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Abstract— Two novel methods for computing 3D structure
information from video for a piecewise planar scene are
presented. The first method is based on a new line constraint,
which clearly separates the estimation of distance from the
estimation of slant. The second method exploits the concepts
of phase correlation to compute from the change of image
frequencies of a textured plane, distance and slant information.
The two different estimates together with structure estimates
from classical image motion are combined and integrated over
time using an extended Kalman filter. The estimation of the
scene structure is demonstrated experimentally in a motion
control algorithm that allows the robot to move along a corridor.
We demonstrate the efficacy of each individual method and
their combination and show that the method allows for visual
navigation in textured as well as un-textured environments.

I. I NTRODUCTION

Changes (over multiple frames) on the boundaries and the
texture provide complimentary information about the shape
and the 3D position of an object. Thus, combining methods
based on boundary extraction with ones on textured regions
results in more robust and accurate estimation. Especially, for
relatively simple environments, such as corridors, it is often
the case that only one type of cue will be present and thus
only one type of method will provide reliable measurements.
Furthermore, in such environments the predominant shape of
objects is planar and the object boundaries are usually lines.

Motivated by the above observations, this paper proposes
two methods to estimate the position of planar objects; the
first considers the change of the texture and the second the
change of lines. More specifically, the main contributions of
the paper are:

• We present a novel image line constraint for estimating
the 3D orientation of planes (Sec. III).

• We describe a novel technique estimating shape from
change of texture for planar objects based on harmonic
analysis (Sec. IV).

• We present experimental results on how accurate the
two methods perform in real indoor environments. The
integration of the two methods with the odometry read-
ings from the robot’s wheels using an extended Kalman
filter, outperforms the results obtained by each method
in isolation (Sec. VI).

• We experimentally show that the proposed method al-
lows for navigation in environments where little texture
is present using a simple motion control policy (Sec.
VIII).

A. Related Work

The computer vision community has long studied the
structure from motion (SfM) problem ([16],[13]) and re-
cently focused on large-scale 3D reconstruction (e.g. [1]).
Following the success of Simultaneous Localization and
Mapping (SLAM) using range (especially laser) sensors
([28]), the robotics community has migrated the existing
methods to work with data from cameras. Usually, the
environment is represented with a set of image feature points,
whose pose is tracked over multiple frames ([10]). Usually,
image features are more informative than range data, but the
estimation of their 3D position is much less accurate. Straight
lines are common in man-made environments and are ar-
guably more reliable features than points, thus they have
been used before in structure from motion ([4], [30]) and
SLAM ([25]). Our method is about computing 3D structure
information in a simplified SfM situation, but very robustly.
We use a formulation of line constraints that separates slant
from distance estimation. Thus, it is different from the ones
classically used in SfM.

On the other end of the spectrum there are methods
belonging to themapless visual navigationcategory ([11]),
where no prior knowledge about the environment is assumed
and no spatial representation of it, is created. Most of that
work is inspired by biological systems. A survey of such
methods implementing the centering behavior can be found
in [27]. More specifically, systems capable of avoiding walls
and navigating in indoors environments using direct flow-
based visual information obtained from a single wide-FOV
camera facing forwards ([8], [7], [12]), multiple cameras
facing sideways ([23], [2]) or panoramic cameras ([3]), have
been implemented. Our approach is also different from the
aforementioned, because we first estimate an intermediate
state of the environment (in terms of surface normals) and
we use this for navigation.

The general method for estimating the stretch and shift of
a signal using the log of the magnitude of the Fourier trans-
form, known asCepstral analysis, was first introduced by
Bogert et al. [5] and was made widely known by Oppenheim
and Schafer [22]. It is commonly used in speech processing
[19] to separate different parts of the speech signal.

Frequency based techniques exploiting the phase shift
theorem have been used in computer vision for image
registration (in conjunction with the log-polar transformof
an image), e.g. [26], [18], [15] and optical flow computation
([14]). Phase correlation, however, has not been used for



shape estimation.

II. PROBLEM STATEMENT AND TERMINOLOGY

In this section we introduce some common symbols that
are used in the rest of the paper and present the problem
that we tackle in the following three sections. For simplicity
and improved readability reasons, all the equations in Sec.
III,IV and V are expressed in the camera coordinate system
(where the images were acquired). In Sec. VI and VII we
transfer the estimates in the robot-centric coordinate system
(Fig. 5(b)). Vectors are denoted with an overhead arrow and
matrices with bold letters.

We denote with
−→
T , R the translation and rotation between

two frames respectively, with
−→
N = (α, β, γ)T a plane in

the 3D world and with−→n =
−→
N

|
−→
N |

, the plane normal. Also
−→
P = (X,Y,Z)T is a 3D point. When

−→
P belongs to

−→
N

then
−→
P · −→N = 1 ⇔ αX + βY + γZ = 1. The image plane

is assumed to lie on the planeI : Z = f , wheref is the
focal length of the camera. Then, the projection of

−→
P on I

is −→p = (x, y, f)T = f
Z

(X,Y,Z)T . The inverse depth at
−→
P

amounts to
1

Z
= α

x

f
+ β

y

f
+ γ (1)

Given the translation and rotation of the camera between
two images we seek toestimate the plane parameters

−→
N =

(α, β, γ)T .

III. O RIENTATION AND DISTANCE FROM LINES

We describe a constraint for recovering the orientation of
a world plane from image lines. The constraint can be used
in two ways: first as a multiple view constraint, where we
use the images of a single line in 3D in two views [17];
second as a single view constraint where we use the images
of two parallel lines in 3D in one view.

A. Single Line in Multiple Frames

As shown in Fig. 1(a), consider two views with camera
centersO1 andO2, which are related by a rotationR and
a translation

−→
T . A 3D line L lies on the plane with surface

normal~n =
~N

|N | . L is projected in the two views asl1 and

l2. Let ~lm1 be the representation ofl1 in the first camera
coordinate system as a unit vector perpendicular to the plane
throughL andO1. Similarly, let ~lm2 be the representation of
l2 in the second camera coordinate system as a unit vector
perpendicular to the plane throughL andO2. The two planes
perpendicular to~lm1 and ~lm2 intersect inL1. Expressing this
relation in the first camera coordinate system, we have

L ‖ ~lm1 × RT ~lm2, (2)

and since~n is perpendicular toL, we have

( ~lm1 × RT ~lm2) · ~n = 0. (3)

1The necessary and sufficient condition for the two planes to be different
is that the translation

−→
T is not parallel to the lineL.

Practically, we want to avoid computing the correspondence
of two lines in two frames, so we adopt the continuous
representation of Eq. 3 as

(l1 × (l̇1 − ~ω × l1)) · ~n = 0, (4)

wherel1 denoteslm1, ~ω is the angular velocity of the robot
and l̇1 is the temporal derivative of the line that can be
computed from the normal flow.

O1

O2

(a) Line constraint in multiple
views.

(b) Line constraint in a single view.

Fig. 1. a) A single line is projected to two images from different viewpoints.
b) Two 3D lines, belonging to the same plane, are projected to two image
lines.

This is the linear equation we use to estimate~n. Notice,
this constraint (which intuitively is known as orientation
disparity in visual psychology) allows us to estimate the
surface normal (that is the shape) of the plane in view, using
only rotation information. At this point we should also note
that no distance information is encoded to vector~n, which
is of unit length.

B. Two or More Lines in the Same Frame

We can use the constraint in Eq. 4 also from one view.
Imaging that two views are related by translation only, or
similarly consider two parallel lines in one view. Given two
lines l1 and l2 that are projected from two parallel lines,L1

andL2, in the 3D scene, we recover the orientation ofL1

and L2 using Eq. 2 (Fig. 1(b)). AssumingL1 and L2 lie
in the same wall, which is perpendicular to the ground, and
~n =

~N
|N | as its surface normal, we then recover the surface

normal of the wall from

( ~lm1 × ~lm2) · ~n = 0. (5)

If we have more than two lines that are generated by parallel
3D lines, we can average results from Eq. 5.

The constraints discussed above provide better informa-
tion than vanishing point. From two or more 3D lines, a
general plane can be reconstructed. In our case, the plane is
perpendicular to the ground plane, thus the surface normal
can be described by only one parameter, i.e.α

γ
(because

~N = (α, 0, γ)T ). In general, the robot can move based on
the position with respect to the line.

C. Distance estimation

After we have computed the slant of the plane, we can
also estimate its distance. For this we need the translation



T . The distancedL of the lineL from the camera amounts
to [9]

dL =
(l1 ·

−→
T )

(l̇1 + (l1 × ~ω))T (l1 ×
−→
L d)

, (6)

with
−→
L d a unit vector parallel toL, computed as

−→
L d =

l1 × (l̇1 + l1 × ~ω)

|l1 × (l̇1 + l1 × ω)|
(7)

and the distanced of the plane from the camera is computed
as

d = dL
−→n · (l1 ×

−→
L d) (8)

D. Implementation details

To obtain accurate measurements of lines, we modified
P. Kovesi’s Matlab code2. The unoptimized Matlab version
of the slant estimation code based on lines runs in∼ 1.5
seconds per iteration on our test bed (a 1.5 GHz Pentium M
laptop with 768MB RAM).

(a) First Image (b) Second Image (c) Third Image

Fig. 2. Three frames of our line testing sequence, with the detected lines
drawn in yellow color. In all cases the lines are well localized.

In Fig. 2 we present three representative frames obtained
from the front camera. Note that we did not introduce
any artificial landmarks, thus only objects existing in the
environment, like doors and door frames are present. To find
“good” lines to track, we further assume that the longest lines
present in the scene are the ones on the boundary between
the floor and the walls. Thus, using a threshold on the line
length we are able to remove all other lines. In Figs. 4(a),
4(b) we present the distance and slant estimates which we
obtained using the line constraint for a test sequence of 20
frames. We observe that the slant is estimated with good
accuracy, while the distance estimation is not very accurate.

IV. H ARMONIC SHAPE FROM TEXTURE FOR PLANAR

SURFACES

A. Theory

In this section we assume that the camera is parallel,
and the wall perpendicular to the ground. Thus

−→
N further

simplifies to(α, 0, γ)T and Eq. 1 becomes

1

Z
= α

x

f
+ γ (9)

Consider that we acquire two imagesI1 and I2 and that
we know (from the odometry readings) the translation

−→
T =

(Tx, 0, Tz)
T and rotationR relatingI1 andI2. The first step

is to locate corresponding epipolar lines on the two images
(Fig. 3) using the procedure described in Alg. 1.

2http://www.csse.uwa.edu.au/˜pk/research/matlabfns

Algorithm 1 Match Epipolar Lines

Input:
p : Image point in first image
T, R : Translation/Rotation
K : Camera matrix
D : Reference distance, randomly chosen
Output:
[p1, p2] : Set of corresponding points

in first and second image along
the epipolar lines

Algorithm:
Compute Essential Matrix : E = [T ]xR

Compute Fundamental Matrix : F = K−T EK−1

Compute Epipolar Line in Second
Image

: l2 = Fp

Compute Corresponding epipolar line in first image usingD

Interpolating the image intensity values along the epipolar
lines, it is possible to rectify the two images, thus obtaining
imagesIR

1 andIR
2 , where the epipolar lines are collinear and

parallel to the horizontal axis

∀x, y IR
2 (x, y) = IR

1 (x+
T ′

Z
, y) (10)

where the new translation vector isT ′ =
√

T 2
x + T 2

z and the
new plane parameters are(α′, 0, γ′)T = RRECT (α, 0, γ)T

with RRECT being the rectification (rotation) matrix.
Combining Eqs. 9 and 10 and dropping for simplicity the

prime notation we obtain

∀x, y IR
2 (x, y) = IR

1 ((1 + αT )x+ γT, y), (11)

We can estimateα andγ using phase correlation (Table I)
between the signals along the set of two epipolar lines in two
steps [27]. First, we estimateα using phase correlation on
the magnitude of the Fourier transform of the two signals
in logarithmic coordinates (Eq. 15). Then, we warp the
signals, using the estimate forα, so that only the translation
component is present. Finally, we estimateγ using phase
correlation on the warped signals (Eq. 17). The complete
algorithm along with the equations are presented in Alg. 2.

While the algorithm presented here, solves for two (α, γ)
of the three plane parameters, it is possible to obtain all three

(a) First Image (b) Second Image

Fig. 3. The epipolar lines for two frames. The translation vector is T =
[−0.011 0 0.011]T meters and there was no rotation.



parameters by performing a geometric transformation on the
variables and exploiting 2D phase correlation.

Algorithm 2 Estimate Plane Parametersα, γ

Input:
IR
1 , IR

2 : Image signals along Epipolar Lines
T : Translation
Output:
α, γ : Plane parameters

• Signals along the epipolar liney

∀x, I
R
2 (x, y) = I

R
1 ((1 + αT )x + γT, y)

• Compute the Fourier Transform (IR
1 , IR

2 ) of IR
1 , IR

2

Fx,y{I
R
2 }(u, v) =

e
2πi

γT
1+αT

uFx,y{I
R
1 }( u

1+αT
, v)

|1 + αT |
(12)

• Consider the Magnitude ofIR
1 , IR

2 and logarithmically
transform(u, v)

|IR
2 (log u, v)| =

|IR
1 (log u − log(1 + αT ), v)|

|1 + αT |
(13)

• Compute the Normalized Cross-power Spectrum (NCS1)
of |IR

1 |, |IR
2 |

NCS1(η, w) = e
2πiη log(1+αT ) (14)

• Computeα taking the Inverse Fourier transform ofNCS1

α =
eu−argmax(F−1{NCS1}) − 1

T
(15)

• Take the Normalized Cross-power SpectrumNCS2 of
IR

1 ( u
1+αT

, v), IR
2 (u, v) from Eq. 12

NCS2(u, v) = e
−2πi

γT
1+αT

u (16)

• Computeγ

γ = −
(1 + αT )argmax(F−1{NCS2})

T
(17)

TABLE I

PHASE CORRELATION CONCEPT

• Let 2D signalss1 ands2 be related by a translation (x0, y0)
only, i.e.

s2(x, y) = s1(x − x0, y − y0)

• Their corresponding Fourier transforms are related by a
phase shift which encodes the translation, i.e.

S2(u, v) = e
−2πi(ux0+vy0)S1(u, v)

• The phase shift can be extracted from the Normalized Cross-
power Spectrum of the two signals, which is defined as

NCS =
S1(u, v)S∗

2 (u, v)

|S1(u, v)S∗
2 (u, v)|

= e
2πi(ux0+vy0)

• Thus, the inverse Fourier transform of NCS is a delta
function around the translation point (−x0,−y0)

F−1{NCS}(x, y) = δ(x + x0, y + y0)

B. Implementation details

In Fig. 4(c), 4(d) we present the results of applying this
method to a series of images obtained by the left side camera
of our robot. In this experiment, we used 81 epipolar lines.
The red crosses denote the distance and slant estimates
for each pair of frames. While slant estimation is quite
accurate, still the line method provided superior results.On
the other hand, this method outperformed both the line based
technique and the normal flow based technique (described in
Section V) in the distance estimation.

Another advantage of the method is its computational
simplicity. Thus, the unoptimized Matlab code runs in∼ 1.5
seconds for an image of81 × 1024 pixels (i.e., 81 epipolar
lines of 1024 pixels each), with most of the time spent on
warping the 2 signals in order to compute Eq. 16.

V. PLANE PARAMETERS FROM NORMAL FLOW

A. Theory

As described before,
−→
N = (α, β, γ)T denotes a plane in

the 3D world and
−→
P = (X,Y,Z)T a point on that plane

(
−→
P ·−→N = 1) and Eq. 1 is valid. When the camera moves with

instantaneous rotational velocity
−→
Ω = (Ωx,Ωy,Ωz)

T and
translational velocity

−→
t = (tx, ty, tz)

T the relative motion
of the point isV (

−→
P ) = −−→

t −−→
Ω ×−→

P . The corresponding
motion of the image point−→p is

(

dx
dt
dy
dt

)

=
1

Z

(

tzx− txf

tzy − tyf

)

+ (18)

(

Ωzy − Ωyf +
Ωxxy−Ωyx2

f

−Ωzx+ Ωxf +
−Ωyxy+Ωxy2

f

)

. (19)

Substituting equations (1) and (19) into the image brightness
consistency constraint

∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0, (20)

we obtain an equation bilinear in the motion parameters
and the plane parameters. Note thatI(x, y, t) represents the
image intensity at point(x, y) and timet. In our case we
have restricted motion (i.e.Ωx = Ωz = 0 and ty = 0), so
we can further simplify the equation

A(x y f)(α β γ)T = B ,where
A = Ix

f
(xtz − ftx) +

Iy

f
ytz,

B = IxfΩy +
Ωy

f
(Ixx

2 + Iyxy) − It

. (21)

According to Eq. 21, knowing the motion parameters, the
camera intrinsic parameters (i.e., focal length and principal
point) and the image intensity derivatives, plane estimation
amounts to solving a linear system of equations for the
parameters (α, β, γ).
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(a) Distance using the line module
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(b) Slant using the line module
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(c) Distance using the texture module
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(d) Slant using the texture module
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(e) Distance using the normal flow module
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(f) Slant using the normal flow module

Fig. 4. The results of one test run. We display the estimates ofeach module with a cross, the extended Kalman filter prediction(Eq. 25) with a circle
and the final estimate after integration with the measurement (Eq. 28) with a plus sign. In some frames no reliable estimate couldbe obtained using the
harmonic texture method(second column). In these cases, we display the red cross on the bottom of the corresponding figure. Also note the first EKF
update is based solely on image estimates.

B. Implementation

To calculate the normal flow we used the gradient based
method of Lucas and Kanade ([20]) using the filtering and
differentiation kernels proposed by Simoncelli ([24]) on
5 consecutive frames. For performance reasons, we first
reduced the size of the image by one quarter, so we are
computing the gradients on a256 × 192 array (as opposed
to the whole1024 × 768 original images). The image size
reduction has the additional advantage of reducing the pixel
displacement between successive frames, thus resulting in
more accurate results for plane estimation. The unoptimized
Matlab version of the code runs in∼ 0.4 seconds on our
testbed, with most of the time spent in computing the spatial
and temporal gradients.

In Figs. 4(e), 4(f) we display the results of running the
normal flow based plane estimation algorithm in the same
test sequence used for Figs. 4(a), 4(b), 4(c) and 4(d). It
is clear that this method is less accurate in distance and
slant estimation compared to the texture and the line method,
respectively.

VI. EXTENDED KALMAN FILTER

Integration of the individual measurements over time is
performed using an extended Kalman filter (EKF). First, let
us define a robot-centric coordinate systemORXRYRZR

as follows (Fig. 5(b)); the centerOR coincides with the
midpoint of the two front wheels of the robot, theXR axis
points to the left wheel of the robot, theYR axis points
upwards and theZR axis forward.

As state variables for the Kalman filter we use the
distance/slant/tilt parametrization of the plane,S(t) =

[d, θ, φ]T . If we denote−→n XZ the projection of−→n on the
Y = 0 plane, then we define theslant θ to be the angle
between theZR axis and−→n XZ , as shown in Fig. 5(b).Tilt
φ is the angle between theY component ofn and theXZ
plane. Thus the transformation between the two different
parameterizations is

(a) Photo of Robot

d

Wall

θ

θ

XR

XR

XR

ZR

ZR
φnXZ

n

n

XL

ZL

(b) Robot Sketch

Fig. 5. a)The ER1 robot equipped with 3 Firewire cameras. The height
of the robot is∼ 70 cm. In the background, part of the corridor, where
we conducted some experiments, is shown. All the walls and doors are
textureless and there exist significant specular highlights on both the walls
and the floor caused by the light sources. b) The distance and angle θ
between the robot and the wall are defined with respect to a coordinate
system attached to the robot. The surface normal projected onthe X − Z
plane (nXZ ) is also displayed.









d = 1√
α2+β2+γ2

θ = arctan (α
γ
)

φ = arccos (β
d
)







Assuming that the control vectorU(t) consists of the
instantaneous translational and rotational velocities ofthe
robot (v(t), ω(t)) respectively and∆t denotes a time interval,
the evolution of the system over time can be described as

S(t+ ∆t) = F(S(t),U(t)) ⇔




d(t+ ∆t) = d(t) + v(t) cos θ(t)∆t+ ε11
θ(t+ ∆t) = θ(t) − ω(t)∆t+ ε12
φ(t+ ∆t) = φ(t) + ε13



 , (22)

where we use the assumption thatcos θ(t) ' cos θ(t+ ∆t),
i.e. the rotational velocityω(t) is small and approximately
constant over∆t and the discretization step∆t is also
small. Furthermore, we denote withε1i the errors in the state
prediction (with covarianceQ).

Our measurement vectors (Z1, Z2, Z3) consist of the plane
parameters calculated using the different methods described
in Sections III, IV and V respectively, converted to the
distance/slant/tilt parametrization. We consider the combined
measurement to be a weighted linear combination of the
individual measurements i.e.,Z(t) =

∑3
i=1 CiZi, where the

weightsCi encode the (inverse) uncertainty of the estimates
using different methods, which we derived as follows.

The line module bases the accuracy of the plane estimation
on how well it detects and localizes the line. The harmonic
texture module is using the magnitude of the Inverse Fourier
transform of the Normalized Cross-power Spectrum (Eqs.
15,17) and the normal flow module is using the condition
number of the linear system (Eq. 21).

The system evolution (Eq. 22) is not linear with respect
to the state vectorS(t) and the control vectorU(t). That’s
why we need to use an extended Kalman filter and linearize
the equations by considering the Jacobian matrix as shown
in Table II.

A. Results

Figs. 4(a), 4(b), 4(c), 4(d), 4(e) and 4(f) depict the
results when we combined the line, texture and normal
flow methods, respectively with the odometry measurements
using the EKF. More specifically, in these figures, black
circles denote the prediction about the current state using
only the previous state and dead reckoning information (Eq.
25), while blue pluses denote the final prediction of the
state after the measurements from each individual module
are also considered (Eq. 28). It is clear that integration of
measurements over timesignificatly improves the accuracy
and robustness of the method.

VII. M OTION CONTROL

An important part of any navigation system is the motion
control subsystem. In this particular setting the goal is to
move along the corridor avoiding the obstacles that might
lie ahead of us. The motion control strategy described below

TABLE II

EXTENDED KALMAN FILTER EQUATIONS

Jacobian of system evolution with respect to the state vector S(t)

A(t) =





1 −v(t) sin θ(t)∆t 0
0 1 0
0 0 1



 (23)

Jacobian of system evolution with respect to the control vector U(t)

W(t) =





cos θ(t)∆t 0 v(t) cos θ(t)
0 −∆t −ω(t)
0 0 0



 (24)

State prediction equations (Mean̂S and CovariancêP)




d̂(t + ∆t) = d̄(t) + v̄(t) cos θ̄(t)∆̄t

θ̂(t + ∆t) = θ̄(t) − ω̄(t)∆̄t

φ̂(t + ∆t) = φ̄(t)



 . (25)

P̂(t + ∆t) = A(t)P̄(t)A(t)T + W(t)Q(t)W(t)T (26)

Kalman GainK

Ki(t) = P̂(t)(P̂(t) + R(t))−1 (27)

Measurement update equations (MeanS̄ and CovariancēP)

S̄(t + ∆t) = Ŝ(t + ∆t) + K(t)(Z(t + ∆t) − Ŝ(t + ∆t)) (28)

P̄(t + ∆t) = (I − K(t))P̂(t + ∆t) (29)

refers to the “wall-following” behavior. Using the same
policy one could implement the “centering” behavior.

Fig. 6. The robotR is moving with translational and rotational velocities
v(t), ω(t) respectively, while it is locatedxP units away from the virtual
line LC .

Let’s define the input to the motion control algorithm to
be the state vector of the Kalman filter, that denotes the
position of the left wall with respect to the robot. Ideally,
we want the robot to remain at a constant distance (denoted
with DC) from the wall, thus following the lineLC as shown
in Fig. 6. In practice, the robot’s trajectory is restrictedby
motion dynamics as well as the constraint that the rotational
and translational velocities should remain constant, while the
camera is recording the frames. As a consequence, the system
is only allowed to perform small motion changes between
two successive frames, thus it is hard to follow the virtual
line. Instead, a pointP along the lineLC is picked and the



robot’s motion is regulated accordingly, so that it approaches
P. Next we describe how to do this.

Let’s assume that pointP is yP meters away from the
robot along the lineLC and forms an angleψ as shown
in Fig. 6. Furthermore, the robot is situatedxP units away
from LC and is moving with instantaneous translational
and rotational speedv(t), ω(t) respectively. Note that the
translational velocity is always along the direction of theZ-
axis of the robot and the rotational velocity is around the
Y -axis. Then, we have:

ψ = arctan(
yP

xP

) (30)

ξ = θ − π − ψ (31)

The line segmentLRP has lengthD =
√

x2
P + y2

P . An
approximation of the time that is required by the robot to
reach pointP is ∆t = D

v(t) . The new rotational velocity
(ω(t+ ∆t)) of the robot should be:

ω(t+ ∆t) =
ξ

∆t
= v(t)

θ − π − arctan yP

xP
√

x2
P + y2

P

(32)

VIII. E XPERIMENTS

We have used the robotic platform ER1 from Evolution
Robotics. On top of it, we have placed a front and two side
Firewire cameras (SONY XCD-X700). The side cameras
form angles (∼ 45o,∼ −45o) with the front camera as shown
in Fig. 5(a). In the following experiments we used the left
side camera and the front camera. We run the texture based
as well as the normal flow based code on the left side camera
and the line-based code on the front camera.

The goal of the experiments is to convey two messages;
• The accuracy and robustness of the system significantly

increases with theintegration of individual measure-
ments fromdifferent subsystemsover time.

• When using all the methods the robot is able to move
along a mostly textureless corridor.

A. Constant Distance Experiment

The goal of this first experiment was for the robot to move
a distance of 20 meters along a corridor without hitting
the side walls. The corridor had a width of 1.8 meters,
so we instructed the robot to try to maintain a distance
of 0.9 meters from the left, while moving with velocity 5
cm/sec. The initial orientation of the robot with respect tothe
wall varied from0o (parallel to the wall) to−20o (moving
away from the left wall) and+20o (moving towards the
wall). We made multiple runs each time activating a different
submodule with and without integrating the measurements
with dead reckoning using the EKF. Finally, we performed
the experiment using all the submodules together. The results
are presented in Fig. 7. It is clear that each individual module
in isolation performs poorly (with the exception of the line
module). Integrating the measurements of a single module
over time (using the EKF) greatly improves the robustness
of the method. Finally, combining the measurements from
different submodules, provides the most robust setting.

B. Average Distance Experiment

In this experiment we let the robot move on the corridor
(still trying to maintain a distance of 0.9 meters from the
left wall) with velocity 5 cm/sec, and measured the average
distance traversed before the hitting the wall. We performed
the experiment multiple times activating a different module
or combinations of modules. The results, namely the average
distance for each combination, are presented in Fig. 8. Again,
we observed that a single module performs very poorly (with
the exception of the line module), while combining modules
together and integrating the estimates over time greatly
improves the result. When the average distance is larger than
20 meters, it indicates that the robot is approaching the end
of the corridor and thus we had to terminate the specific run.

IX. CONCLUSIONS

In this paper we presented two new methods for computing
the 3D structure of a piece-wise planar scene from video. We
also used an existing method for 3D shape estimation based
on normal flow. The three methods base their estimation
on complementary information. More specifically, while the
normal flow technique considers individual features (i.e.
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sharp intensity changes) within the object, the texture method
considers the whole area within it. The line method, on the
other hand, uses the boundary of an object. Depending on
the case, we expect at least one of the methods to provide
accurate measurements. For example, when we observe a
mostly uniformed colored object, we anticipate that the line
method will be able to accurately track the boundary of
it and produce accurate results, while the remaining two
modules will fail. On the other hand, when the object is
highly textured, the line method might not be able to locate
the boundaries accurately, but the two other methods will
produce good results. For that reason, we emphasize that the
integration of all three modules is the right approach, if one
wants to build a robust system. For similar reasons, inte-
gration of the individual measurements over time is equally
important. In this paper, we use odometry measurements
from the wheels’ encoders, but we might as well estimate
the motion from the video (visual odometry, also known as
ego-motionestimation [29],[6],[21]) or using other sensors.
We present experiments in the context of visual navigation
on indoor environments and verify that the combined usage
of all three modules produces a robust system.

We plan a number of extensions to this work. In order for
the robot to navigate in more complex environments, we need
to incorporate a scene segmentation scheme into this frame-
work. We currently develop segmentation modules based on
information from motion, intensity and lines. Ultimately,the
goal is to identify and track individual objects over frames,
thus addressing the visual SLAM problem.
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