7.8 (a) \(\dot{x}_3(t) = (\dot{x}_1(t), \dot{x}_2(t) \cos \theta, \dot{x}_2(t) \sin \theta) \)

\(\dot{\beta}(t) = (0, -x_2(t) \sin \theta, x_2(t) \cos \theta) \)

\(\dot{\beta}_0(t) \cdot \dot{\beta}(t) = 0 \)

(b) \(\dot{x}_3(t) = (\dot{x}_1(t), \dot{x}_2(t) \cos \theta, \dot{x}_2(t) \sin \theta) \)

Sp is \(\mathbb{R}^2 \), hard to write so must find another way

Notice that \(\dot{x}_3(t) \in *Sp*, \dot{\beta}(t) \in *Sp* by definition because \(\dot{x}_3(t), \dot{\beta}(t) \) are both on \(*S*

by (a) \(\dot{x}_3(t) \perp \dot{\beta}(t) \). So \(\nabla \dot{x}_3(t), \dot{\beta}(t) \) form a basis of \(*Sp* \) \((P = \dot{x}_3(t)) \)

So one only needs to check that \(\dot{x}_3(t) \) is orthonormal to \(\dot{x}_3(t), \dot{\beta}(t) \)

\(\dot{x}_3(t) \cdot \dot{x}_3(t) = \dot{x}_1(t) \dot{x}_1(t) + \dot{x}_2(t) \dot{x}_2(t) = 1 \). As \(\dot{x}_3(t) = (x_1(t), x_2(t)) \) has constant speed, by Ex 7.2 \(\dot{x}_3(t) \perp \dot{x}_3(t) \), \(\dot{x}_3(t) \perp \dot{x}_3(t) \) is easy to check

(c) \(\dot{\beta}_0(t) = (0, -x_2(t) \cos \theta, x_2(t) \sin \theta) \), obviously \(\dot{\beta}_0(t) \perp \dot{x}_3(t) \)

\(\dot{\beta}(t) \perp \dot{x}_3(t) \iff x_1(t) \dot{x}_2(t) = 0 \) \(\sin \theta \dot{x}_1(t) > 0 \) \(\dot{x}_2(t) = 0 \iff \left| x_1(t)/\dot{x}_1(t) \right| = 0 \)

7.9 First check \(\dot{x}(t) \) is a maximal geodesic with initial velocity \(\beta(t) = \dot{x}(t) \)

\(\dot{x}(t) = c \dot{x}(t) \). So \(\dot{x}(t) \mid t=0 = c \dot{x}(t) \mid t=0 = c \)

\(\dot{\beta}(t) = c^2 \dot{x}(t) \). As \(\dot{x} \) is geodesic, so \(\dot{x}(t) \in *S_\theta(t) \). So \(\dot{x}(t) \in *S_\theta(t) \)

So \(\dot{x}(t) \) is geodesic. It is easy. Since the geodesic with initial position and velocity given is unique, \(\dot{x}(t) \) is what the maximal geodesic in \(*S* \) with initial velocity \(c \dot{x}(t) \)

The domain \(I \) can be easily taken care of.

7.10 Define \(\gamma(t) = \beta(t+t_0) \), then \(\gamma(t) = \beta(t+t_0) = \beta(t) = \dot{\beta}(t) = \dot{\gamma}(t) = \dot{V}(t) \). So if \(\dot{V}(t) \) is geodesic, then by uniqueness theorem, \(\gamma(t) = \dot{x}(t) \), i.e. \(\beta(t+t_0) = \dot{x}(t) \), i.e. \(\dot{\beta}(t) = \dot{V}(t) \)

\(I \) is taken care of because \(\dot{x} \) is maximal.

7.11 Let \(\dot{V}(t) = \beta(t) \). \(\dot{V}(t) = \beta(t) = \dot{x}(t) = \dot{\beta}(t) = \dot{\gamma}(t) = \dot{x}(t) = \dot{\gamma}(t) = \dot{V}(t) \). So by Ex 7.10

\(\dot{V}(t) = \beta(t) \), i.e. \(\beta(t) = \dot{V}(t) \), i.e. \(\beta(t) = \dot{V}(t) \)

7.12 (a) complete by Example 3

(b) incomplete \(\alpha(t) = (1, 0, 0) \cos t + (0, 0, 0) \sin t \) is geodesic, but \(\alpha(t) \) is \(t \neq \frac{\pi}{2} + 2k\pi \), \(k \in \mathbb{Z} \)

(c) incomplete \(\alpha(t) = (0, 1, 1) + (0, 1, 1) t \), \(t \neq 1 \)

(d) complete by Example 2

(e) complete \(\alpha(t) = (0, 1, 0) \cos t + (1, 0, 0) \sin t \), \(t \neq \frac{\pi}{2} + 2k\pi \), \(k \in \mathbb{Z} \)