire
system in terms of mathematical logic. Applying the main
properties of CAPSC to verification tools mentioned before,
resulted in an acceptable architecture. The result obtained
from Hugo/RT was the consistency of our model and its
various diagrams. Using the PROMELA output, we verified
the properties explained using SPIN as the verifier tool. As a
result it is proved that the architecture specified for our
payment system is safe to use as the base of developing such
systems. Full details of the verification process and its results
are available at [12].

V. CONCLUSIONS
To overcome potential risks in a supply chain caused by

paper-based payments between supply chain members on one
hand, and facilities emerged by pervasive and ubiquitous
technologies, such as RFID Tags, on the other, we proposed a
new payment method using context information that may be
called context-aware payment for supply chains. To develop
the mentioned method, the payment system’s software
architecture was specified using Garland & Anthony's
approach and UML. This 3-layered architecture insures
trusted transactions in a supply chain as well as providing
supplier/producer needs automatically. It also used previous
known architectures such as SOCAM to provide a context
aware payment system. To prove applicability and reliability
of the proposed method, certain critical properties of this
software architecture such as safety and liveness were
verified using Temporal Logic. It was shown that the new
method is consistent and safe enough to use. It was also
proved that the architecture will eventually progress and
overcome potential bottlenecks in the system. This result

insists that the proposed architecture, CAPSC, can be the
development base for future applications of automatic
payment systems according to context information in supply
chains.

REFERENCES
[1] M. Weiser, J. S. Brown, “The Coming Age of Calm Technology,”

Xeroc PARC, 1996.
[2] M. Baldauf, S. Dustdar, F. Rosenberg, “A Survey on Context-Aware

Systems,” International Journal of Ad Hoc Ubiquitous Computing,
Vol. 2, 2007.

[3] S. Gross, R. Muller, M. Lampe, E. Fleisch, “Requirements and
Technologies for Ubiquitous Payment,” Gallen, Swiss Federal Institute
of Technology, 2004, Available:
www.inf.ethz.ch/vs/publ/papers/MKWI_UPyament.pdf.

[4] Wikipedia contributors, "Supply Chain," Wikipedia, The Free
Encyclopedia, March 2008, Available:
http://en.wikipedia.org/w/index.php?title=Supply_chain&oldid=1987
24291.

[5] A. Knox, “Electronic Payment: The Missing Link in Supply Chain
Efficiency,” Journal of Financial Transformation-Market
Imperfection, Vol. 14, 2005.

[6] P. Korpipaa, et al., “Managing Context Information in Mobile
Devices,” Pervasive Computing, IEEE, Vol. 2, pp. 42-51, 2003.

[7] T. Hofer, et al., “Context-Awareness on Mobile Devices - The
Hydrogen Approach,” in Proceedings of 36th Annual Hawaii
International Conference on System Science, pp. 292-302, 2003.

[8] H. Chen, “An Intelligent Broker Architecture for Pervasive
Context-Aware Systems,” University of Maryland, Baltimore County,
2004, PhD Thesis.

[9] D. Selber, A.K. Dey, and G.D. Abowd, “The Context Toolkit: Aiding
the Development of Context-Aware Applications,” In Proceedings of
Human Factors in Computing Systems: CHI 99, ACM Press, pp.
434-441, 1999.

[10] T. Gu, H.K. Pung, and D.Q. Zhang, “A Service-Oriented Middleware
for Building Context-Aware Services,” Journal of Network and
Computer Applications, Vol. 28, pp. 1-18, 2005.

[11] J. Garland, and R. Anthony, Large-Scale Software Architecture: a
Practical Guide Using UML, John Wiley and Sons, 2003.

[12] Z. Zamani, M. Bayat, A. Moeini, "Technical Report on the CAPSC
Architecture Using UML and Verification Tools," University of
Tehran, 2008.

[13] C. M. Holloway, "Why Engineers Should Consider Formal Methods,"
16th Digital Avionics Systems Conference, 1997.

[14] M. Fisher, M. Wooldridge, "On the Formal Specification and
Verification of Multi-Agent Systems," IJCIS, vol. 6, pp. 37.65, 1997.

[15] Z. Manna, A. Pnueli, "The Temporal Logic of Reactive and Concurrent
Systems," Springer-Verlag, 1992.

[16] S. Gnesi, F. Mazzanti, "A Model Checking Verification Environment
for UML Statecharts," in Proceedings of XLIII Congresso Annuale,
Udine, Italy, October 2005.

[17] J. Jeffrey, P. Tsai, K. Xu, “A comparative study of formal verification
techniques for software architecture specifications,” Annals of
Software Engineering, Springer, p.p. 207-223, 2000.

[18] M.E. Beato, M. Barrio-Solorzano, C.E. Cuesta, “UML Automatic
verification tool (TABU)”, in Proceedings of Specification and
Verification of Component-Based Systems (SAVCBS 04), California,
USA, 2004.

[19] D. Latella, I. Majzik, and M. Massink, “Automatic Verification of a
Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-Checker,” Formal Aspects of Computing, Springer, 1999.

[20] S. Gnesi, “Formal Specification and Verification of complex systems,”
Electronic Notes in Theoretical Computer Science, Elsevier, 2003.

[21] Z. Manna, “STeP: The Stanford Temporal Prover (Educational
Release), User's Manual,” Technical report, Computer Science
Department, Stanford University, November 1995.

[22] “SMV Tutorial,” McMillan Cadence Berkeley Labs, Available:
[23] http://www.cs.indiana.edu/classes/p515/readings/smv/CadenceSMV-d

ocs/smv/tutorial/tutorial.html
[23] UPPAAL Home, Available: http://www.uppaal.com.
[24] Official Site on SPIN: the on-the-fly Model checker, Available:

http://www.spinroot.com.
[25] A. Knapp, and S. Merz, “Model checking and code generation for

UML state machines and collaborations,” in Proceedings of 5th
Workshop on Tools for System Design and Verification
(FM-TOOLS'02), 2002.

[26] A.P. Sistla. “Safety, Liveness and Fairness in Temporal Logic,”
Formal Aspects of Computing, Springer, 1994.

Initialize Payment
Comp

do/ Connect to BIPS
do/ Connect to KB

Unload Comp

exit/ componentManager.UnloadComp

Waiting for Payment Request

do/ Check Payment Request
do/ Check Activation Request

Payment

do/ Pay

Activate

do/ Activate

Exception
Handling

Payement Request

Activation Request

shut down
init failure

init succ

fail

succ succ

fail

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

