\[\dot{x}_3(t) = 2(t) \quad \dot{x}_3(t) \in O(3) \text{ by (a). So now construct a continuous curve from } p \text{ to } q \text{ in } O(3):\]

\[\begin{align*}
y(t) &= (\dot{x}_1(t), t \in [0, t_1]) \\
\dot{x}_1(t) &= \dot{x}_2(t) + t - b - a \\
\dot{x}_2(t) &= \dot{x}_3(t) + b - a \\
\dot{x}_3(t) &= \dot{x}_2(t) + t - b - a
\end{align*}\]

7.2 \[\|\dot{x}(t)\| = \text{constant} \Rightarrow \dot{x}(t), \dot{x}(t) = 2\dot{x}(t), \dot{x}(t) = 0, \text{ i.e. } \dot{x}(t) \perp \dot{x}(t)\]

7.3 Let \(S(t) = \int_0^t \|\dot{x}(t)\|dt \). As \(\dot{x}(t) \rightarrow 0 \), so \(S(t) \) monotone increasing so \(S(t) \) is invertible. Let \(h = S^{-1} \). \(h \) is onto by definition \(h' = \frac{1}{S''(h)} > 0 \)

\[\dot{x} = \dot{x}(h(t)), h'(t) = \frac{\dot{x}(h(t))}{\|\dot{x}(h(t))\|} \text{ so } \beta \text{ is unit speed.}\]

7.4 "For if part is by Example 2 in this chapter only if \(\dot{x}(0) = (r \cos b, r \sin b, 0) \), which has covered all possible points on cylinder \(\dot{x}(0) = (-r \sin b, r \cos b, 0) \).

So \(\dot{x}(0) \) has covered all possible initial velocity in \(\mathcal{S}(0) \).

As geodesic is uniquely determined by initial position and initial velocity these are all possible geodesics on cylinder \(S \).

Another proof is by looking at (6) on page 41. \(N(x, y, z) = (x, y, 0)\)

7.5 "if part" is covered by Example 3 in this chapter only if \(\dot{x}(0) = e^1, \dot{x}(0) = ae^2 \). Since \(e_2 \in \mathcal{S}, e \) allows all norm of velocity \(0 \), allows all possible initial position, \(\dot{x}(0) \) allows all possible initial velocity due to uniqueness of geodesic by initial position and velocity, these are all possible geodesics on unit n-sphere.

7.7 If part. \[\beta(t) = a \cdot \dot{x}(at+b)\]

(\(e^2 \dot{x}(e^1 h(t)) = \dot{x}(at+b) \cdot a\). \(\dot{x}(at+b)\) is geodesic so \(\dot{x}(t) \in \mathcal{S}(at+b) \text{ Hf. So } L(t) \in \mathcal{S}(at+b) = S^1 \text{ and } \beta \text{ is geodesic only if } \beta(t) = \dot{x}(h(t)) \cdot (h(t))^2 + \dot{x}(h(t)) \cdot h'(t) \text{ if } \beta \text{ is geodesic, } L(t) \in S^1 = S^1 \text{ and } \beta\) \(\dot{x}(h(t)) \text{ are parallel and } \dot{x}(h(t)) \text{ is geodesic. Generally, } \dot{x} \text{ and } \dot{x} \text{ are not parallel, and } h'(t), h'(t) \text{ are scalar} \dot{x}(h(t)) \text{ parallel so we must require } h'(t) = 0 \text{ (E.g. } \dot{x}(t) = -\dot{e}_2 \text{ and } x(t) = -e_2 \text{, } \theta_{e_2} = 0 \text{, } \theta_{e_2} = 0 \text{, } \dot{x} \text{ and } \dot{x} \text{ are never parallel).} \text{ So } h(t) = at + b \text{. We can't see why } a > 0 \text{. Since } x(t) \text{ when } a = 0 \text{, } \beta \text{ is still geodesic.} \)