227. (a) The set of rigid motions of \(\mathbb{R}^n \) obviously forms a group under composition. It naturally satisfies associativity, neutral element is identity transformation, inverse element exists because rigid motions map onto \(\mathbb{R}^n \) by corollary. Inverse is obviously rigid motion.

Identity \(q = \mathbb{I} \) is a symmetry of \(S \). For any symmetry \(\psi \), as it maps onto \(S \), \(\psi \) must be bijective. Its inverse is also a symmetry of \(S \). Thus, the symmetries of \(S \) form a subgroup.

(b) For any symmetry \(\psi \), suppose \(\psi = \psi_1 \psi_2 \) is the unique decomposition of \(\psi \) into an orthogonal transformation \(\psi_1 \), followed by a translation \(\psi_2 \). By definition, for any \(p \in S^n \), \(\psi(p) = \psi_1(p) + t_2 \), let \(\psi_2 \) be translation by \(t \). Since \(\psi \) is invertible, \(\psi(p) = \psi_1(p) + t_2 \) for any \(p \in S^n \).

So \(\psi_1(p) = \psi^{-1}_1(\psi(p) - t_2) = \psi^{-1}_1(\psi(p) + t_2) \).

So \(\psi_1(p) = (\psi(p) + t_2) = \psi^{-1}_1(\psi(p) + t_2) \).

But as \(\psi \) maps onto \(S^n \), the only way there must be a \(p \in S^n \), s.t.

\[\psi(p) = -t_2 \text{ or } \psi(p) = t_2 \text{ unless } t = 0. \]

So if \(\psi \) is symmetry of \(S^n \), then \(\psi \) must be an orthogonal transformation. Conversely, for any orthogonal transformation \(\psi \), if \(p \in S^n \), then \(\| \psi(p) \| = \| p \| \).

So \(\psi(p) \in S^n \). By Corollary, \(\psi \) maps \(\mathbb{R}^n \) onto \(\mathbb{R}^n \). So for any \(q \in S^n \), there must be a \(p \in \mathbb{R}^n \), s.t. \(\psi(p) = q \). Then \(\| p \| = \| \psi(p) \| = \| q \| \), i.e., \(p \in S^n \). Thus \(\psi \) maps \(S^n \) onto \(S^n \). Combining (1), we prove (b).

(c) Using notation as in (b), let \(\psi_1 \) be translation by \((a_1, a_2, a_3) \), and \(\psi_2 = (\alpha_1, \alpha_2, \alpha_3). \)

Then for any \(p \in \mathbb{R}^n \), \(\psi_1(p) + \psi_2(p) = \psi_1(p) + (\alpha_1, \alpha_2, \alpha_3) \).

For any \(\psi(p) \in C \), i.e., \((x_1(p) + \alpha_1)^2 + (x_2(p) + \alpha_2)^2 = a^2 \).

If \(\psi \) maps \(C \) onto \(C \), then there must be a \(p \) s.t. \(\psi_1(p) + \psi_2(p) = \psi_1(p) + (\alpha_1, \alpha_2, \alpha_3) = a \).

Thus \(a = (x_1(p) + \alpha_1)^2 + (x_2(p) + \alpha_2)^2 = a^2 \).

Assuming \(a > 0 \), so \(x_1(p)a_1 + x_2(p)a_2 \leq 0 \), and it equals 0 if \(p = 0 \).

Now look at restrictions on \(\psi_2 \). \(\psi_1(p) = (\alpha_1(p), \alpha_2(p), \alpha_3(p) + \alpha_3) \).

Let the matrix of \(\psi_1 \) wrt standard basis of \(\mathbb{R}^3 \) be \(A = [(\alpha_1, \alpha_2, \alpha_3)]^T \).

Since \(A \) can be in \(\mathbb{R} \), so if \(\beta_3 = 0 \), then the first two coordinates can go to infinity, rather than restricted on a circle of radius \(a \). So \(\beta_3 = 0 \).

Then there is guarantee that \(\frac{\beta_1}{\beta_3} = \frac{\beta_2}{\beta_3} = \frac{\alpha_1}{\alpha_3} \).

By Ex 227, (c) and \(\| p \| = a \). If \(\beta_3 = 0 \), then \(\frac{\beta_1}{\beta_3} \) must be bounded because \(p \) is bounded. \((\beta_1^2 + \beta_2^2) = a^2 \).

So \(\beta_3 = 0 \). This can also be seen by \(A \) being orthonormal and \(\beta_3 = 0 \). But now \(\beta_3 = 0 \), because so far.