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i The problem

= Many machine learning problems have the form

min J(w) := AXQ(W) + Remp (W)

W

where "
1
Remp(w) = 5 Z l(xio Yi; W)
i=1

= w: weight vector
= {xi,v:i};,_,: training data
= I(x,y;w): convex and non-negative loss function

« Can be non-smooth, possibly non-convex.

= Q(w): convex and non-negative regularizer



The problem: N (0.1 21
i Examples \\ hillgeloss

xr
.
H&_n— |wl]® + Zgz i = max {0, 1 — y; (W, x;)}
s.t. fiZl—yz‘(W,Xz‘> Vi<i<n [ @
A s 1w
&>0 V1i<i<n ) Wl > max{0,1 -y (w,x:)}
1=1

Model (obj) AQ(wW) Remp (W)

_|_

linear SVMs 2wly + 37 max{0,1—y (w,x;)}

{1 logistic regression | Alw|; + =Y log(1l+exp(—y; (w,x;)))
_|_

% Z?:l max {07 |yz — <W,X7;> | — 6}

e-insensitive classify

Iwally = 225 [wil \T/



The problem:

More examples

Lasso

Multi-task learning

Matrix game

Entropy regularized
LPBoost

argmin
W

argmin
\2%

argmin
\2%

argmin
wEAy

argmin
weAy

2
A-|[wlly + [[Aw — b3

T
2
AWl + D I1Xews — bl

t=1

T
2
AWy oo + D IIXews — byl

t=1

(¢, w) + max {{Aw,u) + (b, u)}

A (w, w’) + max (Aw, u)



The problem:
i Lagrange dual

min —aTQa Z o where
Qij = yiy; (Xi, X;)

Binary SVM
S.t. Q; € [O, n_l]

Y yio; =0

Entropy regularized ~ Aln Z wg exp (Al <Z A@-,daz) )
d i=1

LPBoost
S.t. Q,; € [O, ]_]

Zai:1



The problem

= Summary

min J(w)
weQ
where

= J 1s convex, but might be non-smooth
= @ 1s a (simple) convex set
= J might have composite form

m Solver: iterative method wo, wi, wo,...
= Want e = J(wg) — J(W") to decrease to 0 quickly

where w* := argmin J(w).

weQ We only discuss optimization

1n this session,
no generalization bound.



The problem:
i What makes a good optimizer?

= Find an ¢ -approximate solution w;
J(wi) <minJ(w) + €
= Desirable:

= k as small as possible (take as few steps as possible)
= Error € decays by 1/k%, 1/k ,ore™".
= Each iteration costs reasonable amount of work
= Depends on n, A and other condition parameters leniently

= General purpose, parallelizable (low sequential
processing)

= Quit when done (measurable convergence criteria)
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The problem:
Rate of convergence

s Convergence rate:

. _ek:
€h1 0 superlinear rate €, = e
klim = € (0,1) linear rate €, = e F
" 1 sublinear rate €p = %

= Use interchangeably:

= Fix step index &, upper bound 2in, €

= Fix precision €, how many steps needed for min e; <e
? 1<t<k

= Eg 3, 4, 7 logg, loglog:

e’



The problem:
i Collection of results

x Convergence rate:

Smooth and
very convex

Gradient descent O (1) O (1Og l)
€

Nesterov O ( 1) O (10g l)
€

Lower bound O ( 1) O <1Og 1)
€

= Composite non-smooth

Objective function | Smooth

Smooth + (dual of smooth) (very convex) + (dual of smooth)

H (%) o()
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Preliminaries: convex analysis
‘L Convex functions

= A function f is convex iff

Vx,y,Ae€ (0,1)
fOx+(1-=XNy) < Af(x

- /v/\
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Preliminaries: convex analysis
i Convex functions

= A function f is convex iff

Vx,y,A€ (0,1)
fOx+(1-=XNy) < Af(x

A

14




Preliminaries: convex analysis
i Strong convexity

= A function f is called o-strongly convex wrt a norm ||| iff
.

f(x) - §0HXH2 is convex

Vx,y,A€(0,1)

fAx+ (1 =Ay) SAf(x)+ A=A f(y) -0

\/

15
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Preliminaries: convex analysis
‘L Strong convexity

= First order equivalent condition

1) 2 J() + (VI(),y —x)+ 5 Ix -y ¥xy



17

Preliminaries: convex analysis
‘L Strong convexity

= First order equivalent condition

[3) 2 [0+ (Vi)Y =x)+ 5 [x—y[* ¥xy
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Preliminaries: convex analysis
i Strong convexity

s Second order

(V2 f(x)y,y) > oyl Vx,y

« If ||:|| Euclidean norm, then

V2 f(x) = ol

= Lower bounds rate of change of gradient
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Preliminaries: convex analysis
i Lipschitz continuous gradient

= Lipschitz continuity
= Stronger than continuity, weaker than differentiability
= Upper bounds rate of change

4L >0

fx) = fI<Lix-yl VX,y

e




Preliminaries: convex analysis
i Lipschitz continuous gradient

= Gradient 1s Lipschitz continuous (must be differentiable)
IVfx) = Vil <Llx-yl| V X,y

@ ) <60+ (VI X+ L x-yP Vxy

LN L-l.c.g

20



Preliminaries: convex analysis
i Lipschitz continuous gradient

= Gradient 1s Lipschitz continuous (must be differentiable)

V69~ VF)I < Llx—y] Y,y
@ ) <0+ VALY X+ -yl Yxy

@ (V*f(x)y,y) < Llly|* VY X,y

V2 f(x) < LI if L, norm

21
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Preliminaries: convex analysis
‘L Fenchel Dual

= Fenchel dual of a function f

= Properties

f=f if 1 is convex and closed
/ f*
o strongly convex < mmm) 1. lc.g on RY

L-l.c.qg on R? ﬁ % strongly convex
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Preliminaries: convex analysis
‘L Fenchel Dual

= Fenchel dual of a function f
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Preliminaries: convex analysis:
‘L Subgradient

» Generalize gradient to non-differentiable functions

= Idea: tangent plane lying below the graph of f



25

Preliminaries: convex analysis:
i Subgradient

» Generalize gradient to non-differentiable functions

= u1s called a subgradient of f at x 1f

= All such p comprise the subdifferential of fat x: 9f(x)
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Preliminaries: convex analysis:
i Subgradient

» Generalize gradient to non-differentiable functions

= 4 1s called a subgradient of f at x 1f

fx) > f(x) + (x' —x,p) VX

= All such p comprise the subdifferential of fat x: 9f(x)
= Unique if f 1s differentiable at x
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Preliminaries: optimization:
i Gradient descent

s (Gradient descent

Xk+1 — X — Ska(Xk) Sk = 0

= Suppose f 1s both o-strongly convex and L-I.c.g.

er = f(xg) — f(w™) e < (1 — %)keo

= Keyidea
= Norm of gradient upper bounds how far away from optimal

= Lower bounds how much progress one can make



Preliminaries: optimization:
i Gradient descent

= Upper bound distance from optimal
1

Xpi1 = Xg — EVf(Xk)
Vi shaded area = triangle area
| |
slope = o (g 1 2
O L I\ 7{C8
So
2 > 2 |
x X Flx) = () < 55 195 (e |

28



Preliminaries: optimization:
i Gradient descent

= Lower bound progress at each step
1

Xpi1 = Xg — EVf(Xk)

Vi shaded area > triangle area
slope = L ] ]
Xr) — f(x 1V 2
Y f(x) f(xx) — f(Xk41) 57 || V.f (%)
: >
—)IMR—
| L !

Xk_|_1 Xk

29
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Preliminaries: optimization:
‘L Gradient descent

= Putting things together

distance to optimal progress

20 (f(xi) — f(x*)) < IVFxi)|I* < 2L(f (xk) — f(Xk41))

4

fxrg1) — f(x*) < (1= %) (f(xx) — f(x¥))
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Preliminaries: optimization:
‘L Gradient descent

= Putting things together

distance to optimal progress

20 (f(xi) — f(x*)) < IVFxi)|I* < 2L(f (xk) — f(Xk41))

4

Flxian) = FO7) < (1-9) (Flxi) — F(x7))

~N" "~

€k+1 €k



Preliminaries: optimization:
i Gradient descent

= Putting things together

distance to optimal progress

20 (f(xi) — f(x*)) < IVF(xi)|I* < 2L(f (xk) — f(Xk41))

What If 0= O ?




Preliminaries: optimization:
i Projected Gradient descent

n If objective function 1s
s L-l.c.g., but not strongly convex

s Constrained to convex set @

= Projected gradient descent
1
Xr4+1 = g (Xk - va(xk)) = argmin ||X — (X — ZVf(xk))
%€Q

= argrgin F(xk) + (Vf(xk),x —xp) + 2 ||x — xi |
XE

1

= Rate of convergence: O (%)

= Compare with Newton O <\/§) , interior point O (log <)

33
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Preliminaries: optimization:

i Projected Gradient descent

= Projected gradient descent

1 .
Xk4+1 = llg (Xk: — va(Xk)) = arg%m
%€

1

L)

— argrgin f(Xk;) + <Vf(xkz)7X — Xk:> + % HX - Xk||2
xXc

= Property 1: monotonic decreasing
L

f(xpt1) = fxw) + (VF(Xn), Xit1 = Xn) + 5 (%01 = xp||® L-lecg
L
< f(xx) +(Vf(xk), xp — Xi) + 5 Ixp —xz > Det Xt

projection

= f(xx)



Preliminaries: optimization:
i Projected Gradient descent

Property 2:
PR < — 1V ()

VxeQ

L-l.c.g. I )
F(xp41) = f(xw) + (VF(Xk), Xi41 = Xi) + 5 X1 — X
Property 2 I , L ,
< Floxe) + (VFGa)x = 3) + 2 x =3l = < x =31l Vx€Q
Convexity of f L

<)+ 5 I —xl® = Sl —xeal VxeQ

35
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Preliminaries: optimization:
‘L Projected Gradient descent

= Put together
L L

Foxan) < 00 + 5 x = xil? = 5 e = |? ¥ x€Q

Let x = x*:

L L
0 < Sl =i |” < —epr + 5 [1x" = xilf

k+1 I
<...< ;Ei—l_g”?{* —X0||2
1=

L : :
< —(k+1)epr1 + 5 |x* — X0H2 (e, monotonic decreasing)

=)




Preliminaries: optimization:
i Subgradient method

= Objective 1s continuous but not differentiable

= Subgradient method for min f(x)
Xp+1 = 1lg (xk — sk V f (X))
where Vf(xk) € of(xk) (arbitrary subgradient)

= Rate of convergence o (;2)

= Summary

OG) 7) O<£> 7) —ml(?%—%)

non-smooth L-l.cg. L-l.c.g. & o-strongly convex
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Optimal gradient method
Lower bound

s Consider the set of L-/.c.g. functions

=« For any € > 0, there exists an L-/.c.g. function f, such that any
first-order method takes at least

-0y

steps to ensure € < €.

= First-order method means
X € xo + span{V f(xg), ..., Vf(xx_1)}

= Not saying: there exists an L-/.c.g. function f, such that for all e > 0

any first- order method takes at least k = O(4/L/¢) steps to
ensure € < €.

= Gap: recall the upper bound O (£) of GD, two possibilities.
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Optimal gradient method:
i Primitive Nesterov

s Problem under consideration
min f(w) w E (Q
where f 1s L-l.c.g., Q 1s convex
= Big results

= He proposed an algorithm attaining /L /e

= Not for free: require an oracle to project a point onto Q@
In L, Sense



Primitive
i Nesterov

Construct quadratic functions ¢x(x) and Ax > 0

©  on(x) = + % lIx — vl

® i) < (1= A0 + At (x) |




Primitive
i Nesterov

Construct quadratic functions ¢ (x) and Ax > 0

©  onx) = + % lIx — vl

B ¢r(x) < (1= Ae)f(X) + Acho(x)




Primitive Nesterov:
i Rate of convergence

Nesterov constructed,

in a highly non-trivial way,
the ¢r(x) and A,

s.t.

D on(x) =¢f + L |Ix — v
@ 3 xk, s.t. f(xr) < @f

B ) = (2076 + ol |
(@) Ap — 0

v X has closed form (grad desc)

4L
4 S VT k)

Furthermore, if f is

f(xk) — f(x*) < Ap(Po(x*) — f(x*)) o-strongly convex, then
Rate of convergence sheerly . T k
depends on Ax Ak < (1 \/Z)
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Primitive Nesterov:
i Dealing with constraints

= x; has closed form by gradient descent

Xp+1 = Xk — YV f(Xk)
= When constrained to set @ , modify by

%21 = Mo (ki =7V £ (i) = argmin |x — (i =7V £ ()|

= New gradient:

gradient
mapping

= This new gradient keeps all important properties of
gradient, also keeping the rate of convergence



Primitive Nesterov:
i Gradient mapping

= x; has closed form by gradient descent

Xpt+1 = Xi — YV f(Xx)
= When constrained to set @ ,-maodify by

%@ = Tl (xr — AV f(x2)) (% — 7Y F(x2)]
Expensive?

= New gradient: A

-

gradient
mapping

= This new gradient keeps all important properties of

gradient, also keeping the rate of convergence
45
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i Primitive Nesterov

= Summary
min f(w)  wc@

where f 1s L-l.c.g., Q 1s convex.

= Rate of convergence

| L
- if no strong convexity

7H In i

€

“I(l- %)

if o-strongly convexity



Primitive Nesterov:

i Example

min — x + 212 min €T
.y 2 Y :c>0y>02( —I—y)
uw=1 L =4 =0, L=2
1o —————— 15
— Nesterov — Nesterov
10/ —— Grad desc | 10] —— Grad desc ||
5_
5r Y—
g g0
ol
_5w
-5t
-10}
-10— ‘ : ' ' ' ‘ -1 ‘ ‘ J
2 4 6 8 10 12 14 16 5 5 15

iteration counter iteration cc;llg)nter
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Extension:
Non-Euclidean norm

= Remember strong convexity and l.c.g. are wrt
SOIMC NOrm
= We have implicitly used Euclidean norm (L, norm)
= Some functions are strongly convex wrt other norms

= Negative entropy >, z;Inz; 1s
= Not/c.g wrt L, norm
« Lcg wrtL,norm ||x||; =), x;
= strongly convex wrt L, norm.

Can Nesterov’s approach be extended to non-Euclidean norm?
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Extension:
Non-Euclidean norm

= Remember strong convexity and /c.g. are wrt
SOMC Norm
= We have implicitly used Euclidean norm (L, norm)
= Some functions are [c.g. wrt other norms

= Negative entropy >, z;Inz; 1s
= Not/c.g wrt L, norm
« Lcg wrtL,norm ||x||; =), x;
= strongly convex wrt L, norm.

Can Nesterov’s approach be extended to non-Euclidean norm?

Yes &
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Extension:
Non-Euclidean norm

Suppose the objective function fis Lc.g. wrt ||-].

Use a prox-function d on ) which is o -strongly convex wrt 1],

and mind(x) =0 D := max d(x)
xeQ x€Q

Algorithm 1: Nesterovs algorithm for non-Euclidean norm

4 Find y* « argming o <Vf<Xk)’gj — xk> 4+ %L HX _ Xk:H
5 Find z" < argmin, ., Ld(x) + Zf:o HL(Vf(x"),x — x").

Output: A sequence {yk} converging to the optimal at O(1/k?) rate.

1 Initialize: Set x" to a random value in Q.

2 for k=0,1,2,... do I won't
3 Query the gradient of f at point x*: V f(x"). mention

2 details

k41 k

6 Update xFt1 « 2.zF 4 sy

k+3
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Extension:
Non-Euclidean norm

Suppose the objective function f is l.c.g. wrt ||||.

Use a prox-function d on ) which is o -strongly convex wrt 1],

and mind(x) =0 D := max d(x)
xeQ x€Q

Algorithm 1: Nesterovs algorithm for non-Euclidean norm

4 Find y* < argmin, . (V£(x"), 2 —X*
5 Find z* + argmin, -
6 Update xFt1 « 2.7F e A

Output: A sequence {yk} converging to the optimal at O(1/k?) rate.

1 Initialize: Set x" to a random value in Q.

2 for k=0,1,2,... do I won't
3 Query the gradient of f at point x| mention
details

k+3




Extension:
‘L Non-Euclidean norm

= Rate of convergence

ALd(z*)

flyr) — f(x7) < o+ Dk £ 2)

= Applications will be given later.

52
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Immediate application:
i Non-smooth functions

= Objective function not differentiable

= Suppose it 1s the Fenchel dual of some function f
min f*(x) where f is defined on Q)

s Idea: smooth the non-smooth function.

s Add a small o-strongly convex functiond to f

f +d is o-strongly convex > (f +d)* is %—l.c.g



Immediate application:
Non-smooth functions

eD

m (f +ed)*(x) approximates f*(x) f(x)

s If 0<d(u) <D for u € Q then (f +ed)*(x)

Proof

max (u,x) — f(u) —eD < max (u,x) — f(u) — ed(u) < max (u,x) — f(u)—0

u u

| |
fr(x) —€eD (f +ed)*(x) f*(x)

54
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Immediate application:
i Non-smooth functions

m (f +ed)*(x) approximates f*(x) well
s If d(u) €[0,D] on Q, then (f + ed)*(x) — f*(x) € [~€D, 0]

m Algorithm (given precision €)

s FIx éz%

s Optimize (f + éd)*(x) (l.c.g. function) to precision €/2

= Rate of convergence

[,_ [T 1_ [ _1 [
e Ve éc Voe2 €V o



56

Outline

m The problem from machine learning perspective

= Preliminaries
s Convex analysis and gradient descent

= Nesterov’s optimal gradient method
= Lower bound of optimization
= Optimal gradient method

m Utilizing structure: composite optimization
= Smooth minimization
= Excessive gap minimization

s Conclusion



i Composite optimization

= Many applications have objectives 1n the form of
J(w) = f(w) + g (Aw)

where

f is convex on the region E; with norm |||,

g is convex on the region Ey with norm ||-||,

= Very useful in machine learning

= Aw corresponds to linear model

57



i Composite optimization

= Example: binary SVM

A R
J(w) =35 [wi’ +min -~ > =il w) + )]
N~—— i=1

\ . 7

f(w)

= g*1s the dual of g(a) =—>". a; over

QQ — {a - [O,H_l]n : Zz YOy = 0}

58
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Composite optimization 1:
‘L Smooth minimization

J(w) = f(w) + g"(Aw)

= Let us only assume that
fis M-l.c.g wrt ||-]|;

s Smooth ¢* into (g + pd2)* (dz is o2-strongly convex wrt |[|-||5)
then Ju(w) = f(w)+ (g + pdz)*(Aw)

2
s (M + 11417 ,)Leg

Apply Nesterov on J,(w)



Composite optimization
i Smooth minimization

= Rate of convergence

= to find an e accurate solution, 1t costs

D1D> 1 MD
Al 5o e+ e

d; is o1-strongly convex wrt |||,

steps.

dy is og-strongly convex wrt ||-||,

Dy = max dy (W) Dy = meax do ()

60



Composite optimization 1:
i Smooth minimization

= Example: matrix game

argmin (c,w)+ max {(Aw,a)+ (b,a)}
WEA, S — OaEA,

\ . 7

g* JW)

= Use Euclidean distance
Er=A, |w|;= (Zz w?)l/z di(w) = %Zz(wz -n"1)? op=0y=1

Ey=An lall, = (3;02)"? da(a) =33 (i —m™)? Dy <1, Dy<1

et

May scale with
O(nm)

AIF 5 = At (AT A)

i
61



Composite optimization 1:

‘L Smooth minimization

= Example: matrix game

argmin (c,w)+ max {(Aw,a)+ (b,a)}

weA, ~—— acA,

7

g* JW)

= Use Entropy distance
E=A, |w|, = w di(w) =Inn+ > w; Inw,
By = A, ledly=22lal da(a)=Inm+5 ailna;

0'120'2:1
Dlzlnn

D2 = Ilnm

A — max |A4; ; 1
H H1,2 Z,]X‘ 7.7| 4 (lnnlnm)Q

fwg) — f(w*) <

E+1

2V

62
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Composite optimization 1:
‘L Smooth minimization

= Disadvantages:

= Fix the smoothing beforehand using prescribed
accuracy e

= No convergence criteria because real min 1s unknown.
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Composite optimization 2:
i Excessive gap minimization

= Primal-dual
= Easily upper bounds the duality gap
s Idea
= Assume objective function takes the form
J(w) = f(w)+g"(Aw)
= Utilizes the adjoint form
D(a) = —g(e) — f*(-A" o)
= Relations:

Vwa Jw)>D(@) and  inf J(w) :O?QEQD(O‘)



65

Composite optimization 2:
‘L Excessive gap minimization

= Sketch of 1dea
s Assume f 1S L¢-l.c.g. and g1s Ls-l.c.g.
= Smooth both f*and ¢g* by prox-functions d, d>
Jus (W) = f(W) + (g + pad2)* (Aw)
Dy, () = —g(a) = (f + pdi)*(—A' @)

J(w) ,UzDz




Composite optimization 2:
‘L Excessive gap minimization

s Sketch of idea

= Maintain two point sequences {wx} and {c }

and two regularization sequences {u1(k)} and {p2(k)}
p1(k) — 0
pa(k) — 0

S.t.
Tua (k) (W) < Dy iy (k) |




Composite optimization 2:
i Excessive gap minimization

Jyua () (W) < Dyuy iy (k) |

= Challenge:

= How to efficiently find the 1nitial point w1, ai, pq (1), pu2(1)
that satisfy excessive gap condition.

= Given wy, ag, pa(k), p2(k), with new p1(k + 1) and pa(k + 1)
how to efficiently find wx+1 and a1 .
= How to anneal p1(k) and p2(k) (otherwise one step done).

= Solution
= Gradient mapping

= Bregman projection (very cool)
67
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Composite optimization 2:
i Excessive gap minimization

= Rate of convergence:

4||All, 5 [DiD,
— < )
J(Wk) D(ak) R ]C —|— 1 01029

= f 1s o-strongly convex

= No need to add prox-function to f, pi1(k) =0

4Dy |AlIY
—D < ’ L
J(wp) (ag) < ook +1) < ot L




Composite optimization 2:
‘L Excessive gap minimization

= Example: binary SVM

A R
J(w) =35 [wi’ +min -~ > =il w) + )]
N~—— i=1

\ . 7

f(w) —

= ¢* 1S the dual of g(a) = — >, a; over
Ey = {(X € [O,H_l]n : ZZ YOy = 0}

= Adjoint form D(a) =) a;— —~a’AATa

69



Composite optimization 2:
‘L Convergence rate for SVM

s Theorem: running on SVM for £ iterations

oL
(k+1)(k + 2)n

J(Wk) — D(ak) S

1 2 1 > _ nR?
L XA = A e )| < P (< B

= Final conclusion

J(wi) — D(ag) <e aslong as

70



Composite optimization 2:
i Projection for SVM

s Efficient O(»n) time projection onto

Ey = {ae 0,n~ Zyza@O}
= Projection leads to a singly linear constrained QP

mm E — mz

Key tool:

s.t. l Sozz <wu; Vi€ |n|; Median finding takes
O(n) time

n
E 0;0,; — 2.
1=1

71
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Automatic estimation of
‘L Lipschitz constant

= Automatic estimation of Lipschitz constant L
s Geometric scaling

= Does not affect the rate of convergence



Conclusion

= Nesterov’s method attains the lower bound

= O (%) for L-L.c.g. objectives

= Linear rate for /.c.g. and strongly convex objectives
= Composite optimization

= Attains the rate of the nice part of the function
= Handling constraints

= Gradient mapping and Bregman projection
= Essentially does not change the convergence rate

= Expecting wide applications in machine learning

= Note: not in terms of generalization performance

73



Questions?



