

Nesterov's Optimal Gradient Methods

Xinhua Zhang

Australian National University NICTA

- The problem from machine learning perspective
- Preliminaries
 - Convex analysis and gradient descent
- Nesterov's optimal gradient method
 - Lower bound of optimization
 - Optimal gradient method
- Utilizing structure: composite optimization
 - Smooth minimization
 - Excessive gap minimization
- Conclusion

- The problem from machine learning perspective
- Preliminaries
 - Convex analysis and gradient descent
- Nesterov's optimal gradient method
 - Lower bound of optimization
 - Optimal gradient method
- Utilizing structure: composite optimization
 - Smooth minimization
 - Excessive gap minimization
- Conclusion

-

The problem

Many machine learning problems have the form

where
$$\min_{\mathbf{w}} J(\mathbf{w}) := \lambda \Omega(\mathbf{w}) + R_{\mathrm{emp}}(\mathbf{w})$$
 $R_{\mathrm{emp}}(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} l(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w})$

- w: weight vector
- $\{\mathbf{x}_i, y_i\}_{i=1}^n$: training data
- $l(\mathbf{x}, y; \mathbf{w})$: convex and non-negative loss function
 - Can be non-smooth, possibly non-convex.

The problem: Examples

$$\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \quad \xi_{i} \ge 1 - y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle \quad \forall 1 \le i \le n$$

$$\xi_{i} \ge 0 \quad \forall 1 \le i \le n$$

$$\xi_{i} \ge 0 \quad \forall 1 \le i \le n$$

$$\frac{\lambda}{2} \|\mathbf{w}\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \max \{0, 1 - y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle\}$$

$$\xi_{i} = \max \left\{0, 1 - y_{i} \left\langle \mathbf{w}, \mathbf{x}_{i} \right\rangle\right\}$$

$$\frac{\lambda}{2} \|\mathbf{w}\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \max \left\{0, 1 - y_{i} \left\langle \mathbf{w}, \mathbf{x}_{i} \right\rangle\right\}$$

Model (obj)	$\lambda\Omega(\mathbf{w})$	+	$R_{ m emp}(\mathbf{w})$
linear SVMs	$\frac{\lambda}{2} \left\ \mathbf{w} \right\ _2^2$	+	$\frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left\langle \mathbf{w}, \mathbf{x}_i \right\rangle \right\}$
ℓ_1 logistic regression	$\lambda \left\ \mathbf{w} \right\ _1$	+	$\frac{\frac{1}{n}\sum_{i=1}^{n}\log\left(1+\exp\left(-y_i\left\langle\mathbf{w},\mathbf{x}_i\right\rangle\right)\right)}{2}$
ϵ -insensitive classify	$igg rac{\lambda}{2} \left\ \mathbf{w} ight\ _2^2$	+	$\frac{1}{n} \sum_{i=1}^{n} \max \{0, y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle - \epsilon \}$

$$\left\|\mathbf{w}_1\right\|_1 = \sum_i |w_i|$$

The problem: More examples

The problem: Lagrange dual

Binary SVM

Entropy regularized LPBoost

$$\lambda \ln \sum_{d} w_{d}^{0} \exp \left(-\lambda^{-1} \left(\sum_{i=1}^{n} A_{i,d} \alpha_{i}\right)\right)$$
s.t. $\alpha_{i} \in [0,1]$

$$\sum_{i} \alpha_{i} = 1$$

-

The problem

Summary

$$\min_{\mathbf{w} \in Q} J(\mathbf{w})$$

where

- *J* is convex, but might be non-smooth
- Q is a (simple) convex set
- J might have composite form
- Solver: iterative method $w_0, w_1, w_2,...$
 - Want $\epsilon_k := J(\mathbf{w}_k) J(\mathbf{w}^*)$ to decrease to 0 quickly where $\mathbf{w}^* := \operatorname*{argmin}_{\mathbf{w} \in Q} J(\mathbf{w})$. We only discuss optimization in this session, no generalization bound.

The problem: What makes a good optimizer?

Find an ϵ -approximate solution \mathbf{w}_k

$$J(\mathbf{w}_k) \le \min_{\mathbf{w}} J(\mathbf{w}) + \epsilon$$

- Desirable:
 - *k* as small as possible (take as few steps as possible)
 - Error ϵ_k decays by $1/k^2$, 1/k, or e^{-k} .
 - Each iteration costs reasonable amount of work
 - Depends on n, λ and other condition parameters leniently
 - General purpose, parallelizable (low sequential processing)
 - Quit when done (measurable convergence criteria)

The problem: Rate of convergence

Convergence rate:

$$\lim_{k \to \infty} \frac{\epsilon_{k+1}}{\epsilon_k} = \begin{cases} 0 & \text{superlinear rate} & \epsilon_k = e^{-e^k} \\ \in (0,1) & \text{linear rate} & \epsilon_k = e^{-k} \\ 1 & \text{sublinear rate} & \epsilon_k = \frac{1}{k} \end{cases}$$

- Use interchangeably:
 - Fix step index k, upper bound $\min_{1 \le t \le k} \epsilon_t$
 - Fix precision ϵ , how many steps needed for $\min_{1 \le t \le k} \epsilon_t < \epsilon$
 - E.g. $\frac{1}{\epsilon^2}$, $\frac{1}{\epsilon}$, $\frac{1}{\sqrt{\epsilon}}$, $\log \frac{1}{\epsilon}$, $\log \log \frac{1}{\epsilon}$

The problem: Collection of results

Convergence rate:

Objective function	Smooth	Smooth and very convex
Gradient descent	$O\left(\frac{1}{\epsilon}\right)$	$O\left(\log \frac{1}{\epsilon}\right)$
Nesterov	$O\left(\sqrt{\frac{1}{\epsilon}}\right)$	$O\left(\log \frac{1}{\epsilon}\right)$
Lower bound	$O\left(\sqrt{\frac{1}{\epsilon}}\right)$	$O\left(\log \frac{1}{\epsilon}\right)$

Composite non-smooth

Smooth + (dual of smooth) (very convex) + (dual of smooth)
$$O\left(\frac{1}{\epsilon}\right)$$

$$O\left(\sqrt{\frac{1}{\epsilon}}\right)$$

- The problem from machine learning perspective
- Preliminaries
 - Convex analysis and gradient descent
- Nesterov's optimal gradient method
 - Lower bound of optimization
 - Optimal gradient method
- Utilizing structure: composite optimization
 - Smooth minimization
 - Excessive gap minimization
- Conclusion

Preliminaries: convex analysis Convex functions

• A function f is convex iff

$$\forall \mathbf{x}, \mathbf{y}, \lambda \in (0, 1)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Preliminaries: convex analysis Convex functions

• A function *f* is convex iff

$$\forall \mathbf{x}, \mathbf{y}, \lambda \in (0, 1)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

$$f(\mathbf{x}) - \frac{1}{2}\sigma \|\mathbf{x}\|^2$$
 is convex

$$\forall \mathbf{x}, \mathbf{y}, \lambda \in (0, 1)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \sigma \cdot \frac{\lambda(1 - \lambda)}{2} \|\mathbf{x} - \mathbf{y}\|^2$$

Preliminaries: convex analysis Strong convexity

First order equivalent condition

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{y}\|^2 \qquad \forall \mathbf{x}, \mathbf{y}$$

Preliminaries: convex analysis Strong convexity

First order equivalent condition

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{y}\|^2 \qquad \forall \mathbf{x}, \mathbf{y}$$

Preliminaries: convex analysis Strong convexity

Second order

$$\left\langle
abla^2 f(\mathbf{x}) \mathbf{y}, \mathbf{y} \right\rangle \geq \sigma \left\| \mathbf{y} \right\|^2 \qquad \qquad \forall \ \mathbf{x}, \mathbf{y}$$

• If $\|\cdot\|$ Euclidean norm, then

$$\nabla^2 f(x) \succeq \sigma \mathbb{I}$$

Lower bounds rate of change of gradient

Preliminaries: convex analysis Lipschitz continuous gradient

- Lipschitz continuity
 - Stronger than continuity, weaker than differentiability
 - Upper bounds rate of change

$$\exists L > 0$$

$$|f(\mathbf{x}) - f(\mathbf{y})| \le L \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y}$$

Preliminaries: convex analysis Lipschitz continuous gradient

Gradient is Lipschitz continuous (must be differentiable)

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$$

 $\forall \mathbf{x}, \mathbf{y}$

 $\forall \ \mathbf{x}, \mathbf{y}$

L-l.c.g

Preliminaries: convex analysis Lipschitz continuous gradient

Gradient is Lipschitz continuous (must be differentiable)

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$$
 $\forall \mathbf{x}, \mathbf{y}$

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 \qquad \forall \mathbf{x}, \mathbf{y}$$

$$\langle \nabla^2 f(\mathbf{x}) \mathbf{y}, \mathbf{y} \rangle \le L \|\mathbf{y}\|^2 \qquad \forall \mathbf{x}, \mathbf{y}$$

$$\nabla^2 f(x) \preceq L \mathbb{I}$$
 if L_2 norm

$$f^{\star}(\mathbf{s}) = \sup_{\mathbf{x}} \langle \mathbf{s}, \mathbf{x} \rangle - f(\mathbf{x})$$

Properties

$$f^{\star\star}=f$$
 if f is convex and closed f
$$f^{\star}$$

$$\sigma \text{ strongly convex} \qquad \qquad \frac{1}{\sigma}\text{-}l.c.g \text{ on } \mathbb{R}^d$$

$$L\text{-}l.c.g \text{ on } \mathbb{R}^d \qquad \qquad \frac{1}{L} \text{ strongly convex}$$

$$f^{\star}(\mathbf{s}) = \sup_{\mathbf{x}} \langle \mathbf{s}, \mathbf{x} \rangle - f(\mathbf{x})$$

$$\mathbf{s} = \nabla f(\mathbf{x})$$

$$\mathbf{s} \in \partial f(\mathbf{x})$$

Preliminaries: convex analysis: Subgradient

- Generalize gradient to non-differentiable functions
 - Idea: tangent plane lying below the graph of f

Preliminaries: convex analysis: Subgradient

- Generalize gradient to non-differentiable functions
 - μ is called a subgradient of f at x if

$$f(\mathbf{x}') \ge f(\mathbf{x}) + \langle \mathbf{x}' - \mathbf{x}, \boldsymbol{\mu} \rangle \quad \forall \mathbf{x}'$$

• All such μ comprise the subdifferential of f at $\mathbf{x} : \partial f(\mathbf{x})$

- Generalize gradient to non-differentiable functions
 - μ is called a subgradient of f at x if

$$f(\mathbf{x}') \ge f(\mathbf{x}) + \langle \mathbf{x}' - \mathbf{x}, \boldsymbol{\mu} \rangle \quad \forall \mathbf{x}'$$

- All such μ comprise the subdifferential of f at \mathbf{x} : $\partial f(\mathbf{x})$
- Unique if f is differentiable at x

Gradient descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \nabla f(\mathbf{x}_k) \qquad s_k \ge 0$$

• Suppose f is both σ -strongly convex and L-l.c.g.

$$\epsilon_k := f(\mathbf{x}_k) - f(\mathbf{w}^*)$$

$$\epsilon_k \le \left(1 - \frac{\sigma}{L}\right)^k \epsilon_0$$

- Key idea
 - Norm of gradient upper bounds how far away from optimal
 - Lower bounds how much progress one can make

Upper bound distance from optimal

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)$$

shaded area
$$\leq$$
 triangle area \parallel \parallel $f(\mathbf{x}_k) - f(x^*)$ $\frac{1}{2\sigma} \left\| \nabla f(\mathbf{x}_k) \right\|^2$

So

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{1}{2\sigma} \|\nabla f(\mathbf{x}_k)\|^2$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)$$

shaded area
$$\geq$$
 triangle area \parallel \parallel $f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) = rac{1}{2L} \left\| \nabla f(\mathbf{x}_k) \right\|^2$

So
$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \geq rac{1}{2L} \left\|
abla f(\mathbf{x}_k)
ight\|^2$$

Putting things together

distance to optimal

progress

$$2\sigma(f(\mathbf{x}_k) - f(\mathbf{x}^*)) \le \|\nabla f(\mathbf{x}_k)\|^2 \le 2L(f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}))$$

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \le (1 - \frac{\sigma}{L}) \left(f(\mathbf{x}_k) - f(\mathbf{x}^*) \right)$$

Putting things together

distance to optimal progress $2\sigma(f(\mathbf{x}_k) - f(\mathbf{x}^*)) \leq \|\nabla f(\mathbf{x}_k)\|^2 \leq 2L(f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}))$ $\underbrace{f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)}_{\epsilon_{k+1}} \leq \left(1 - \frac{\sigma}{L}\right) \underbrace{(f(\mathbf{x}_k) - f(\mathbf{x}^*))}_{\epsilon_k}$

Preliminaries: optimization: Gradient descent

Putting things together

distance to optimal

progress

$$2\sigma(f(\mathbf{x}_k) - f(\mathbf{x}^*)) \le \|\nabla f(\mathbf{x}_k)\|^2 \le 2L(f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}))$$

$$\underbrace{f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)}_{\epsilon_{k+1}} \le \left(1 - \frac{\sigma}{L}\right) \underbrace{\left(f(\mathbf{x}_k) - f(\mathbf{x}^*)\right)}_{\epsilon_k}$$

What if $\sigma = 0$?

What if there is constraint?

- If objective function is
 - *L-l.c.g.*, but not strongly convex
 - Constrained to convex set Q
- Projected gradient descent

$$\mathbf{x}_{k+1} = \Pi_Q \left(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k) \right) = \underset{\hat{\mathbf{x}} \in Q}{\operatorname{argmin}} \left\| \hat{\mathbf{x}} - (\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)) \right\|$$
$$= \underset{\mathbf{x} \in Q}{\operatorname{argmin}} f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{L}{2} \left\| \mathbf{x} - \mathbf{x}_k \right\|^2$$

- Rate of convergence: $O\left(\frac{L}{\epsilon}\right)$
 - Compare with Newton $O\left(\sqrt{\frac{L}{\epsilon}}\right)$, interior point $O\left(\log \frac{1}{\epsilon}\right)$

Projected gradient descent

$$\mathbf{x}_{k+1} = \Pi_Q \left(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k) \right) = \underset{\hat{\mathbf{x}} \in Q}{\operatorname{argmin}} \left\| \hat{\mathbf{x}} - (\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)) \right\|$$
$$= \underset{\mathbf{x} \in Q}{\operatorname{argmin}} f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|^2$$

Property 1: monotonic decreasing

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2 \quad L\text{-l.c.g.}$$

$$\leq f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_k - \mathbf{x}_k\|^2 \quad \text{Def } \mathbf{x}_{k+1}$$

$$= f(\mathbf{x}_k)$$
projection

Property 2:

$$\forall \ \mathbf{x} \in Q \quad \left\langle \mathbf{x} - \mathbf{x}_{k+1}, (\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)) - \mathbf{x}_{k+1} \right\rangle \leq 0$$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2$$

Property 2
$$\leq f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|^2 \quad \forall \ \mathbf{x} \in Q$$

Convexity of
$$f \ge f(\mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|^2 \qquad \forall \ \mathbf{x} \in Q$$

Put together

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{k+1}\|^2 \qquad \forall \ \mathbf{x} \in Q$$
Let $\mathbf{x} = \mathbf{x}^*$:
$$0 \leq \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_{k+1}\|^2 \leq -\epsilon_{k+1} + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_k\|^2$$

$$\leq \dots \leq \sum_{i=1}^{k+1} \epsilon_i + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_0\|^2$$

 $\leq -(k+1)\epsilon_{k+1} + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_0\|^2$ (ϵ_k monotonic decreasing)

$$\epsilon_{k+1} \le \frac{L}{2(k+1)} \left\| \mathbf{x}^* - \mathbf{x}_0 \right\|^2$$

Preliminaries: optimization: Subgradient method

- Objective is continuous but not differentiable
- Subgradient method for $\min_{\mathbf{x} \in O} f(\mathbf{x})$

$$\mathbf{x}_{k+1} = \Pi_Q \left(\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k) \right)$$

where

$$\nabla f(\mathbf{x}_k) \in \partial f(\mathbf{x}_k)$$

 $\nabla f(\mathbf{x}_k) \in \partial f(\mathbf{x}_k)$ (arbitrary subgradient)

- Rate of convergence $O\left(\frac{1}{\epsilon^2}\right)$
- Summary

$$O\left(\frac{1}{\epsilon^2}\right)$$

$$O\left(\frac{1}{\epsilon^2}\right) \qquad O\left(\frac{L}{\epsilon}\right) \qquad \frac{\ln\frac{1}{\epsilon}}{-\ln(1-\frac{\sigma}{L})}$$

non-smooth

L-l.c.g. L-l.c.g. & σ -strongly convex

- The problem from machine learning perspective
- Preliminaries
 - Convex analysis and gradient descent
- Nesterov's optimal gradient method
 - Lower bound of optimization
 - Optimal gradient method
- Utilizing structure: composite optimization
 - Smooth minimization
 - Excessive gap minimization
- Conclusion

- Consider the set of *L-l.c.g.* functions
 - For any $\epsilon > 0$, there exists an L-l.c.g. function f, such that any first-order method takes at least

$$k = O\left(\sqrt{\frac{L}{\epsilon}}\right)$$

steps to ensure $\epsilon_k < \epsilon$.

First-order method means

$$\mathbf{x}_k \in \mathbf{x}_0 + \operatorname{span} \{ \nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{k-1}) \}$$

- Not saying: there exists an L-l.c.g. function f, such that for all $\epsilon > 0$ any first- order method takes at least $k = O(\sqrt{L/\epsilon})$ steps to ensure $\epsilon_k < \epsilon$.
- Gap: recall the upper bound $O\left(\frac{L}{\epsilon}\right)$ of GD, two possibilities.

Problem under consideration

$$\min_{\mathbf{w}} f(\mathbf{w}) \qquad \mathbf{w} \in Q$$

where f is L-l.c.g., Q is convex

- Big results
 - He proposed an algorithm attaining $\sqrt{L/\varepsilon}$
 - Not for free: require an oracle to project a point onto Q in L_2 sense

Primitive Nesterov

Construct quadratic functions $\phi_k(\mathbf{x})$ and $\lambda_k > 0$

$$(1) \phi_k(\mathbf{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\mathbf{x} - \mathbf{v}_k\|^2$$

$$\exists \mathbf{x}_k, s.t. \ f(\mathbf{x}_k) \leq \phi_k^*$$

$$(4) \lambda_k \to 0$$

Primitive Nesterov

Construct quadratic functions $\phi_k(\mathbf{x})$ and $\lambda_k > 0$

$$(1) \phi_k(\mathbf{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\mathbf{x} - \mathbf{v}_k\|^2$$

$$\exists \mathbf{x}_k, s.t. \ f(\mathbf{x}_k) \leq \phi_k^*$$

$$(4) \lambda_k \to 0$$

Primitive Nesterov: Rate of convergence

$$(1) \phi_k(\mathbf{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\mathbf{x} - \mathbf{v}_k\|^2$$

$$(2) \exists \mathbf{x}_k, s.t. \ f(\mathbf{x}_k) \leq \phi_k^*$$

$$(4) \lambda_k \to 0$$

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \lambda_k(\phi_0(\mathbf{x}^*) - f(\mathbf{x}^*))$$

Rate of convergence sheerly depends on λ_k

Nesterov constructed, in a highly non-trivial way, the $\phi_k(\mathbf{x})$ and λ_k , s.t.

 \checkmark \mathbf{x}_k has closed form (grad desc)

$$\checkmark \lambda_k \le \frac{4L}{(2\sqrt{L} + k\sqrt{\gamma_0})^2}$$

Furthermore, if f is σ -strongly convex, then

$$\lambda_k \le \left(1 - \sqrt{\frac{\sigma}{L}}\right)^k$$

Primitive Nesterov: Dealing with constraints

 \mathbf{x}_k has closed form by gradient descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k)$$

■ When constrained to set Q, modify by

$$\mathbf{x}_{k+1}^{Q} = \Pi_{Q} \left(\mathbf{x}_{k} - \gamma \nabla f(\mathbf{x}_{k}) \right) = \underset{\mathbf{x} \in Q}{\operatorname{argmin}} \left\| \mathbf{x} - \left(\mathbf{x}_{k} - \gamma \nabla f(\mathbf{x}_{k}) \right) \right\|$$

New gradient:

$$oldsymbol{g}_k^Q := \!\! \gamma^{-1} \left(\mathbf{x}_k - \mathbf{x}_{k+1}^Q
ight)$$
 gradient mapping

 This new gradient keeps all important properties of gradient, also keeping the rate of convergence

Primitive Nesterov: Gradient mapping

 \mathbf{x}_k has closed form by gradient descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k)$$

• When constrained to set Q, modify by

$$\mathbf{x}_{k+1}^{Q} = \Pi_{Q} \left(\mathbf{x}_{k} - \gamma \nabla f(\mathbf{x}_{k}) \right) = \underset{\mathbf{x} \in Q}{\operatorname{argmin}} \| \mathbf{x} - (\mathbf{x}_{k} - \gamma \nabla f(\mathbf{x}_{k})) \|$$
Expensive?

New gradient:

$$oldsymbol{g}_k^Q := \!\! \gamma^{-1} \left(\mathbf{x}_k - \mathbf{x}_{k+1}^Q
ight)$$

gradient mapping

■ This new gradient keeps all important properties of gradient, also keeping the rate of convergence

Primitive Nesterov

Summary

$$\min_{\mathbf{w}} f(\mathbf{w}) \qquad \mathbf{w} \in Q$$

where f is L-l.c.g., Q is convex.

Rate of convergence

$$\sqrt{rac{L}{\epsilon}}$$
 if no strong convexity

$$rac{\ln rac{1}{\epsilon}}{-\ln (1-rac{\sigma}{L})}$$
 if σ -strongly convexity

Primitive Nesterov: Example

- Remember strong convexity and l.c.g. are wrt some norm
 - We have implicitly used Euclidean norm (L_2 norm)
 - Some functions are strongly convex wrt other norms
 - Negative entropy $\sum_i x_i \ln x_i$ is
 - Not l.c.g. wrt L_2 norm
 - l.c.g. wrt L_1 norm $\|\mathbf{x}\|_1 = \sum_i x_i$
 - strongly convex wrt L_1 norm.

Can Nesterov's approach be extended to non-Euclidean norm?

- Remember strong convexity and *l.c.g.* are wrt some norm
 - We have implicitly used Euclidean norm (L_2 norm)
 - Some functions are *l.c.g.* wrt other norms
 - Negative entropy $\sum_i x_i \ln x_i$ is
 - Not l.c.g. wrt L_2 norm
 - l.c.g. wrt L_1 norm $\|\mathbf{x}\|_1 = \sum_i x_i$
 - strongly convex wrt L_1 norm.

Can Nesterov's approach be extended to non-Euclidean norm?

Suppose the objective function f is l.c.g. wrt $\|\cdot\|$.

Use a prox-function d on Q which is σ -strongly convex wrt $\|\cdot\|$, and

$$\min_{\mathbf{x} \in Q} d(\mathbf{x}) = 0 \qquad \qquad D := \max_{\mathbf{x} \in Q} d(\mathbf{x})$$

Algorithm 1: Nesterovs algorithm for non-Euclidean norm

Output: A sequence $\{y^k\}$ converging to the optimal at $O(1/k^2)$ rate.

I won't

mention

details

- 1 Initialize: Set \mathbf{x}^0 to a random value in Q.
- 2 for $k = 0, 1, 2, \dots$ do

3 Query the gradient of f at point \mathbf{x}^k : $\nabla f(\mathbf{x}^k)$.

- 4 Find $\mathbf{y}^k \leftarrow \operatorname{argmin}_{\mathbf{x} \in O} \left\langle \nabla f(\mathbf{x}^k), x \mathbf{x}^k \right\rangle + \frac{1}{2} L \left\| \mathbf{x} \mathbf{x}^k \right\|^2$.
- 5 Find $\mathbf{z}^k \leftarrow \operatorname{argmin}_{\mathbf{x} \in Q} \frac{L}{\sigma} d(\mathbf{x}) + \sum_{i=0}^k \frac{i+1}{2} \langle \nabla f(\mathbf{x}^i), \mathbf{x} \mathbf{x}^i \rangle$.
- 6 Update $\mathbf{x}^{k+1} \leftarrow \frac{2}{k+3}\mathbf{z}^k + \frac{k+1}{k+3}\mathbf{y}^k$.

Suppose the objective function f is l.c.g. wrt $\|\cdot\|$.

Use a prox-function d on Q which is σ -strongly convex wrt $\|\cdot\|$, and

$$\min_{\mathbf{x} \in O} d(\mathbf{x}) = 0$$

$$D := \max_{\mathbf{x} \in Q} d(\mathbf{x})$$

Algorithm 1: Nesterovs algorithm for non-Euclidean norm

Output: A sequence $\{\mathbf{y}^k\}$ converging to the optimal at $O(1/k^2)$ rate.

- 1 Initialize: Set \mathbf{x}^0 to a random value in Q.
- **2** for $k = 0, 1, 2, \dots$ do

3 Query the gradient of f at point $\mathbf{x}^k : \nabla f(\mathbf{x}^k)$.

 $7f(\mathbf{x}^k)$. I won't mention details

- 4 Find $\mathbf{y}^k \leftarrow \operatorname{argmin}_{\mathbf{x} \in Q} \left\langle \nabla f(\mathbf{x}^k), x \mathbf{x}^k \right\rangle + \frac{1}{2} L \left\| \mathbf{x} \mathbf{x}^k \right\|^2$.
- 5 Find $\mathbf{z}^k \leftarrow \operatorname{argmin}_{\mathbf{x} \in Q} \left(\frac{L}{\sigma} d(\mathbf{x}) \right) + \sum_{i=0}^k \frac{i+1}{2} \left\langle \nabla f(\mathbf{x}^i), \mathbf{x} \mathbf{x}^i \right\rangle.$
- 6 Update $\mathbf{x}^{k+1} \leftarrow \frac{2}{k+3}\mathbf{z}^k + \frac{k+1}{k+3}\mathbf{y}^k$.

Rate of convergence

$$f(\mathbf{y}_k) - f(\mathbf{x}^*) \le \frac{4Ld(x^*)}{\sigma(k+1)(k+2)}$$

Applications will be given later.

Immediate application: Non-smooth functions

- Objective function not differentiable
 - Suppose it is the Fenchel dual of some function f $\min_{\mathbf{r}} f^{\star}(\mathbf{x})$ where f is defined on Q
- Idea: smooth the non-smooth function.
 - Add a small σ -strongly convex function d to f

$$f + d$$
 is σ -strongly convex

$$(f+d)^*$$
 is $\frac{1}{\sigma}$ -l.c.g

Immediate application: Non-smooth functions

- $(f + \epsilon d)^*(\mathbf{x})$ approximates $f^*(\mathbf{x})$
 - If $0 \le d(u) \le D$ for $u \in Q$ then

$$f^{\star}(\mathbf{x}) - \epsilon D \leq (f + \epsilon d)^{\star}(\mathbf{x}) \leq f^{\star}(\mathbf{x})$$

 $(f + \varepsilon d)^*(x)$

Proof

$$\max_{\mathbf{u}} \langle \mathbf{u}, \mathbf{x} \rangle - f(\mathbf{u}) - \epsilon D \leq \max_{\mathbf{u}} \langle \mathbf{u}, \mathbf{x} \rangle - f(\mathbf{u}) - \epsilon d(\mathbf{u}) \leq \max_{\mathbf{u}} \langle \mathbf{u}, \mathbf{x} \rangle - f(\mathbf{u}) - \mathbf{0} \\
\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\
f^{\star}(\mathbf{x}) - \epsilon D \qquad \qquad (f + \epsilon d)^{\star}(\mathbf{x}) \qquad \qquad f^{\star}(\mathbf{x})$$

Immediate application: Non-smooth functions

- $(f + \epsilon d)^*(\mathbf{x})$ approximates $f^*(\mathbf{x})$ well
 - If $d(u) \in [0, D]$ on Q, then $(f + \epsilon d)^*(\mathbf{x}) f^*(\mathbf{x}) \in [-\epsilon D, 0]$
- Algorithm (given precision ϵ)
 - Fix $\hat{\epsilon} = \frac{\epsilon}{2D}$
 - Optimize $(f + \hat{\epsilon}d)^*(\mathbf{x})$ (l.c.g. function) to precision $\epsilon/2$
- Rate of convergence

$$\sqrt{\frac{1}{\epsilon}L} = \sqrt{\frac{1}{\epsilon} \cdot \frac{1}{\hat{\epsilon}\sigma}} = \sqrt{\frac{2D}{\sigma\epsilon^2}} = \frac{1}{\epsilon}\sqrt{\frac{2D}{\sigma}}$$

- The problem from machine learning perspective
- Preliminaries
 - Convex analysis and gradient descent
- Nesterov's optimal gradient method
 - Lower bound of optimization
 - Optimal gradient method
- Utilizing structure: composite optimization
 - Smooth minimization
 - Excessive gap minimization
- Conclusion

Composite optimization

Many applications have objectives in the form of

$$J(\mathbf{w}) = f(\mathbf{w}) + g^{\star}(A\mathbf{w})$$

where

f is convex on the region E_1 with norm $\|\cdot\|_1$ g is convex on the region E_2 with norm $\|\cdot\|_2$

- Very useful in machine learning
 - Aw corresponds to linear model

Composite optimization

Example: binary SVM

$$J(\mathbf{w}) = \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|^2}_{f(\mathbf{w})} + \underbrace{\min_{b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)]_+}_{g^*(\mathbf{A}\mathbf{w})}$$

- $A = -(y_1 \mathbf{x}_1, \dots, y_n \mathbf{x}_n)^{\top}$
- g^* is the dual of $g(\alpha) = -\sum_i \alpha_i$ over

$$Q_2 = \{ \boldsymbol{\alpha} \in [0, n^{-1}]^n : \sum_i y_i \alpha_i = 0 \}$$

Composite optimization 1: Smooth minimization

$$J(\mathbf{w}) = f(\mathbf{w}) + g^{\star}(A\mathbf{w})$$

Let us only assume that

$$f$$
 is M - $l.c.g$ wrt $\|\cdot\|_1$

■ Smooth g^* into $(g + \mu d_2)^*$ $(d_2 \text{ is } \sigma_2\text{-strongly convex wrt } \|\cdot\|_2)$

then
$$J_{\mu}(\mathbf{w})=f(\mathbf{w})+(g+\mu d_2)^{\star}(A\mathbf{w})$$
 is $\Big(M+rac{1}{\mu\sigma_2}\left\|A
ight\|_{1,2}^2\Big)$ - $l.c.g$ Apply Nesterov on $J_{\mu}(\mathbf{w})$

Composite optimization 1: Smooth minimization

Rate of convergence

steps.

• to find an ϵ accurate solution, it costs

$$4 \|A\|_{1,2} \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}} \cdot \frac{1}{\epsilon} + \sqrt{\frac{M D_1}{\sigma_1 \epsilon}}$$

 d_1 is σ_1 -strongly convex wrt $\|\cdot\|_1$ d_2 is σ_2 -strongly convex wrt $\|\cdot\|_2$

$$D_1 := \max_{\mathbf{w} \in E_1} d_1(\mathbf{w})$$
 $D_2 := \max_{\boldsymbol{\alpha} \in E_2} d_2(\boldsymbol{\alpha})$

Composite optimization 1: **Smooth minimization**

Example: matrix game

$$\underset{\mathbf{w} \in \Delta_n}{\operatorname{argmin}} \quad \underbrace{\langle \mathbf{c}, \mathbf{w} \rangle}_{f(\mathbf{w})} + \underbrace{\max_{\boldsymbol{\alpha} \in \Delta_m} \left\{ \langle A\mathbf{w}, \boldsymbol{\alpha} \rangle + \langle \mathbf{b}, \boldsymbol{\alpha} \rangle \right\}}_{g^*(A\mathbf{w})}$$

Use Euclidean distance

$$E_1 = \Delta_n \quad \|\mathbf{w}\|_1 = \left(\sum_i w_i^2\right)^{1/2} \quad d_1(\mathbf{w}) = \frac{1}{2} \sum_i (w_i - n^{-1})^2 \quad \sigma_1 = \sigma_2 = 1$$

$$E_2 = \Delta_m \quad \|\boldsymbol{\alpha}\|_2 = \left(\sum_i \alpha_i^2\right)^{1/2} \quad d_2(\boldsymbol{\alpha}) = \frac{1}{2} \sum_i (\alpha_i - m^{-1})^2 \quad D_1 < 1, \ D_2 < 1$$

$$\|A\|_{1,2}^2 = \lambda_{\max}^{1/2}(A^{\top}A)$$

$$\|A\|_{1,2}^2 = \lambda_{\max}^{1/2}(A^{\top}A)$$
 $f(\mathbf{w}_k) - f(\mathbf{w}^*) \le \frac{4\lambda_{\max}^{1/2}(A^{\top}A)}{k+1}$

May scale with O(nm)

Composite optimization 1: Smooth minimization

Example: matrix game

$$\underset{\mathbf{w} \in \Delta_n}{\operatorname{argmin}} \quad \underbrace{\langle \mathbf{c}, \mathbf{w} \rangle}_{f(\mathbf{w})} + \underbrace{\max_{\boldsymbol{\alpha} \in \Delta_m} \left\{ \langle A\mathbf{w}, \boldsymbol{\alpha} \rangle + \langle \mathbf{b}, \boldsymbol{\alpha} \rangle \right\}}_{g^*(A\mathbf{w})}$$

Use Entropy distance

$$E_1 = \Delta_n \quad \|\mathbf{w}\|_1 = \sum_i |w_i| \quad d_1(\mathbf{w}) = \ln n + \sum_i w_i \ln w_i$$

$$E_2 = \Delta_m \quad \|\boldsymbol{\alpha}\|_2 = \sum_i |\alpha_i| \quad d_2(\boldsymbol{\alpha}) = \ln m + \sum_i \alpha_i \ln \alpha_i$$

$$D_1 = \ln n$$

$$D_2 = \ln m$$

$$||A||_{1,2} = \max_{i,j} |A_{i,j}|$$

$$f(\mathbf{w}_k) - f(\mathbf{w}^*) \le \frac{4 (\ln n \ln m)^{\frac{1}{2}}}{k+1} \max_{i,j} ||A_{i,j}||$$

Composite optimization 1: Smooth minimization

- Disadvantages:
 - Fix the smoothing beforehand using prescribed accuracy ϵ
 - No convergence criteria because real min is unknown.

- Primal-dual
 - Easily upper bounds the duality gap
- Idea
 - Assume objective function takes the form

$$J(\mathbf{w}) = f(\mathbf{w}) + g^{\star}(A\mathbf{w})$$

Utilizes the adjoint form

$$D(\boldsymbol{\alpha}) = -g(\boldsymbol{\alpha}) - f^{\star}(-A^{\top}\boldsymbol{\alpha})$$

Relations:

$$\forall \ \mathbf{w}, \pmb{\alpha} \quad J(\mathbf{w}) \geq D(\pmb{\alpha}) \quad \text{ and } \quad \inf_{\mathbf{w} \in E_1} J(\mathbf{w}) = \sup_{\pmb{\alpha} \in E_2} D(\pmb{\alpha})$$

- Sketch of idea
 - Assume f is L_f -l.c.g. and g is L_g -l.c.g.
 - Smooth both f^* and g^* by prox-functions d_1, d_2

$$J_{\mu_2}(\mathbf{w}) = f(\mathbf{w}) + (g + \mu_2 d_2)^* (A\mathbf{w})$$

$$D_{\mu_1}(\boldsymbol{\alpha}) = -g(\boldsymbol{\alpha}) - (f + \mu_1 d_1)^* (-A^\top \boldsymbol{\alpha})$$

- Sketch of idea
 - Maintain two point sequences $\{\mathbf{w}_k\}$ and $\{\boldsymbol{\alpha}_k\}$ and two regularization sequences $\{\mu_1(k)\}$ and $\{\mu_2(k)\}$

s.t. $J_{\mu_2(k)}(\mathbf{w}_k) \leq D_{\mu_1(k)}(\boldsymbol{\alpha}_k) \qquad \begin{array}{c} \mu_1(k) \to 0 \\ \mu_2(k) \to 0 \end{array}$

$$J_{\mu_2(k)}(\mathbf{w}_k) \le D_{\mu_1(k)}(\boldsymbol{\alpha}_k)$$

Challenge:

- How to efficiently find the initial point \mathbf{w}_1 , α_1 , $\mu_1(1)$, $\mu_2(1)$ that satisfy excessive gap condition.
- Given \mathbf{w}_k , α_k , $\mu_1(k)$, $\mu_2(k)$, with new $\mu_1(k+1)$ and $\mu_2(k+1)$ how to efficiently find \mathbf{w}_{k+1} and α_{k+1} .
- How to anneal $\mu_1(k)$ and $\mu_2(k)$ (otherwise one step done).

Solution

- Gradient mapping
- Bregman projection (very cool)

Rate of convergence:

$$J(\mathbf{w}_k) - D(\boldsymbol{\alpha}_k) \le \frac{4 \|A\|_{1,2}}{k+1} \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}}$$

- f is σ -strongly convex
 - No need to add prox-function to f, $\mu_1(k) \equiv 0$

$$J(\mathbf{w}_k) - D(\boldsymbol{\alpha}_k) \le \frac{4D_2}{\sigma_2 k(k+1)} \left(\frac{\|A\|_{1,2}^2}{\sigma} + L_g \right)$$

Example: binary SVM

$$J(\mathbf{w}) = \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|^2}_{f(\mathbf{w})} + \underbrace{\min_{b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)]_+}_{g^*(\mathbf{A}\mathbf{w})}$$

- $A = -(y_1 \mathbf{x}_1, \dots, y_n \mathbf{x}_n)^{\top}$
- g^* is the dual of $g(\alpha) = -\sum_i \alpha_i$ over $E_2 = \{ \alpha \in [0, n^{-1}]^n : \sum_i y_i \alpha_i = 0 \}$
- Adjoint form $D(\alpha) = \sum_{i} \alpha_{i} \frac{1}{2\lambda} \alpha^{\top} A A^{\top} \alpha$

Composite optimization 2: Convergence rate for SVM

■ Theorem: running on SVM for k iterations

$$J(\mathbf{w}_k) - D(\boldsymbol{\alpha}_k) \le \frac{2L}{(k+1)(k+2)n}$$

•
$$L = \lambda^{-1} \|A\|^2 = \lambda^{-1} \|(y_1 \mathbf{x}_1, \dots, y_n \mathbf{x}_n)\|^2 \le \frac{nR^2}{\lambda}$$
 $(\|\mathbf{x}_i\| \le R)$

Final conclusion

$$J(\mathbf{w}_k) - D(oldsymbol{lpha}_k) \leq arepsilon$$
 as long as

$$J(\mathbf{w}_k) - D(oldsymbol{lpha}_k) \leq arepsilon \quad ext{ as long as } \qquad k > O\left(rac{R}{\sqrt{\lambda \; arepsilon}}
ight)$$

Composite optimization 2: Projection for SVM

• Efficient O(n) time projection onto

$$E_2 = \left\{ \boldsymbol{\alpha} \in [0, n^{-1}]^n : \sum_i y_i \alpha_i = 0 \right\}$$

Projection leads to a singly linear constrained QP

$$\min_{\alpha} \sum_{i=1}^{n} (\alpha_i - m_i)^2$$
s.t.
$$l_i \le \alpha_i \le u_i \quad \forall i \in [n];$$

$$\sum_{i=1}^{n} \sigma_i \alpha_i = z.$$

Key tool: Median finding takes O(n) time

Automatic estimation of Lipschitz constant

- Automatic estimation of Lipschitz constant L
 - Geometric scaling
 - Does not affect the rate of convergence

Conclusion

- Nesterov's method attains the lower bound
 - $O\left(\frac{L}{\epsilon}\right)$ for *L-l.c.g.* objectives
 - Linear rate for *l.c.g.* and strongly convex objectives
- Composite optimization
 - Attains the rate of the nice part of the function
- Handling constraints
 - Gradient mapping and Bregman projection
 - Essentially does not change the convergence rate
- Expecting wide applications in machine learning
 - Note: not in terms of generalization performance

Questions?