(b) If \(S \) crosses \(S \) for an odd number of times \(t_1, \ldots, t_n \), then by (a)
\[
g(t_1)g(t_n) > 0.\]
With out loss of generality, suppose \(g(t_1) > 0, g(t_n) > 0 \).
Since \(g(t) = g(t_n) = 2 \times \text{constant} \), we have \(g(t) > 0 \) for all \(t \), \(t > t_n \).
However, as \(S \) is compact and \(g \) goes to \(0 \) in both directions, we can find \(f: R^\infty R \)
there is a \(f \) such that if \(S \) is contained in sphere \(S: ||x||^2 = r^2 \), then pick any point \(P \)
and consider \(S' \) to \(0 \) in both directions.

- There must be \(t_0, t_0+1 \) with \(t_0 < t_1 < t_0+1 < t_n \), such that \(g(t_0) \) and \(g(t_0+1) \) \(0 \).

As \(f(x(t)) < 0 < f(x(t_0+1)) \) and \(f \) is continuous on \(S' \), so \(f(x(t_0)) < 0 < f(x(t_0+1)) \).
As \(S' \) is connected (see Ex. 5.1), there is a parametrized curve \(\beta(t) \in S' \).

\[
\beta(t)^1 = x(t), \beta(t)^2 = x(t_0+1), \text{ and } \beta \text{ is continuous on } S'.
\]

there must be a \(t^3 \in (t^1, t_0+1) \) st. \(f(\beta(t^3)) = 0 \).

But \(\beta(t^3) \in S \). This is contradiction!

6.10 (a) \(\beta(0) \in O(S) \), there exists a continuous map \(\alpha: [0, l] \to R^\infty S \)
\[
\text{s.t. } \alpha(0) = \beta(0), \lim_{l \to 0} \alpha(t) = \beta(0).
\]

For \(\forall \beta(t) \), construct curve \(\gamma(t) = \beta(t) - \beta(t)^0 \in O(S) \).

then \(\gamma(t) \) is continuous from \([0, l] \to R^\infty S \).

\(\gamma(0) = \beta(0), \gamma(l) = \beta(l) \) to is arbitrary so \(\beta(t) \in O(S) \) for all \(t \in [a, b] \).

(b) \(\beta(0) \in O(S) \). As \(S \) is a compact n-surface, then can find a n-sphere with a large enough radius \(\Gamma \) which strictly subsumes \(S \).

Then pick one point on the n-sphere \(p \), construct continuous map \(\alpha(t) = p \circ t \in R^\infty S \).

\[
\text{So } \alpha(t) \in R^\infty S, \lim_{l \to 0} \alpha(t) = \beta(0).
\]

So \(p \in O(S) \).

(2) open set \(V \) \(\in O(S) \), \(p \in R^\infty S \), as \(R^\infty S \) is open (due to
\(S = f^{-1}(c) \)) is n-surface and by definition \(f \) is smooth). So there exists an \(\epsilon \)-ball around \(p \), \(\epsilon \in (p, e) \), such that \(V \times e \) \(\in e \) \(R^\infty S \).

We can easily construct a continuous map \(\chi: R^\infty S \to S \).

(3) connected: \(V \) \(p \in O(S) \), Suppose there is a n-sphere \(S \) with radius \(\Gamma \)
such that \(p \in S \) are all contained in it. \(S \) compact, \(\Gamma > (p, e) \).

As \(p \in O(S) \) there is a continuous map \(\alpha: (0, l) \to R^\infty S, \alpha(0) = p, \lim_{l \to 0} \alpha(t) = 0).

Suppose \(\beta(t) \in R^\infty S \) (i.e. \(\beta(t) \in O(S) \)). Likewise, we define \(\alpha(t) \) and \(\beta(t) \).

As \(S \) is connected and \(S \subset R^\infty S \), there's a curve \(\alpha(t) \) on \(S \), s.t. \(\alpha(0) = \alpha(1) \).

\[\therefore \]