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Markov random field (MRF) and belief propagation have given birth to
stereo vision algorithms with top performance. This article explores their
biological plausibility. First, an MRF model guided by physiological and
psychophysical facts was designed. Typically an MRF-based stereo vision
algorithm employs a likelihood function that reflects the local similar-
ity of two regions and a potential function that models the continuity
constraint. In our model, the likelihood function is constructed on the
basis of the disparity energy model because complex cells are considered
as front-end disparity encoders in the visual pathway. Our likelihood
function is also relevant to several psychological findings. The potential
function in our model is constrained by the psychological finding that the
strength of the cooperative interaction minimizing relative disparity de-
creases as the separation between stimuli increases. Our model is tested
on three kinds of stereo images. In simulations on images with repeti-
tive patterns, we demonstrate that our model could account for the hu-
man depth percepts that were previously explained by the second-order
mechanism. In simulations on random dot stereograms and natural scene
images, we demonstrate that false matches introduced by the disparity
energy model can be reliably removed using our model. A comparison
with the coarse-to-fine model shows that our model is able to compute
the absolute disparity of small objects with larger relative disparity. We
also relate our model to several physiological findings. The hypothesized
neurons of the model are selective for absolute disparity and have facili-
tative extra receptive field. There are plenty of such neurons in the visual
cortex. In conclusion, we think that stereopsis can be implemented by
neural networks resembling MRF.

1 Introduction

Stereopsis is a process that our visual system employs to estimate the dis-
tance of an object by measuring the binocular disparity, defined as the
difference in positions of the object’s images on two retinas. At the heart
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of stereopsis lies the correspondence problem: How are images projected
from the same 3D feature linked? This problem is not trivial because, aside
from correct matches, there are also many false matches. The correspon-
dence problem manifests itself in the primary visual cortex, the beginning
of stereopsis in the visual pathway. Complex cells in the primary visual
cortex are considered disparity detectors whose disparity selectivity can be
predicted by the disparity energy model (Ohzawa, DeAngelis, & Freeman,
1990). However, previous experiments show that these disparity detectors
respond not just to correct matches but also to false ones (Cumming &
Parker, 1997, 2000). The ambiguous responses of complex cells cannot ac-
count for the unambiguous depth perception. Therefore, some mechanism
must be employed to eliminate false matches and recover true disparity,
which is equivalent to solving the correspondence problem.

In the computer vision field, advancements in the Markov random field
(MRF) and associated inference algorithms like belief propagation (BP)
have led to stereo vision algorithms with top performance (Sun, Zheng, &
Shum, 2003; Yang, Wang, Yang, Stewenius, & Nister, 2009). These algorithms
typically use a pixel as the basic matching unit. Tests on benchmark image
sets have demonstrated that ambiguities of matching pixels are solved to a
large extent.

This letter aims to explore such possibilities as whether MRF-based stereo
algorithms are biologically plausible and if stereopsis can actually be imple-
mented by neural networks that pass messages such as BP. As a response, a
biological stereopsis model based on MRF is proposed in this study. There
are two differences between our model and conventional computer stereo
vision algorithms. First, local evidence of matching is computed from pop-
ulation responses of complex cells. In other words, the likelihood function
is constructed on the basis of the disparity energy model. In section 2.2, we
show that this likelihood function is related to some psychophysical find-
ings. Second, we restrict our choice of potential functions by taking into
account Petrov’s psychological findings (Petrov, 2002). Some experiments
show that our visual system tries to minimize relative disparities across the
scene by altering the matching of individual features (Zhang, Edwards, &
Schor, 2001; Goutcher & Mamassian, 2005). Petrov’s experiment suggests
that the strength of this interaction falls as the distance between the features
increases. Potential functions are usually used in computer stereo vision al-
gorithms in order to enforce the continuity constraint. We find that not
every potential function could account for Petrov’s finding. In section 2.3,
a likelihood function that considers this finding is provided.

Different biological implementations of BP have been suggested in the
literature (Rao, 2004, 2005; Ott & Stoop, 2006). Rao (2004, 2005) implemented
BP in the log domain. Ott and Stoop (2006) took a more indirect approach.
They proved that BP on a binary MRF could be implemented by the contin-
uous Hopfield network, which was considered more biologically plausible.
We adopt Rao’s basic principle for two reasons. First, we have no desire to
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restrict our model to a binary type. Second, Rao’s implementation is more
direct and closer to the mathematical form of BP. Because the topology of
our network is different from that in his article, we add message neurons
to represent messages. After all, details of BP implementation are not our
main concern in this work in light of the lack of sufficiently informative
physiological evidence in the literature. Instead, this letter relies on the
basic idea of biological BP, which is to interpret neural dynamics as pass-
ing messages. In our model, these messages will excite nearby neurons,
which have similar disparity preferences. Therefore, neurons in our model
could be considered as having a facilitative extrareceptive field (ERF). The
physiological relevance of this is discussed in section 4.

Our model is tested on three kinds of stereo images. First are images
with repetitive patterns, such as sinusoidal gratings. This kind of image is
popular to use in psychological experiments because there are many false
matches in the central region. Experiments found in the literature showed
that the disparity at the central region was controlled by the disparity
at the ends as if our visual system tried to minimize relative disparities,
thus conforming to the continuity constraint. In addition, the second-order
mechanisms were hypothesized to encode disparity at the ends because the
first-order mechanism, tuned to low spatial frequency, could not account for
edge-based matching when the image contrast was low (McKee, Verghese,
& Farell, 2004). However, in our model, the matching ambiguity of the
central region is solved naturally by propagating messages from both ends.
Our model is not affected by low contrast because complex cells tuned to low
frequencies are not employed. The simulations show that our model could
predict human depth percepts in many situations, and some mathematical
analysis is carried out to give some quantitative explanation of experimental
data.

Next, we test our model’s ability to remove false targets on RDS and the
natural scene images. RDS is famous for its abundance of false targets and
absence of monocular cues. The simulations demonstrate that our model
can solve the correspondence problem satisfactorily. Such simulations are
necessary. Stereo vision algorithms in the computer vision field generally
employ very discriminative likelihood functions. A good guess of the true
disparity can be made by simply singling out the strongest peak of a like-
lihood function. In contrast, Figure 15 shows that our likelihood function
is not ideal since it contains many spurious peaks with almost the same
strengths as the true peak. It is possible that the Bayesian computation
would fail because of these false peaks. Therefore, the simulation is the first
validation that the disparity energy model can work well with MRF. This
point could serve as the basis for our model’s biological plausibility because
removing false matching is a basic attribute of the biological stereo vision
system. Furthermore, a comparison of our model and the coarse-to-fine
model (Chen & Qian, 2004) reveals that our model can compute the abso-
lute disparity of small objects with larger relative disparity. In summary, we
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Figure 1: Diagram of the model proposed in this study. Arrows indicate neural
connections. At each location, a group of likelihood neurons receives input from
complex cells and sends output to belief neurons. Messages are sent between
neighboring belief neurons. For example, belief neurons at location A com-
municate with neurons at nearby locations B and C through message neurons
between them.

believe that stereopsis could be implemented by a neural network resem-
bling MRF, and its biological implication deserves further investigation in
related fields.

2 Model Descriptions

2.1 Overview. Our model has three layers. In the top layer, complex
cells encode absolute disparity. At the bottom of each location, a group
of neurons called belief neurons encode the visual system’s confidence of
disparities. In addition, message neurons are employed to implement BP.
In the middle layer, likelihood neurons transform the response of complex
cells into likelihood. The top layer is assumed to reside in V1, and the other
two layers reside in the higher regions of visual cortex. A diagram of our
model is shown in Figure 1.

At each location, belief neurons send messages to other nearby belief
neurons through message neurons in a manner described by BP. The topol-
ogy of the neural network at this layer is an important issue but is largely
unknown. In this letter, we explore two kinds of first-order MRF, both
shown in Figure 2, the line and the grid. In the first-order MRF, connec-
tions exist only between adjacent nodes. Although the neural system may
employ more complicated circuits, experiments in section 3 show that this
simplification can take us far. At the beginning of section 3, the strengths
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Figure 2: MRFs employed in our model. (A) The grid MRF. (B) The line MRF,
which does not have z-axis connections. In both situations, node Ci represents
the disparity likelihood at location i . In our model, the likelihood function
was derived from the responses of complex cells of a single spatial frequency
channel. Node Di represents the visual system’s confidence of disparities at
location i .

and weaknesses of these topologies are discussed. However, the discussions
in the rest of this letter apply to both topologies.

MRF provides a good abstraction of neural circuits in Figure 1. The objec-
tive of BP is to find {d∗

i , 1 ≤ i ≤ M} that maximizes the posterior probability
function 2.1, given the responses of complex cells,

P(D|C) ∝
M∏

i=1

φi (di , ci )
∏

j∈N(i)

ψi j
(
di , d j

)
, (2.1)

where di denotes disparity at position i , M is the number of unobserved
nodes, ci represents the responses of complex cells encoding the disparity
at position i, and N(i) represents all the nodes at neighboring position i.

The likelihood functions φi (di , ci ) are represented by likelihood neu-
rons that receive the responses of complex cells. Section 2.2 discusses the
likelihood function in detail. The potential function ψi j

(
di , d j

)
, which is

responsible for continuity preservation, is selected as

∀i, j ∈ N(i), ψi j (di , d j ) = max
(

exp
(

− (di − d j )2

σd

)
, η

)
. (2.2)

Parameters σd and η control the strength of interaction. When they are
large, the strength of interaction is weak, and the belief neurons at two
locations tend to compute disparities independently. Two of the curves of
this function are plotted in Figure 3. For the dashed curve, σd = 100 and
η = 0.5. For the solid curve σd = 5 and η = 0.2, the continuity constraint is
more tightly imposed in this latter case.
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Figure 3: Plots of equation 2.2 under different sets of parameter settings. For
the dashed curve (σd = 100 and η = 0.5), the constraint is relatively loose. For
the solid curve (σd = 5 and η = 0.2), the constraint is much tighter.

In section 2.3, we demonstrate how this choice of potential function is
related to the psychological findings. Here, we discuss the merits of repre-
senting the continuity constraint by MRF consisting of potential functions,
such as equation 2.2. On the one hand, the continuity constraint has been
proven to be a useful tool in eliminating false matches; on the other hand,
it may smooth out real disparity boundaries if it is overemphasized. There-
fore, the essence of applying this constraint is to seek a balance. We argue
that MRF is suitable for this. Equation 2.2 penalizes any disparity discon-
tinuities, thus favoring frontal-parallel planes. In this sense, it enforces the
continuity constraint. However, the penalty is small if the disparity changes
slightly, and it may not smooth out small disparity changes. Equation 2.2 has
a lower bound η, preventing excessive penalty for large disparity changes
in the scene. Due to this bound parameter, the penalty will not excessively
increase when the disparity difference is beyond some threshold. With
the proper choice of η, a sharp disparity change can be preserved if there
is enough evidence to suggest its existence. In summary, our MRF-based
model is able to accommodate true disparity discontinuities, although a
penalty is assigned to every possible disparity discontinuity.

2.2 Converting Responses of Complex Cells to Likelihood. The re-
sponse of a complex cell with position shift d and phase shift �ϕ can be
expressed as

C(d,�ϕ) = (L1 + R1)2 + (L2 + R2)2 (2.3)
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where

L1 =
∫ +∞

−∞
Il (a − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
cos(ωτ + ϕ)dτ (2.4)

L2 =
∫ +∞

−∞
Il (a − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
sin(ωτ + ϕ)dτ (2.5)

R1 =
∫ +∞

−∞
Ir (b − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
cos (ωτ + ϕ + �ϕ) dτ (2.6)

R2 =
∫ +∞

−∞
Ir (b − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
sin(ωτ + ϕ + �ϕ)dτ , (2.7)

where Il and Ir are the left and right retinal images, respectively. For sim-
plicity, we use the 1D Gabor function to model a neuron’s receptive field
(RF). The parameters a and b stand for the positions of the centers of RFs
in the left and right retinal images, respectively. Moreover, (a − b) equals
the position shift d. The parameter ϕ is the phase of sinusoidal modulation,
�ϕ the phase shift of the complex cell, σx the gaussian width, and ω the
preferred spatial frequency.

We define L̃ and R̃ as the complex-valued monocular responses in
equation 2.8, similar to that used by Fleet, Wagner, and Heeger (1996).
Equations 2.3 and 2.8 lead to equation 2.9:

L̃ = L1 + L2i, R̃ = R1 + R2i (2.8)

C(d,�ϕ) = |L̃ + R̃|2. (2.9)

Consider a complex cell with zero phase shift; L and R stand for its left and
right complex-valued monocular responses, respectively:

C(d, 0) = |L + R|2. (2.10)

Our mathematical basis for the likelihood is simple. If point a should match
point b, L should equal R because the left and right RFs are identical with
respect to the center positions, and so are the corresponding image patches
covered by RFs. Because L and R are vectors, the differences in either magni-
tude or angle are supposed to decrease the plausibility of correspondence.
Accordingly the likelihood φ is defined as

φ = max

(
|L + R|2 − |L − R|2

(|L| + |R|)2 , ε

)
= max

(
4 |L| |R| cos θ

(|L| + |R|)2 , ε

)
, (2.11)
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where θ is the angle between L and R and ε is the lower bound satisfying
0 < ε < 1. As shown in the appendix,

|L − R|2 = C(d, π ) (2.12)

(|L| + |R|)2 = max
�ϕ

C(d,�ϕ). (2.13)

Therefore, the likelihood φ of disparity d in equation 2.11 can be written
as

φ(d) = max
(

C(d, 0) − C(d, π )
max�ϕ C(d,�ϕ)

, ε

)
. (2.14)

Equation 2.14, in fact, specifies how likelihood neurons transform the pop-
ulation responses of complex cells into likelihood functions. Note that we
use the position shift to encode disparity and the phase shift to compute
likelihood. Therefore, the detectable disparity range of our model corre-
sponds to the range of position shift. In our simulation, the position shift
ranges from −40 pixels to 40 pixels regardless of the neurons’ preferred spa-
tial frequency. In other words, our model is not bounded by size-disparity
correlation (Prince & Eagle, 1999; Cumming & DeAngelis, 2001).

Note that the likelihood function can be directly obtained from the pop-
ulation response of the phase-shift model or position-shift model because
curves of population responses generally have peaks near the ground truth
disparity. In order to show that the likelihood function 2.14 is better than
others constructed from population responses, we compare them in a sim-
ulation on RDS. The likelihood functions from population responses of
the position-shift model (see equation 2.15) and the phase-shift model (see
equation 2.16) are

φ pos(d) = C(d, 0)
maxd C(d, 0)

(2.15)

φ pha (d) = C(0,�ϕ)
max�ϕ C(0,�ϕ)

= C(0, ωd)
maxd C(0, ωd)

. (2.16)

Equation 2.16 makes use of the finding that the preferred disparity of a
neuron with pure phase shift �ϕ is �ϕ × ω−1 (Qian, 1994). Note that the
numerators in equations 2.15 and 2.16 are population responses and the
denominators are normalization factors used to ensure that the maximal
value of likelihood is 1. In this simulation, RFs are modeled as a 1D Gabor
function, the gaussian width of which is fixed at 10 pixels. We constructed
1D RDS with disparities ranging from 0 to 10 pixels. For each disparity
value, 500 RDS are generated. For each RDS, we compute φ(dT ), φ pos(dT ),
and φ pha (dT ), where dT stands for the true disparity of the RDS. The mean
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Figure 4: The averaged likelihood of the true disparity obtained from three
likelihood functions. The lengths of error bars are twice the standard error of
the mean. This figure show that the likelihood function used in our model is
better than the two other likelihood functions computed directly from popu-
lation responses, especially at large disparities. The figure also shows that the
likelihood function from the population response of the phase-shift model is
better than that of the position-shift model. The disparity of RDS varies from
0 to 10 pixels in steps of 1 pixel. For each disparity, results are computed from
500 RDS. Here the 1D Gabor RF is used, with a gaussian width of 10 pixels and
a bandwidth of 1.14 octaves.

values and the standard error of the mean obtained from 500 simulations
are then computed. The means are denoted by φ̄(dT ), φ̄ pos(dT ), and φ̄ pha (dT ).
We compare these entities because a good likelihood function should assign
a high value to the ground truth disparity. The results are shown in Figure 4.

According to Chen and Qian (2004)’s simulation on RDS, the population
response of the phase-shift model is more reliable than that of the position-
shift model when the disparity is much smaller than the size of the RF;
otherwise, both mechanisms become unreliable. Our simulation confirms
their observations. For example, φ̄ pha (dT ) is always larger than φ̄ pos(dT ), and
both curves drop as disparity increases in our simulations. In contrast, the
likelihood function in our model always assigns the true disparity to the
highest value, regardless of the disparity magnitude.

Equation 2.11 could account for some psychological findings. First, the
factor |L||R|

(|L|+|R|)2 ensures that the absolute contrast in two locations must be
close in order to obtain a higher probability of correspondence. This prop-
erty is shown in detail in Figure 5. Note that when |L| varies in proportion
to |R|, that is, |L| = k|R|, the factor |L||R|

(|L|+|R|)2 and the likelihood φ are kept
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Figure 5: |L||R|
(|L|+|R|)2 as a function of log(|L| × |R|−1). The maxima is obtained when

|L| = |R|.

unchanged as long as k does not change. This property could account for the
psychological finding termed the contrast ratio constraint, which says that
when the contrast of a feature in one eye increases, the contrast of the corre-
sponding feature in the other eye must increase proportionally (Smallman
& McKee, 1995).

Second, the likelihood is derived from neurons of a single frequency
channel. This property enables our model to explain the depth perception
of repetitive patterns without resorting to the second-order cue (detailed in
section 3.1). Julesz (2006) designed some special RDS and demonstrated that
stereo matching took place at different frequency channels in parallel. This
fact can be accommodated in principle by our model because the disparity
outputs from different frequency channels are not combined when they
activate belief neurons, which in turn arouse depth perception. We thought
that interactions of different scales take place at latter stages.

Tsang and Shi (2008) used a feature, derived from the population re-
sponse (similar to φ in our model), to predict whether the true disparity
was in the range of the preferred disparity of the phase-shift model. They
found this feature worked better than other candidate features. However,
they achieved good performance only when multiple features were com-
bined. Similarly, we find that the likelihood function φ(d) in our case usually
has more than one peak. In other words, false matches cannot be completely
ruled out by simply considering φ(d). Therefore, message passing is essen-
tial in our model.

2.3 Modeling the Continuity Constraint. Many models of stereopsis
rely on the continuity constraint to solve the correspondence problem (Marr
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Figure 6: MRFs discussed in this section. (A) An MRF consisting of two adjacent
nodes. (B) An MRF consisting of two remote nodes. (C) This MRF is equivalent
to that in B, when equation 2.22 holds.

& Poggio, 1979; Prazdny, 1985). Although direct physiological mechanism
has not been identified until now, its existence is supported by several
psychological experiments. Petrov (2002) found that the strength of this
constraint decreased when the separation between features increased. In
our model, the interaction of adjacent nodes is reflected by the potential
function in equation 2.2. We assume that the potential functions do not
vary with position; therefore, we omit their subscripts and use ψ to stand
for the potential functions between all adjacent nodes. First, we consider
two adjacent nodes at location 1 and location 2 on a one-dimensional (line)
MRF (see Figure 6A). BP will find the MAP configuration:

(d∗
1 , d∗

2 ) = arg max
d1,d2

P(d1, d2|c1, c2)

= arg max
d1,d2

φ1(d1, c1)φ2(d2, c2)ψ(d1, d2). (2.17)

Now we consider two features at locations 1 and n, separated by a blank re-
gion, shown in Figure 6B. Similarly, their MAP disparities are determined as

(d∗
1 , d∗

n ) = arg max
d1,dn

(
max

d2...dn−1

P(d1, d2 . . . dn|c1, cn)
)

= arg max
d1,dn

(
φ1 (d1, c1) φn (dn, cn) max

d2...dn−1

n−1∏
i=1

ψ (di , di+1)

)
. (2.18)

φ2(d2, c2) . . . φn−1(dn−1, cn−1) do not appear in equation 2.18 because we
set φi (di , ci ) ≡ 1, if the RFs cover only blank areas. Let ψ1n(d1, dn) =
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maxd2...dn−1

∏n−1
i=1 ψ(di , di+1). We then have

(d∗
1 , d∗

n ) = arg max
d1,dn

φ1(d1, c1)φn(dn, cn)ψ1n(d1, dn). (2.19)

When equations 2.17 and 2.19 are compared, locations 1 and n can be con-
sidered as directly connected, and the strength of connection between two
locations is reflected by the potential function ψ1n (d1, dn). The equivalent
MRF is shown in Figure 6C. As we mentioned, the exact topology of the
neural network enforcing the continuity constraint is still largely unknown,
and belief neurons at location 1 may have a direct connection with belief
neurons at location n rather than through the intermediate neurons as sug-
gested in our model. However, this difference will not cause different depth
percepts since the two features in Figure 6B have the same influence as those
in Figure 6C. As shown in the appendix, the following inequality holds:

∀d1, dn, n > 1, ψ1n(d1, dn) ≥ ψ(d1, dn). (2.20)

Equation 2.20 indicates that the penalty of discontinuity will not increase
as the distance increases. In fact, the penalty will decrease under some mild
conditions. For example, if we let ψ (di , di+1) take the form of equation 2.2
and additionally suppose that the disparity gradient |di − di+1| and η are
both small, we obtain

∀i, ψ(di , di+1) = max

(
exp

(
− (di − di+1)2

σd

)
, η

)

= exp

(
− (di − di+1)2

σd

)
. (2.21)

ψ1n(d1, dn) = max
d2...dn−1

n−1∏
i=1

ψ(di , di+1) = exp
(

− (d1 − dn)2

(n − 1)σd

)

= ψ(d1, dn)
1

n−1 . (2.22)

Since the value of the potential function ψ(d1, dn) is between 0 and 1,
ψ1n(d1, dn) becomes flatter and flatter as n increases. In other words, the
strength of the interaction between the two nodes decreases monotonically
with an increase in distance between them.

Note that not every choice of ψ has the same property. Consider the
following group of functions:{

ψα(di , di+1) = max
(

exp
(

−|di − di+1|α
σd

)
, η

)∣∣∣∣ α = 1, 2, . . . , n
}

.

(2.23)
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Figure 7: (A) The evolution of a message passing through 10 nodes connected
by ψ1. The initial message, a gaussian curve, is shown at distances 0. The
message at distances 1 and 10 has the same shape. (B) The message in the case
of ψ2. The shape of the message becomes flatter and flatter as it passes through
intermediate nodes. In other words, the power of the interaction decays as the
distance increases.

Similar to the scenario where α = 2 as in the previous discussion, we can
obtain the following conclusions: if α > 2, the strength will decay more
rapidly, and if α = 1, the strength of influence is a constant. Therefore,
ψ1 is not a biologically plausible choice, although ψ1 and its variants are
commonly used in computer stereo vision algorithms (Sun et al., 2003; Yang
et al., 2009). With more psychophysical data available in the future, selection
of the potential functions could be expected to be more tightly constrained.
In the simulations in this letter, ψ2 is used because we do not want the
interactive strength to decay too rapidly.

We have discussed the strength of interactions in terms of potential
functions. In our model, the maximum a posteriori (MAP) is obtained by
passing messages. We can also analyze the problem from the perspective
of passing messages. Here is a simulation. Node 1 influences node n by
sending a message that is initially a gaussian. However, the message must
go through intermediate (n − 1) nodes. Each time, the message is filtered
by potential function in a way specified by update rule 2.29. We want to
see how the message evolves with different ψα . Figure 7A shows that when
ψ1 is used, the message retains its strength. Figure 7B shows that when
ψ2 is used, the message decays. The parameters used in the simulation for
both ψ1 and ψ2 are σd = 20 and η = 0.5. The gaussian width of the initial
message is 10 pixels.

2.4 Biologically Plausible Message Passing. The max-product version
of BP is as follows:

1. Initialize all messages.

m ji (di ) ≡ 1 (2.24)
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2. Update all the beliefs at each iteration.

bi (di ) ← kφi (di )
∏

j∈N(i)

m ji (di ), (2.25)

where φi (di ) in our model is shorthand for φi (di , ci ) and k is a normal-
ization constant.

3. Update all messages at each iteration:

mi j (d j ) ← k max
di

ψi j (di , d j )φi (di )
∏

l∈N(i)\ j

mli (di ) (2.26)

When all the iterations are complete, the MAP estimation {d∗
i , 1 ≤ i ≤ M}

can be obtained by finding each d∗
i that maximizes bi (di ), provided there

is only one disparity configuration assigned with the highest probability
(Bishop, 2006),

∀i, d∗
i = arg max

di

bi (di ) (2.27)

An alternative to this winner-take-all approach for disparity prediction is
discussed in section 3.1.

Rao (2004, 2005) proposed performing Bayesian inferences in the log
domain, inspired by the physiological evidence for the neural encoding of
log probabilities (Carpenter & Williams, 1995). The log-space scheme is also
used in our model. With the logarithm of update rules 2.25 and 2.26, the
following equations can be obtained:

log bi (di ) ← log k + log φi (di ) +
∑

j∈N(i)

log m ji (di ) (2.28)

log mi j (d j ) ← log k

+ max
di

⎛
⎝log ψi j (di , d j ) + log φi (di ) +

∑
l∈N(i)\ j

log mli (di )

⎞
⎠ . (2.29)

Here two adaptations are made in our model. First, message neurons are
introduced for representing messages in MRF although they are unneces-
sary for Rao’s models with different topologies. Second, a specific kind of
neural connection scheme is used for reducing the number of connections.
Update rule 2.29 says that message neurons representing mi j must receive
input from all the message neurons sending information to location i ex-
cept neurons representing m ji . The number of input nodes in n-connected
network is n, including (n − 1) message nodes and one likelihood node.
The complexity of connections can be reduced if we substitute log bi (di ) for
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log φi (di ) + ∑
l∈N(i) log mli (di ). Accordingly, update rule 2.29 becomes

log mi j (d j ) ← log k + max
di

(log ψi j (di , d j ) + log bi (di ) − log m ji (di )).

(2.30)

In this case, a message node receives input from only two nodes in n-
connected network.

3 Simulations and Comparisons

Our model is tested on three types of stereo images. In section 3.1, we test our
model using the line MRF on regularly spaced dots and sinusoidal gratings.
These periodic stimuli are commonly used in psychophysical experiments.
The depth perception of these stimuli is not likely to be explained by first-
order models using low-spatial-frequency channels such as the coarse-to-
fine model. Instead, the second-order mechanism was suggested previously
(McKee et al., 2004). However, simulations show that our model could
predict to a large degree the human depth percept for such stimuli.

In sections 3.2 and 3.3, our model is tested on RDS and natural scene
images and compared with the coarse-to-fine model. The simulations show
that our model is able to compute the absolute disparity of small objects
with larger relative disparity.

We use the grid MRF on RDS and natural scene images because it allows
signals to travel in two dimensions. Consequently, smoother disparity maps
are obtained, although we find that ambiguities can be solved by line MRF to
a large extent. However, the correctness of BP is guaranteed on the MRF, and
not on grid MRF. In fact, BP fails to find the global maximum on grid MRF
when tested with stimuli in section 3.1. This is one reason that line MRF is
used in section 3.1. Another reason is that the stimuli in section 3.1 vary only
horizontally, and messages traveling in vertical directions are duplicative.
Therefore, the grid MRF will not have any advantage in this case.

3.1 Simulations on Periodical Stimuli. Mitchison and McKee (1987a,
1987b) used these kinds of stimuli to disclose the way our visual system
solved ambiguity. The basic stereogram in their experiment includes rows
of identical, regularly spaced dots. A row of dots is shown in Figure 8A.
The left image and right images are identical except for the left-most dot in
the left image and the right-most dot in the right image. These two dots are
both displaced inward by s, a fraction of the interdot spacing denoted as L.
Mitchison and McKee observed that when the duration of view was longer
than 500 ms and interdot spacing was larger than 5 min of arc, a dot in the
left eye must match a dot in the right eye (termed discrete matching in their
work). Matching is ambiguous except for the dots at both ends. They also
found that among all the possible matches for an internal dot in one eye, the
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Figure 8: Ten-dot stimulus used in our simulation and two possible match-
ing patterns. (A) The dots shown at the top are the left images, and those
at the bottom are right images. The parameter s is the displacement of the
left-most dot and the right-most dot, described as a fraction of interdot spacing.
(B) The matching pattern when s < 0.5. The disparity of the internal dots is zero.
(C) The matching pattern when s > 0.5. The disparity of the internal dots is the
interdot spacing.

visual system chose the one whose disparity was the closest to the disparity
of the ends. In other words, the matching of the internal dots was guided
by the interpolated plane determined by dots at the ends. They called it the
nearest disparity rule.

For the stimulus show in Figure 8A, the nearest disparity rule predicts
that when s < 0.5, the disparity of the internal dots is zero (see Figure
8B); when s > 0.5, the internal dots assume a disparity of interdot spacing
L (see Figure 8C). This rule is supported by their experimental results (see
Figure 9). A long-duration curve (dashed line) shows how the depth percept
in Figure 8C becomes increasingly dominant over the depth percept with
zero disparity (Figure 8B). As stated by Mitchison and McKee (1987a), the
intermediate points in Figure 9 come from the average of the two end
percepts.

This finding interests us because it seems that our visual system min-
imizes the relative disparities across the whole scene. Next, we explore
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Figure 9: Experimental result of Mitchison and McKee (1987a). It shows how
the perceived depth changes as a function of s (Figure 2 in their text). The dashed
line is under the condition of long duration, when discrete matching happens.
In their work, discrete matching means that a dot in one eye is paired with a
dot in the other eye. The solid line is under the condition of short duration. The
ordinate is the disparity shift as a fraction of interdot spacing. GJM and SPM are
initials from Mitchison and McKee identifying two subjects in the experiment.

whether our model could produce similar results, and our results are quite
encouraging. Here are our simulations.

Six pairs of 50 × 200 images are created with different values of s. Each
image consists of a row of 10 black dots; Mitchison and McKee (1987a)
used the same number of dots in a row for their experimental results in
Figure 9. It is not necessary to use more than one row because when line
MRF is applied, disparity computations for different rows are carried out
independently and the disparity predictions are merely duplicates. Each
dot is a 3 × 3 square. The interdot spacing L is 20 pixels. Therefore the
disparity of the next-to-nearest matching is 20 pixels, and s increases from
0 to 1 in steps of 0.2.

The setting of our model is as follows. Line MRF is applied, and a final
disparity estimation is obtained after passing the message 200 times. The
BP is guaranteed to converge, and MAP is obtained because the line MRF
does not have loops. RFs are modeled as 1D Gabor functions with σx = 2
pixels. The neurons’ frequency bandwidth is also set to 1.14 octaves. The
σd in equation 2.2 is set to 4. The position shift varies from −40 pixels to
40 pixels in steps of 1 pixel. The response of a likelihood neuron whose
receptive field covers only the blank region is considered subthreshold. The
lower bounds of equation 2.2 and equation 2.11 are η = 0.01 and ε = 0.001,
respectively.
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Table 1: Disparities (pixels) of the 10 Dots in the Left Image Computed by Our
Model for Each Image Pair.

s 0 0.2 0.4 0.6 0.8 1

Dot 1 0 4 8 12 16 20
Dot 2–9 0 0 0 20 20 20
Dot 10 0 4 8 20 20 20

Notes: Dots are numbered from left to right. The interdot spacing is 20 pixels.

Our model’s results in Table 1 are consistent with the nearest disparity
rule proposed by Mitchison and McKee since the disparities of internal
dots (dot 2– dot 9) are controlled by s in the same way. Unlike the matching
pattern in Figure 8C, our model cannot link dot 10 simultaneously to the
last two dots in the right image because in our model, a point in the left
image has only one disparity value.

The deterministic prediction of our model is made by the winner-take-
all approach shown in equation 2.27. In other words, our model assumes
that the true disparity is encoded by the belief neuron with the maximal
figuring rate. However, Mitchison and McKee’s (1987a) results show that
both depth percepts can occur when s is between 0 and 1, subject to dif-
ferent probabilities. The long-duration curve in Figure 9 can be considered
as the probability of seeing the depth percept in Figure 8C because the
intermediate points in Figure 9 give some averaged depth of the bistable
percepts. The winner-take-all approach cannot fully account for the prob-
abilistic nature of depth perception, and neither can the nearest disparity
rule. In order to show that the probability of depth percepts is related to the
population response of belief neurons, the winner-take-all approach needs
to be relaxed, and belief neurons’ responses should be interpreted in some
probabilistic way. In this section, we assume that only the belief neurons
that give rise to local maxima of the population response have a chance
of arousing depth perception, and the probabilities of these depth percepts
are computed from the softmax function whose arguments are the maxima
of population responses.1 As we can see in Figure 10, only disparities of 0
and L give rise to peaks of the population response curves. Therefore, only
matching patterns in Figures 8B and 8C have nonzero probability in our
model. According to our assumption, p (0|s) and p (L|s), which are the prob-
abilities of the depth percepts in Figures 8B and 8C, should be computed

1Softmax function f is defined as f (p1, p2, . . . , pn) = (q1, q2, . . . , qn) where

qi = exp(pi )∑n
j=1 exp(p j )

.
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Figure 10: Exponentials of responses of belief neurons encoding the disparity
of dot 5 at the center of the stimuli in Figure 8A. The population response curves
possess only two local maxima at the disparities of 0 pixels and 20 pixels.

by the softmax function as

p(0|s) = exp(bn(0|s))
exp(bn(0|s)) + exp(bn(L|s))

= sigmoid(bn(0|s) − bn(L|s))

(3.1)

p(L|s) = exp(bn(L|s))
exp(bn(0|s)) + exp(bn(L|s))

= sigmoid(bn(L|s) − bn(0|s)),

(3.2)

where bn (D|s) denotes the response of the belief neuron encoding disparity
D given s. The softmax function becomes the sigmoid function in the case of
two percepts. Note that p (0|s) and p (L|s) are not the marginal probabilities
of P (D|C) in equation 2.1. The exponentials are necessary because belief
neurons encode the logarithm of beliefs in equation 2.25. After the message
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Figure 11: Probability of attaining the depth percept in Figure 8C, predicted by
our model.

is passed 200 times, p (L|s) is computed from the response of belief neurons
encoding the disparity of dot 5 by equation 3.2. Although the plot of p (L|s)
shown in Figure 11 is not in exact alignment with the long-duration curves in
Figure 9, the general trends are fairly consistent. Therefore, we thought the
probabilistic aspect of the depth perception could be reflected in population
response of belief neurons.

According to Mitchison and McKee (1987a), two depth percepts in
Figures 8B and 8C have almost equal probability of occurring when s = 0.5.
In the following, we give some mathematical analysis to account for this
finding. According to equations 3.1 and 3.2,

p(L|s) = p(0|s) ⇔ exp(bn(L|s))
exp(bn(0|s))

= 1. (3.3)

The posterior probability function in equation 2.1 takes the disparity at each
pixel as a variable, and it is difficult to give an analytical analysis for such
a function of so many variables. As shown in section 2.3, this function can
be approximated by a function depending only on the disparities of the
dots in Figure 8. An approximation of potential functions can accordingly
be obtained only by considering the disparities of adjacent dots as

exp(bn(L|s))
exp(bn(0|s))

=
∏10

i=1 φi (di , ci )
∏9

i=1 ψi,i+1(di , di+1)∏10
i=1 φi (d ′

i , ci )
∏9

i=1 ψi,i+1(d ′
i , d ′

i+1)
, (3.4)
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where d1 = d10 = Ls, d2 = d3 . . . = d9 = L , d ′
1 = d ′

10 = Ls, d ′
2 = d ′

3 . . . =
d ′

9 = 0, and ψi,i+1 is the potential function of adjacent dots. Because every
dot must match another dot, all the φi s cancel out. Then equation 3.4
becomes

exp(bn(L|s))
exp(bn(0|s))

= ψ1,2(Ls, L)×ψ2,3(L , L)×. . . ψ8,9(L , L)×ψ9,10(L , Ls)
ψ1,2(Ls, 0)×ψ2,3(0, 0)×. . . ψ8,9(0, 0)×ψ9,10(0, Ls)

.

(3.5)

By assuming ψi, j (di , d j ) = g(|di − d j |) where g(x) is a function that decreases
monotonically when x increases and satisfies g(0) = 1 (the whole group of
functions specified by equation 2.23 can be written in this form), equation 3.5
becomes

exp(bn(L|s))
exp(bn(0|s))

= g(|Ls − L|)2

g(|Ls|)2 . (3.6)

Since g(|Ls−L|)2

g(|Ls|)2 = 1 ⇒ |Ls − L| = |Ls| ⇒ s = 0.5, the depth percept will
change around this point.

We further tested our model on sinusoidal gratings, another popular
periodical stimulus. McKee et al. (2004) observed that the disparity of grat-
ings with moderate or high frequencies was determined by the disparity of
edges. However, low-frequency gratings were usually seen in the fixation
plane regardless of the edge disparity.

In the simulation, we first made sinusoidal gratings with a frequency of
0.1 cycle per pixel. The width of the grating is 180 pixels. There are 18 cycles
in the window, the same as in the gratings of moderate spatial frequency
in McKee et al.’s (2004) experiment. Five image pairs with different edge
disparities are used. The largest edge disparity is one period of grating.
The complex cells in our model are tuned to the frequency of the gratings.
Other parameters of our model are the same as in Figure 11. For each image
pair, our model’s disparity estimation is uniform throughout the scene. The
simulation result in Figure 12 shows that the predicted disparity of the
whole grating is always the disparity of edges.

Second, we apply our model to gratings of higher spatial frequency
(0.2 cycle/pixel) and lower frequency (0.033 cycle/pixel). The maximal dis-
parities are 5 and 30 pixels for gratings of higher spatial frequency and
lower frequency, respectively. The numbers of cycles in the window are
the same as those in McKee et al.’s (2004) experiment. In both cases, the
disparity of edges determines the disparity of the central region (see Fig-
ure 12). Thus, the predictions of our model agree with human depth percepts
on moderate- and high-frequency gratings but disagree on low-frequency
gratings.
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Figure 12: The disparity of the central region estimated by our model as a
function of edge disparity. From left to right, the spatial frequencies of the
sinusoidal gratings are 0.1 cycle per pixel, 0.2 cycle per pixel, and 0.033 cycle
per pixel. The maximal disparity is one period of grating. The disparity of the
central region always equals the disparity of the edge regardless of the spatial
frequency. The complex cells in our model are always tuned to the frequency of
the gratings.

The reason that our model can predict the depth percept aroused by
sinusoidal gratings of moderate and high frequency is that messages from
both edges disambiguate the responses of belief neurons at the central
region. The difference between our model’s prediction and McKee et al.’s
(2004) result at low spatial frequencies implies that the continuity constraint
is not the unique constraint imposed in stereopsis. Our visual system also
has a tendency to match a feature with its nearest neighbor in the other eye,
so that the absolute disparity is minimized (Mallot & Bideau, 1990). This
constraint would penalize any nonzero disparities and could somehow be
more influential in matching low-frequency gratings. One reason for this
could be that the edge disparity of low-frequency gratings in McKee et al.’s
experiment is larger than those of moderate- and high-frequency gratings.
Hence, the edge disparity was penalized more severely.

3.2 Simulations on RDS. Seven pairs of 128 × 128 pixels random dot
stereograms are created with a dot density of 50% and a dot size of 1 pixel.
The central region has 30 × 30 pixels, and the disparity of the background
is 0 pixels. The disparity of the central region is from 4 to 16 pixels in steps
of 2 pixels.

The parameter setting of the coarse-to-fine model is as follows. The
RFs of complex cells are represented by a 1D Gabor filter because for the
stimuli used in this section, the 1D Gabor filter usually leads to faster and
more reliable disparity computations compared to the 2D Gabor filter. The
horizontal gaussian width σx of seven scales follows a geometric series with
a ratio of

√
2. The σx of the largest scale is 32 pixels, which is larger than

the largest disparity in all image pairs. In our simulations, the output is not
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Figure 13: The disparity maps computed from seven pairs of RDS with in-
creasing disparity of the central region. The first row shows the outputs of our
model, which are not affected by the disparity increase. However, the coarse-
to-fine model fails to detect the central square when the disparity is larger than
12 pixels.

sensitive to this parameter. The σx of the smallest scale is 2 pixels. At all
scales, the neurons’ frequency bandwidth is set to 1.14 octaves by fixing the
product ωσx = π . Spatial pooling is applied at each scale using gaussian
filters with the same standard deviation σx .

The parameter setting of our model is as follows. The RFs of complex
cells are also represented by 1D Gabor filters. The σx = 2 pixels are the same
as the smallest scale in the coarse-to-fine model. The neurons’ frequency
bandwidth is also set to 1.14 octaves and σd = 4. The position shifts range
from −40 pixels to 40 pixels in steps of 1 pixel. The lower bounds ε = 0.001
and η = 0.01. The final disparity estimation is obtained after the message is
passed 150 times. The disparity estimation converged in all simulations.

The results are shown in Figure 13. Our model shows valid disparity
estimation of the central region for all image pairs. The coarse-to-fine model,
on the contrary, fails to detect the disparity of the central region when it is
larger than 12 pixels. This could be explained by when the disparity of the
central region is large, neurons with large receptive fields are required by
the coarse-to-fine model. The 30 × 30 central region becomes quite small
compared to the area covered by the receptive field. In fact, the receptive
field would cover much more background than the central region. Since
the complex cell computes averaged disparity in its receptive field as its
disparity estimation, the estimation of a coarse scale is very close to the
disparity of the background. When the relative disparity between the central
region and the background is large enough, the subsequently finer scales
will fail due to their limited disparity detection range. However, our model
does not have this problem since it does not use neurons with large RF.

The above explanation implies that when the size of the RDS’s cen-
tral region is large enough, the large disparities could be recovered by the
coarse-to-fine model. To test this, seven pairs of 128 × 128 RDS whose cen-
tral regions have 64 × 64 pixels are used for the coarse-to-fine model. The
largest disparity is still 16 pixels. All the parameters are unchanged. The
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Figure 14: The disparity maps computed from seven pairs of RDS with a larger
central region. The coarse-to-fine model correctly computes the disparity of all
central regions.

Figure 15: Simulated activity of neurons encoding the disparity of the central
region of the seventh image pair. The first row shows the likelihood derived
from the response of complex cells. Many spurious peaks appeared. The second
row shows the response of belief neurons. The last row shows messages coming
from the left side of the location. We can see that the strength of every false
match diminishes by pooling messages from every direction.

result in Figure 14 shows that the coarse-to-fine model indeed succeeds in
this case.

A key ingredient in our model is that false matches can be rejected by
integrating disparity information at different locations. Figure 15 shows that
there are many false peaks in the responses of likelihood neurons because
the disparity detection range (80 pixels) is much larger than a period of
neurons’ preferred frequency channel (4 pixels). However, messages that
carry the integrated disparity information are indeed free of false peaks.

Our model consumes much more time than the coarse-to-fine model.
While the coarse-to-fine algorithm requires only about 4 seconds for 1
RDS, our simulation program in Matlab on a Core 2 1.86 GHz PC requires
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Figure 16: Computed disparity maps using the two models. The pencil is
the focus of the simulation. (A) A stereo images pair with small disparity
and the estimated disparity maps. Note that both the models successfully de-
tected the disparity of the pencil. (B) When the disparity of the pencil is much
larger than the background, the coarse-to-fine model did not detect it, but our
model did.

about 40 seconds for a single iteration of BP. However, as the disparity
computation in our model at each location can be done by neurons
in parallel, the run-time difference of the two models might not be so
significant for the neural system.

3.3 Simulations on Natural Scene Images. Our model’s larger detec-
tion range for relative disparity discussed in section 3.2 can also be demon-
strated with natural scene images. Two pairs of stereo images and the output
of two models are shown in Figure 16. In Figure 16B, the disparity of the pen-
cil is about −32 pixels, and that of the background is about −12 pixels. The
coarse-to-fine model fails to detect the disparity of the pencil. In contrast,
the pencil is prominent in the disparity map computed by our model. In
Figure 16A, the disparity of the pencil is about 8 pixels, and the background
disparity is about 2 pixels. Both models successfully detect the pencil in this
case.

The parameter setting of the coarse-to-fine model is as follows. The RFs
are modeled as 2D Gabor functions. The σx of the largest scale is 32 pixels
for the small disparity image pair (see Figure 16A), and the σx of the largest
scale is 64 pixels for the large disparity image pair (see Figure 16B). Spatial
pooling is applied using 2D gaussian filters with standard deviations equal
to σx in each scale. Orientation pooling is also applied over five orientations
ranging from 30 to 150 degrees in steps of 30 degrees. Other parameters are
the same as in section 3.2.

The parameter setting of our model is as follows: σd = 2, σx = 2. The total
number of iterations is 300. The disparity map computation has converged.
Other parameters are the same as in section 3.2.
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It should be noted that the performance of both the coarse-to-fine model
and our model must be to some extent affected by the parameter setting.
However, since the parameters of both our model and those of the coarse-
to-fine model are kept unchanged when disparity changes from a small one
to a large one, we thought the comparative results reported in this work
are not exclusively due to the parameter settings, and they would, to some
extent, reflect some inherent characteristics of the two models.

4 Physiological Relevance

At the top layer of our model, disparity is encoded by complex cells that
are widely accepted as disparity encoders (Hubel & Wiesel, 1962; Bishop
& Pettigrew, 1986; Ohzawa et al., 1990; Prince, Cumming, & Parker, 2002).
The remaining part of our model is largely based on conjectures. We make
three key conjectures:

1. For every location of the image, there are neurons called belief neurons
whose responses arouse depth perception in a probabilistic way.

2. There exist recurrent connections among belief neurons, and these
connections as a whole can be modeled as an MRF.

3. The MAP of the MRF is computed by BP. Neural dynamics between
belief neurons can be interpreted as messages of BP.

Currently, there is no direct physiological evidence for or against the exis-
tence of MRF, and a complex neural network like this is hard to identify
and locate. However, we propose that our model is closely related to these
physiological records focusing on the disparity selectivity of a neuron and
the contextual effect.

First, the belief and message neurons in our model are selective for
absolute disparity. In both ventral and dorsal visual pathways, physiolo-
gists have found plenty of neurons that are selective for absolute disparity
(Parker, 2007). Since there are so many neurons in V1 representing abso-
lute disparities, it seems illogical that such neurons in higher areas merely
represent absolute disparities. They are likely to accomplish some more
complicated tasks, such as those demonstrated in our model.

Second, a belief neuron is most active if the disparities in its RF and
a larger neighborhood equal its preferred disparity. Then, it can be con-
sidered to have a facilitative extra receptive field. Bakin, Nakayama, and
Gilbert (2000) have found neurons in V2 whose responses are determined
by stimulus disparity in both the RF and the context. It is interesting to note
that 62% of neurons in Bakin et al.’s experiment showed the same selectivity
for disparities in the RF and the context. These neurons have the same type
of ERF as the belief neurons in our model.

Finally, a large part of the connections in our model is between adjacent
neurons with similar disparity selectivity. To save space in the brain, these
neurons are better off grouped together, like neurons in V1 with the same
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orientation selectivity. DeAngelis and Newsome (1999) did find such or-
ganization in MT. In addition, in orientation columns, clusters of neurons
with similar ERF property were found (Yao & Li, 2002). This architecture is
also constructive for implementing our model because all the hypothesized
neurons have the same kind of ERF.

5 Discussion

Julesz (2006) made a distinction between local and global stereopsis. Local
stereopsis is used for the mechanism that compares local image patches
in two eyes, and global stereopsis, which is responsible for the removal of
false targets, is considered qualitatively different from local stereopsis. By
now, the knowledge of local stereopsis has been tremendously advanced
by the disparity energy model, but the neural mechanism for the global
stereopsis remains largely a mystery. This letter explores the possibility
that neural circuits for global stereopsis could be modeled by a neural
network simulating MRF. Our proposed model has several merits. First,
our model relies only on message passing to remove false matches. In
section 3.1, false matches introduced by repetitive patterns are removed
without resorting to second-order disparity detectors. In simulation on RDS
and natural scene images, the false matches caused by the bandpass RF of
complex cells are removed without resorting to complex cells tuned to low
spatial frequency. Second, sections 3.2 and 3.3 show that our model can have
a larger detection range of relative disparity for small objects, compared to
the coarse-to-fine model. Third, we show in section 2.3 that the potential
functions can be chosen to match the signatures of continuity constraint
discovered in Petrov’s experiment (Petrov, 2002). Besides these attributes,
our model does not need any neurons whose disparity selectivity is totally
different from the neurons recorded in physiological experiments. In fact,
we thought the belief neurons could appear as neurons with facilitative
ERF and are selective for the absolute disparity.

Our model shares some features with several existing models of the
global stereopsis. To our knowledge, the continuity constraint was first used
in Marr and Poggio (1979)’s cooperative algorithm. This algorithm is not
considered to be physiologically plausible because neurons’ RFs are much
larger than a dot, which is the basic unit for matching in the cooperative
algorithm (Qian & Zhu, 1997). Unlike Marr and Poggio’s algorithm, our
model uses complex cells as the basic matching units. The RFs of complex
cells used in our simulations cover many dots. Read (2002a, 2002b) built a
Bayesian model of stereopsis. A Bayesian prior that embodied a preference
for small absolute disparity was integrated in her model. In contrast, our
model prefers small relative disparities. A more sophisticated Bayesian
model was proposed by Tsang and Shi (2008).

In models such as Fleet et al.’s (1996) model and the coarse-to-fine model,
neither coarse scale nor fine scale is dispensable. In contrast, our model



2188 Y. Ming and Z. Hu

computes disparity from neural responses at a single scale, demonstrating
that disparity information at different scales is quite redundant. Although
our results question the necessity of coarse scales in removing false tar-
gets, the possibility of a coarse-to-fine scheme is not excluded. The advan-
tage of coarse scales could be their promptness (Menz & Freeman, 2003).
In addition to the physiological study cited, there are also psychophysi-
cal studies on the coarse-to-fine process in stereo vision and vergence eye
movement.

Julesz (2006) suggested that the fusion of sparse lines and dots was
fundamentally different from the fusion of complex image pairs such as
RDS. This is indeed the case with our model. If the responses of likelihood
neurons are not ambiguous, message passing does not need to be acti-
vated, and the belief neurons could simply copy signals from the likelihood
neurons.

As mentioned in section 3.2, our model is very time-consuming. There-
fore, we intend to find biologically plausible ways to speed up message
passing. Furthermore, a large part of our model is based on the assump-
tions listed in section 4. We hope that with the advances in neurobiology,
our model could find more concrete support from related findings in the
field in the future.

Appendix: Derivation of Equations 2.12, 2.13, and 2.20

Substituting equations 2.4 and 2.5 into equation 2.8, we have

L̃ =
∫ +∞

−∞
Il (a − τ )

1√
2πσx

exp
(
− τ 2

2σ 2
x

)
(cos(ωτ + ϕ) + i sin(ωτ + ϕ))dτ

=
∫ +∞

−∞
Il (a − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
exp(i(ωτ + ϕ))dτ . (A.1)

Similarly,

R̃ =
∫ +∞

−∞
Ir (a + d − τ )

1√
2πσx

exp
(

− τ 2

2σ 2
x

)
exp(i(ωτ + ϕ + �ϕ))dτ

= exp(i�ϕ)
∫ +∞

−∞
Ir (a + d − τ )

1√
2πσx

exp
(
− τ 2

2σ 2
x

)
exp(i(ωτ + ϕ))dτ .

(A.2)

L and R in equation 2.10 are the complex valued monocular responses of
a neuron with zero phase shifts. By setting �ϕ = 0 in equation A.2, we
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have

L̃ = L (A.3)

R̃ = R · exp(i�ϕ). (A.4)

Substituting these two equations into equation 2.9, we have

C(d,�ϕ) = |L + R · exp(i�ϕ)|2, (A.5)

and equation A.6 is just equation 2.12:

C(d, π) = |L + R · exp(iπ )|2 = |L − R|2 (A.6)

Let �ϕ′ denote angle of L · R̄, where R̄ is the complex conjugate of R. If we
let �ϕ = �ϕ′, vectors L̃ and R̃ will have the same direction. Consequently,
C(d,�ϕ) shown in equation A.5 will reach its maximum. Therefore, we
obtain equation 2.13:

max
�ϕ

C(d,�ϕ) = C(d,�ϕ′) = (|L| + |R|)2. (A.7)

The derivation of equation 2.20 is

ψ1n(d1, dn) = max
d2...dn−1

n−1∏
i=1

ψ(di , di+1)

≥
n−1∏
i=1

ψ(di , di+1)
∣∣∣∣d2, d3 . . . dn−1 = d1

= ψ(d1, dn). (A.8)
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