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Abstract— Two novel methods for computing 3D structure A. Related Work
information from video for a piecewise planar scene are o ) )
presented. The first method is based on a new line constraint, The computer vision community has long studied the

which clearly separates the estimation of distance from the structure from motion (SfM) problem ([16],[13]) and re-
estimation of slant. The second method exploits the concepts cently focused on large-scale 3D reconstruction (e.g.. [1])

of phase correlation to compute from the change of image Followi th f Simult L lizati d
frequencies of a textured plane, distance and slant information. oflowing the success Of simultaneous Localization an

The two different estimates together with structure estimates Mapping (SLAM) using range (especially laser) sensors
from classical image motion are combined and integrated over ([28]), the robotics community has migrated the existing
time using an extended Kalman filter. The estimation of the methods to work with data from cameras. Usually, the
scene structure is demonstrated experimentally in @ motion  apyironment is represented with a set of image feature goint
control algorithm that allows the robot to move along a corridor. . .

We demonstrate the efficacy of each individual method and Whose pose is tracked °Yef multlple frames ([10]). Usually,
their combination and show that the method allows for visual image features are more informative than range data, but the
navigation in textured as well as un-textured environments. estimation of their 3D position is much less accurate. §htai
lines are common in man-made environments and are ar-
guably more reliable features than points, thus they have
been used before in structure from motion ([4], [30]) and

) i SLAM ([25]). Our method is about computing 3D structure
Changes (over multiple frames) on the boundaries and thie,mation in a simplified SfM situation, but very robustly

texture provide complimentary information about the shapge ,se a formulation of line constraints that separates slan

and the 3D position of an object. Thus, combining methodg,, gistance estimation. Thus, it is different from the sne
based on boundary extraction with ones on textured reg'o'afassically used in SfM.

results in more robust and accurate estimation. Espediaily

. . . . L On the other end of the spectrum there are methods
relatively simple environments, such as corridors, it i®mof belonging to themapless visual navigationategory ([11])
the case that only one type of cue will be present and thuy ging b 9 gory '

. : . where no prior knowledge about the environment is assumed
only one type of method will provide reliable measurements, : ! .
. : . and no spatial representation of it, is created. Most of that

Furthermore, in such environments the predominant shape 0 L . .
objects is planar and the object boundaries are usuall Iiné’vOrk IS inspired by biological systems. A survey of such
) P ) %NS ethods implementing the centering behavior can be found

Motivated by the above observations, this Paper Proposgs 57]. More specifically, systems capable of avoiding wall
two methods to estimate the position of planar objects; the,y navigating in indoors environments using direct flow-

first considers the change of the texture and the second gqay visual information obtained from a single wide-FOV
change of lines. More specifically, the main contributiofis 0. ara facing forwards ([8], [7], [12]), multiple cameras

the paper are: facing sideways ([23], [2]) or panoramic cameras ([3]), éiav
« We present a novel image line constraint for estimatingeen implemented. Our approach is also different from the
the 3D orientation of planes (Sec. Ill). aforementioned, because we first estimate an intermediate
« We describe a novel technique estimating shape frostate of the environment (in terms of surface normals) and
change of texture for planar objects based on harmonige use this for navigation.
analysis (Sec. V). The general method for estimating the stretch and shift of
o We present experimental results on how accurate tteesignal using the log of the magnitude of the Fourier trans-
two methods perform in real indoor environments. Théorm, known asCepstral analysiswas first introduced by
integration of the two methods with the odometry readBogert et al. [5] and was made widely known by Oppenheim
ings from the robot’s wheels using an extended Kalmaand Schafer [22]. It is commonly used in speech processing
filter, outperforms the results obtained by each methofd 9] to separate different parts of the speech signal.
in isolation (Sec. VI). Frequency based techniques exploiting the phase shift
+ We experimentally show that the proposed method atheorem have been used in computer vision for image
lows for navigation in environments where little textureregistration (in conjunction with the log-polar transfowh
is present using a simple motion control policy (Secan image), e.g. [26], [18], [15] and optical flow computation
V). ([14]). Phase correlation, however, has not been used for

I. INTRODUCTION



shape estimation. Practically, we want to avoid computing the correspondence

of two lines in two frames, so we adopt the continuous
Il. PROBLEM STATEMENT AND TERMINOLOGY representation of Eq 3 as

In this section we introduce some common symbols that
are used in the rest of the paper and present the problem
that we tackle in the following three sections. For simpyici wherel, denoted,,,;, & is the angular velocity of the robot
and improved readability reasons, all the equations in Seand [, is the temporal derivative of the line that can be
LIV and V are expressed in the camera coordinate systegomputed from the normal flow.

(where the images were acquired). In Sec. VI and VII we
transfer the estimates in the robot-centric coordinatéesys
(Fig. 5(b)). Vectors are denoted with an overhead arrow and
matrices with bold_) letters.

We denote withT", R the tra&slation and rotation between
two frames respectively, WitH\_{ = (o, 8,7)T a plane in

the 3D world and withn = % the plane normal. Also

P :_)(X,_}Y, Z)T is a 3D point. WhenP belongs to N
then P - N =1 < aX + Y +~Z = 1. The image plane v
is assumed to lie on the plade: Z = f, where f is the

focal length of the camera. Then, the projection_)}bfon I

e Y — T _ f T ; 51 Fig. 1. a) A single line is projected to two images from diff#reiewpoints.
is p = (v,y,f)" = Z (X,Y,Z)". The inverse depth aP b) Two 3D lines, belonging to the same plane, are projectesvtoitnage

(h x (I, =& x 1)) -7i=0, (4)

(a) Line constraint in multiple (b) Line constraint in a single view.
views.

amounts to lines.
1 T Y
—=a-=+pB=+y D) o _ _ _ _
Z o f This is the linear equation we use to estimateNotice,
Given the translation and rotation of the camera betwedhiS constraint (which intuitively is known as orientation
two images we seek testimate the plane parametefé =  disparity in visual psychology) allows us to estimate the
(o, B,7)7T. surface normal (that is the shape) of the plane in view, using
only rotation information. At this point we should also note
[1l. ORIENTATION AND DISTANCE FROM LINES that no distance information is encoded to veaipwhich

We describe a constraint for recovering the orientation of of unit length.

a world plane from image lines. The constraint can be us&§l Two or More Lines in the Same Frame
in two ways: first as a multiple view constraint, where we L .
We can use the constraint in Eg. 4 also from one view.

use the images of a single line in 3D in two views [17]; i ) ,

second as a single view constraint where we use the imadgi29ing that two views are related by translation only, or

of two parallel lines in 3D in one view. s_|m|IarIy consider two pargllel lines in one view. G!ven two
linesi; andl, that are projected from two parallel lines;

A. Single Line in Multiple Frames and L., in the 3D scene, we recover the orientationf

and £, using Eqg. 2 (Fig. 1(b)). Assuming; and L, lie

As shown in Fig. 1(a), consider two views with camerg A .
\ . th I, which dicular to th d, and
centersO; and Oy, which are related by a rotatioR and D eﬁsame wall, Which 1S perpendicuiar fo the ground, an

L . ; . i = &7 as its surface normal, we then recover the surface
N ’
a transli\tlonTﬁ. A 3D Ilne_ L Iles_on the plan_e with surface normal of the wall from
normal 7 = Ik L is projected in the two views as and

l,. Let I,,; be the representation df in the first camera (Im1 X l2) - 70 = 0. )
coordinate system as a unit vector perpendicular to theeplaﬂ we have more than two lines that are generated by parallel
through£ andO;. Similarly, letl,,» be the representation of 3D lines, we can average results from Eq. 5

Iy in the second camera coordinate system as a unit vector. : . k .
erpendicular to the plane throughandO,. The two planes . The constrz_ilnt_s d|SCl_Jssed above provide better _mforma-
b 2 tion than vanishing point. From two or more 3D lines, a

perpendicular td,ﬁl andl,,;;z intersect inC!. Expressing this .
relation in the first camera coordinate system, we have general plane can be reconstructed. In our case, the plane is
' perpendicular to the ground plane, thus the surface normal
L L X RT1s, (2) can be described by only one parameter, %e(because

N = (a,0,7)T). In general, the robot can move based on

and sinceri is perpendicular te, we have the position with respect to the line.

. e
(lm1 X R La) -7 = 0. () ¢. Distance estimation

'The necessary and sufficient condition for the two planestdifierent After we have computed the slant of the plane, we can
is that the translatioril’ is not parallel to the lineC. also estimate its distance. For this we need the translation



T. The distancel, of the line £ from the camera amounts Algorithm 1 Match Epipolar Lines

to [9] _ Input:
g — (lh-T) 6 P :  Image point in first image
L= % T = ®6) T,R . Translation/Rotation
(b + (L x @)l > La) K . Camera matrix
with L a unit vector parallel ta, computed as 8utput' . Reference distance, randomly chosen
N Ihox (i +1 x&) [p1,p2] : Setof corresponding points
4= ; @) in first and second image along
i1 x (I + 11 X w)| the epipolar lines
and the distancé of the plane from the camera is computed Algorithm: _
as Compute Essential Matrix : E =[T].R
ded7 (L x T g Compute Fundamental Matrix i F=K TEK™!
=den - (i x La) (8) Compute Epipolar Line in Second: lo=Fp
; ; Image
D. Implementation details Compute Corresponding epipolar line in first image using
A
U

To obtain accurate measurements of lines, we modifi
P. Kovesi’'s Matlab code The unoptimized Matlab version
of the slant estimation code based on lines runs-in.5

seconds per iteration on our test bed (a 1.5 GHz Pentium M ) _ ) _ )
laptop with 768MB RAM). Interpolating the image intensity values along the epipola

lines, it is possible to rectify the two images, thus obtagni
imagesI{* and I?, where the epipolar lines are collinear and
parallel to the horizontal axis

/

. Yoy )=+ 2y @0

e

(a) First Image (b) Second Image (c) Third Image

where the new translation vector?¥ = /T2 + T2 and the
Fig. 2. Three frames of our line testing sequence, with theated lines new plane parameters afe’,0,7)” = Rpgcr(e,0,7)"
drawn in yellow color. In all cases the lines are well locatiz with Rrgor being the rectification (rotation) matrix.

. ) . Combining Egs. 9 and 10 and dropping for simplicity the
In Fig. 2 we present three representative frames obtam%qime notation we obtain

from the front camera. Note that we did not introduce

any artificial landmarks, thus only objects existing in the

environment, like doors and door frames are present. To find ~ Vz,y IF(z,y) = IF((1 + o)z +~T,y), (11)
“good” lines to track, we further assume that the longesdin . ) )

present in the scene are the ones on the boundary betweeVe can estimater andy using phase correlation (Table I)
the floor and the walls. Thus, using a threshold on the lingetween the signals along the set of two epipolar lines in two
length we are able to remove all other lines. In Figs. 4(apteps [27]. First, we estimaie using phase correlation on
4(b) we present the distance and slant estimates which W& magnitude of the Fourier transform of the two signals
obtained using the line constraint for a test sequence of 20 logarithmic coordinates (Eq. 15). Then, we warp the
frames. We observe that the slant is estimated with godignals, using the estimate far so that only the translation

accuracy, while the distance estimation is not very aceurat COmponent is present. Finally, we estimateusing phase
correlation on the warped signals (Eq. 17). The complete

IV. HARMONIC SHAPE FROM TEXTURE FOR PLANAR algorithm along with the equations are presented in Alg. 2.
SURFACES While the algorithm presented here, solves for twio~)
A. Theory of the three plane parameters, it is possible to obtain edkth

In this section we assume that the camera is parallel,
and the wall perpendicular to the ground. This further
simplifies to(a, 0,7)” and Eg. 1 becomes

1 T

- = ozf + (9)
Consider that we acquire two imagés and I and_}hat
we know (from the odometry readings) the translatibn=
(T,,0,T.)T and rotationR. relating7; and I>. The first step
is to locate corresponding epipolar lines on the two images (a) First Image (b) Second Image
(Fig. 3) using the procedure described in Alg. 1.

Fig. 3. The epipolar lines for two frames. The translationteeds 7' =
2http:/Avww.csse.uwa.edu.au/ pk/research/matlabfns [~0.011 0 0.011]" meters and there was no rotation.



parameters by performing a geometric transformation on thg Implementation details

variables and exploiting 2D phase correlation.

Algorithm 2 Estimate Plane Parametersy

Input:

If I® . Image signals along Epipolar Lines
T : Translation

Output:

a,y . Plane parameters

« Signals along the epipolar ling
Vo, I3(x,y) = L' ((1+ aT)z +4T,y)
« Compute the Fourier Transfornd{, Z%) of If, I

2mi 2Ly R u
e TV A (557 v)
-/Tac,y{I?}(uv ’U) = |1 _: OéT| oot (12)

. Consider the Magnitude ofF, 78 and logarithmically
transform(u, v)

[T (log u — log(1 + aT), v)|
|1+ T

« Compute the Normalized Cross-power SpectrufC(S:)
of |Z{, |Z5

NCSl (n,w) _ 62771'77 log(14+aT) (14)

|75 (log u, v)| = (13)

« Computea taking the Inverse Fourier transform 8fC'Sy
eu—arg7na:c(F71{NCsl}) -1

= 15

a n (15)

o Take the Normalized Cross-power SpectruWiC'Ss of

i (357, v), T (u, v) from Eq. 12
NCSy(u,v) = e > et (16)
« Computey
-1
S 1+ aT)argmaj:f(]—' {NCS>}) (17)
TABLE |

PHASE CORRELATION CONCEPT

« Let 2D signalss; andss be related by a translation:d, yo)
only, i.e.
SQ(.’L’, y) = Sl(.ﬁC —Zo,Y — y())

« Their corresponding Fourier transforms are related b
phase shift which encodes the translation, i.e.

Sa(u,v) = e 2miumotvv0) g (4 4)

« The phase shift can be extracted from the Normalized C
power Spectrum of the two signals, which is defined as

NCS = SUEDS0) iyt

B |81 (u7 ’U)S; (u7 'U)‘ B

function around the translation point-£o, —yo)

FYNCSH=,y) = d(z + zo,y + o)

In Fig. 4(c), 4(d) we present the results of applying this
method to a series of images obtained by the left side camera
of our robot. In this experiment, we used 81 epipolar lines.
The red crosses denote the distance and slant estimates
for each pair of frames. While slant estimation is quite
accurate, still the line method provided superior resus.
the other hand, this method outperformed both the line based
technique and the normal flow based technique (described in
Section V) in the distance estimation.

Another advantage of the method is its computational
simplicity. Thus, the unoptimized Matlab code runs~inl.5
seconds for an image &1 x 1024 pixels (i.e., 81 epipolar
lines of 1024 pixels each), with most of the time spent on
warping the 2 signals in order to compute Eq. 16.

V. PLANE PARAMETERS FROM NORMAL FLOW

A. Theory

As described beforeN (o, 3,7)T denotes a plane in
the 3D world andP = (X,Y,Z)T a point on that plane
(P N = 1) and Eq. 1 is valid. When the camera moves with
instantaneous rotatlonal velocngiz (QI,Qy,Qz) and
translational velogtyt = (t ty,t )T the relative motion
of the point isV(P) = — T - Q x P. The corresponding

motion of the image poin®’ is
d 1 ([ tx—t.f
t) = — + 18
(8)-z(=7) o
Qg x 7an:2
sz_ny_’_i"/f ) . (19)
—Q,x+ sz + M

Substituting equations (1) and (19) into the image brigbdéne
consistency constraint

ol dx 0OI dy OI
oz dt "oy dt ot =0, (20)
we obtain an equation bilinear in the motion parameters
and the plane parameters. Note thiat, y, t) represents the
image intensity at poinfx,y) and timet. In our case we
Y @have restricted motion (i.€2, = Q. = 0 andt, = 0), so
we can further simplify the equation

Az yf)(aﬁv) = B ,where
*17 fta) + fytz, . (21
=1,

0SS- (
£y + S (La® + Lay) — I,

According to Eqg. 21, knowing the motion parameters, the

« Thus, the inverse Fourier transform of NCS is a deltacamera intrinsic parameters (i.e., focal length and ppiici

point) and the image intensity derivatives, plane estiomati
amounts to solving a linear system of equations for the
parametersd, 3, 7).
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Fig. 4. The results of one test run. We display the estimate=aoh module with a cross, the extended Kalman filter predigtan 25) with a circle

and the final estimate after integration with the measurememt ZB) with a plus sign. In some frames no reliable estimate cbaldbtained using the
harmonic texture method(second column). In these cases, pkayithe red cross on the bottom of the corresponding figuteo Aote the first EKF

update is based solely on image estimates.

B. Implementation [d,0,¢]T. If we denoten x, the projection of 7 on the

To calculate the normal flow we used the gradient based = 0 plane, then we define thelant ¢ to be the angle
method of Lucas and Kanade ([20]) using the filtering an§€tween theZr axis andn x z, as shown in Fig. S(b)Tilt
differentiation kernels proposed by Simoncelli ([24]) on? iS the angle between the component ofn and theX Z
5 consecutive frames. For performance reasons, we filgne. Thus the transformation between the two different
reduced the size of the image by one quarter, so we ap@rameterizations is
computing the gradients on 266 x 192 array (as opposed
to the whole1024 x 768 original images). The image size
reduction has the additional advantage of reducing thd pixe
displacement between successive frames, thus resulting in
more accurate results for plane estimation. The unoptiinize
Matlab version of the code runs in 0.4 seconds on our
testbed, with most of the time spent in computing the spatial
and temporal gradients.

In Figs. 4(e), 4(f) we display the results of running the
normal flow based plane estimation algorithm in the same
test sequence used for Figs. 4(a), 4(b), 4(c) and 4(d). It
is clear that this method is less accurate in distance and
slant estimation compared to the texture and the line method
respectively.

Wall 7 :¢“XZ

Zr

VI. EXTENDED KALMAN FILTER

Integration of the individual measurements over time is
performed using an extended Kalman filter (EKF). First, let (2) Photo of Robot (b) Robot Sketch
us define a robot-centric coordinate systég XrYrZgr Fig. 5. a)The ERL rob o ed with 3 Firew -
; . o : ig. 5. a)The robot equipped wit irewire cameras. Téig
aS_ f0||'OWS (Flg. 5(b))’ the centeO coincides with the of the robot is~ 70 cm. In the background, part of the corridor, where
midpoint of the two front wheels of the robot, ther axis  we conducted some experiments, is shown. All the walls andsdace

points to the left wheel of the robot, thBg axis points textureless and there exist significant specular highdigint both the walls
: and the floor caused by the light sources. b) The distance agk: &

upwards and thng axis forward. . between the robot and the wall are defined with respect to adowie

As state variables for the Kalman filter we use th&ystem attached to the robot. The surface normal projectetieo’ — Z

distance/slant/tilt parametrization of the planeS(t) =  plane Gxz) is also displayed.




d = -1 TABLE I
Va?+B82 47 EXTENDED KALMAN FILTER EQUATIONS
0 = arctan(2)
Jacobian of system evolution with respect to the state ve£to
¢ = arccos(g) y P 40)

Assuming that the control vectdd(¢) consists of the
instantaneous translational and rotational velocitieshef

1 —o(t)sinf(t)At
1

0

(23)

0
0
1

robot (U(t)v w(t)) reSpeCt'Vely and\t denotes a time interval, Jacobian of system evolution with respect to the controtorel (t)

the evolution of the system over time can be described as

cos O(t)At 0 v(t) cos (t)
Wi(t) = 0 —At —w(t) (24)
S(t+ At) =F(S(¢),U(¢)) { 0 0 0 }

dit +At) = d(t) 4+ v(t) cosO(t) At + €11 State prediction equations (Me&hand Covariancé®)
O(t+At) = 0(t) —w(t)At + €12 , (22) d(t+At) = d(t)+o(t) cos O(t) At
Ppt+At) = o(t)+ €3 Ot+At) = 6(t)—a(t)At (25)
where we use the assumption that 6(t) ~ cos 0(t + At), ot an = o)
i.e. the rotational velocitys(t) is small and approximately P(t+ At) = AOPHAMT + WHQOW (KT (26)
constant overAt and the discretization step\t is also | kaiman Gaink
small. Furthermore, we denote with; the errors in the state K.(t) = B(t)(B(t) + R(t)) " @)
prediction (with covarianc&)). e ’ B
Our measurement vectorgy(, Z», Z3) consist of the plane Measurement update equations (Méaand Covariancd)
parameters calculated using the different methods degtril St + At) = §(t + At) + K()(Z(t + At) — S(t + At))  (28)
in Sections Ill, IV and V respectively, converted to the _ N
P(t+ At) = (I - K(t)P(t + At) (29)

distance/slant/tilt parametrization. We consider the loioed
measurement to be a weighted linear combination of th
individual measurements i.&(t) = 3.°_, C;Z;, where the

weightsC; encode the (inverse) uncertainty of the estimates

using different methods, which we derived as follows. refers to the “wall-following” behavior. Using the same

The line module bases the accuracy of the plane estimati%ncy one could implement the “centering” behavior.
on how well it detects and localizes the line. The harmonic

texture module is using the magnitude of the Inverse Fouric-
transform of the Normalized Cross-power Spectrum (Eq:
15,17) and the normal flow module is using the conditiot
number of the linear system (Eq. 21).

The system evolution (Eq. 22) is not linear with respec
to the state vectoB(t) and the control vectobJ(¢). That's
why we need to use an extended Kalman filter and lineari:
the equations by considering the Jacobian matrix as shov
in Table II.

e

A. Results

Figs. 4(a), 4(b), 4(c), 4(d), 4(e) and 4(f) depict the
results when we combined the line, texture and normal

. . Fig. 6. The robotR is moving with translational and rotational velocities
flow methods, respectively with the odometry measuremen};gq 9

t), w(t) respectively, while it is located p units away from the virtual
using the EKF. More specifically, in these figures, blackine .
circles denote the prediction about the current state using
only the previous state and dead reckoning information (Eq. Let's define the input to the motion control algorithm to
25), while blue pluses denote the final prediction of thée the state vector of the Kalman filter, that denotes the
state after the measurements from each individual modumsition of the left wall with respect to the robot. Ideally,
are also considered (Eqg. 28). It is clear that integration affe want the robot to remain at a constant distance (denoted
measurements over timsgnificatly improves the accuracy with D) from the wall, thus following the lin€ < as shown
and robustness of the method. in Fig. 6. In practice, the robot's trajectory is restricteg
motion dynamics as well as the constraint that the rotationa
VL. and translational velocities should remain constant, evtie
An important part of any navigation system is the motiorcamera is recording the frames. As a consequence, the system
control subsystem. In this particular setting the goal is tes only allowed to perform small motion changes between
move along the corridor avoiding the obstacles that mightvo successive frames, thus it is hard to follow the virtual
lie ahead of us. The motion control strategy described beloline. Instead, a poinP along the lineL¢ is picked and the

M oTioN CONTROL



robot’s motion is regulated accordingly, so that it apphmsc  B. Average Distance Experiment
P. Next we describe how to do this.

Let's assume that poinP is yp meters away from the
robot along the lineLs~ and forms an angle) as shown
in Fig. 6. Furthermore, the robot is situateg units away

In this experiment we let the robot move on the corridor
(still trying to maintain a distance of 0.9 meters from the
left wall) with velocity 5 cm/sec, and measured the average
: : o . istance traversed before the hitting the wall. We perfarme
from Lo .and Is _moving with mstan?aneous translation he experiment multiple times activating a different medul
and rotgﬂonal spged(t)w(t) respectlvely.. Nof(e that the or combinations of modules. The results, namely the average
tra_nslatlonal velocity is always "’."0”9 the dl_rec_tlon of te distance for each combination, are presented in Fig. 8.rAgai
axis pf the robot and the rotational velocity is around th@ve observed that a single module performs very poorly (with
Y-axis. Then, we have: the exception of the line module), while combining modules

up together and integrating the estimates over time greatly

¥ = arctan(=—) (30) improves the result. When the average distance is larger than
£ = 9-n _“Z’ (31) 20 meters, it indicates that the robot is approaching the end
- of the corridor and thus we had to terminate the specific run.
The line segmentLzp has lengthD = \/z% +y%. An
approximation of the time that is required by the robot to IX. CONCLUSIONS
reach point? is At = ;{5 The new rotational velocity | this paper we presented two new methods for computing
(w(t + At)) of the robot should be: the 3D structure of a piece-wise planar scene from video. We
also used an existing method for 3D shape estimation based
¢ 0—m —aTCtangTi on normal flow. The three methods base their estimation

w(t+ At) = v(t) (32)

on complementary information. More specifically, while the
normal flow technique considers individual features (i.e.

At Vap +yp
VIII. EXPERIMENTS

We have used the robotic platform ER1 from Evolution
Robotics. On top of it, we have placed a front and two sid
Firewire cameras (SONY XCD-X700). The side camera
form angles £ 45°, ~ —45°) with the front camera as shown
in Fig. 5(a). In the following experiments we used the lefi 1
side camera and the front camera. We run the texture bas
as well as the normal flow based code on the left side came
and the line-based code on the front camera.

The goal of the experiments is to convey two messages

o The accuracy and robustness of the system significant

increases with thentegration of individual measure-
ments fromdifferent subsystemsver time.

« When using all the methods the robot is able to mov ‘ ‘ ‘ ‘ ‘

along a mostly textureless corridor. T el orentaton (degress)

flow—only

—(>- - line-only
—X— - texture-only

flow+EKF

—— line+EKF
—><— texture+EKF

—%— All modules

051

Success Rate

A. Constant Distance Experiment
L . Fig. 7. Percentage of times that the robot was able to move thane2ers
The goal of this first experiment was for the robot to moveithout hitting the side walls.

a distance of 20 meters along a corridor without hitting

the side walls. The corridor had a width of 1.8 meters
251

so we instructed the robot to try to maintain a distanc

of 0.9 meters from the left, while moving with velocity 5 :
cm/sec. The initial orientation of the robot with respecttte 1 — [ I
wall varied from0° (parallel to the wall) to—20° (moving £ o e o
away from the left wall) and+20° (moving towards the S ——
wall). We made multiple runs each time activating a différen g L_JAllmodules
submodule with and without integrating the measuremen 2 10|

with dead reckoning using the EKF. Finally, we performec §

the experiment using all the submodules together. Thetsesu sl

are presented in Fig. 7. It is clear that each individual nedu ‘ I
in isolation performs poorly (with the exception of the line o H

module). Integrating the measurements of a single modu 0 Different modules

over time (using the EKF) greatly improves the robustness
of the method. Finally, combining the measurements frormig. 8. Average distance that the robot was able to move usiragune-
different submodules, provides the most robust setting.  ments from a single or multiple modules.



sharp intensity changes) within the object, the texturenoat [6]
considers the whole area within it. The line method, on the
other hand, uses the boundary of an object. Depending o
the case, we expect at least one of the methods to providg
accurate measurements. For example, when we observe[gfil
mostly uniformed colored object, we anticipate that the lin
method will be able to accurately track the boundary of|9]
it and produce accurate results, while the remaining two
modules will fail. On the other hand, when the object ig;q
highly textured, the line method might not be able to locate
the boundaries accurately, but the two other methods wiftll
produce good results. For that reason, we emphasize that the
integration of all three modules is the right approach, i€ on[12]
wants to build a robust system. For similar reasons, int(f/is]
gration of the individual measurements over time is equall
important. In this paper, we use odometry measuremenmnts
from the wheels’ encoders, but we might as well estimate
the motion from the videovisual odometryalso known as (3]
ego-motionestimation [29],[6],[21]) or using other sensors.
We present experiments in the context of visual navigatiol®l
on indoor environments and verify that the combined usage;,
of all three modules produces a robust system.

We plan a number of extensions to this work. In order foF8l
the robot to navigate in more complex environments, we neggl;
to incorporate a scene segmentation scheme into this frame-
work. We currently develop segmentation modules based &#!
information from motion, intensity and lines. Ultimatetire
goal is to identify and track individual objects over frames[21]

thus addressing the visual SLAM problem. 2]
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