15.13 Let \(\tilde{S} = \{ \tilde{g} \in S \mid \tilde{g} \) can be joined to \(p \) by a continuous curve in \(S \} \). Let \(S = f^{-1}(c) \).
First \(\tilde{S} \) is obviously connected. If \(\tilde{g}_1, \tilde{g}_2 \in \tilde{S} \), just concatenate their curve joining \(p \) will yield a continuous curve between \(\tilde{g}_1 \) and \(\tilde{g}_2 \). Since \(\tilde{S} \subseteq \tilde{S} \), so \(\tilde{g}_1, \tilde{g}_2 \).
\(\tilde{S} = f^{-1}(c) \). Now we only need to prove that \(\tilde{S} \) is an open set \(U, \) s.t.
\(\tilde{S} = \{ x \in U \mid f(x) = c \} \). We mimic the proof of Thm3.
For each \(\tilde{g} \in \tilde{S} \), let \(\tilde{V}_\tilde{g}: U_\tilde{g} \rightarrow S \) be a local parametrization of \(S \) whose image contains \(\tilde{g} \) and let \(\tilde{V}_\tilde{g}: U_\tilde{g} \times \mathbb{R} \rightarrow \mathbb{R}^n \) be defined by \(\tilde{V}_\tilde{g}(r, \tilde{s}) = \tilde{V}_\tilde{g}(r) + s \tilde{N}(\tilde{V}_\tilde{g}(r)), \) where \(N \) is the orientation of \(S \). Then as in the proof of Thm2, we can find an open set \(U_\tilde{g} \) about \((\tilde{V}_\tilde{g}(0), 0) \) in \(U_\tilde{g} \times \mathbb{R} \) s.t. \(\tilde{V}_\tilde{g} \) maps \(U_\tilde{g} \) one to one onto and open set \(U_\tilde{g}^* \) in \(\mathbb{R}^n \) and \(\phi_\tilde{g}: U_\tilde{g} \rightarrow U_\tilde{g}^* \) is smooth. Furthermore by shrinking \(U_\tilde{g} \) if necessary, we may assume that \(U_\tilde{g}^* \) is open.
Since \(U_\tilde{g} \) is an open set, then for any \(\tilde{g} \), there must be a \(\tilde{g} \) in an open set \(U_\tilde{g} \) containing \(\tilde{g} \).
there is a smooth curve \(\alpha(t) \): \([a, b] \rightarrow U_\tilde{g} \), s.t. \(\alpha(t) = \tilde{g} \) \(\alpha(a) = \tilde{g}(t), \alpha(b) = \tilde{g}(t) \).
By shrinking \(U_\tilde{g} \) further, we may assume that \(U_\tilde{g} = \tilde{V}_\tilde{g}(U_\mathbb{R}) \).
And \(\tilde{g} \in I \), we have \(\beta(t) = \tilde{V}_\tilde{g}(\tilde{g}(t), t) \in U_\tilde{g} \times \mathbb{R} \).
We define a continuous map \(\tilde{g} \) through a curve \(\alpha(t) \) on \(S \), so \(\tilde{g} \in S \). In other words, for \(\tilde{g} \in \tilde{S} \), there is an open set \(W_\tilde{g} \) about \(\tilde{g} \) s.t. \(\tilde{g} \in W_\tilde{g} \times \mathbb{R} \).
Now we define \(U = U_\tilde{g} \cap W_\tilde{g} \) which is open, then \(\tilde{g} \in U \) by definition.
\(\Sigma \times \mathbb{S} \), we have \(\Sigma \in U \), \(\mathbb{F}(x) = c \). So \(\Sigma \times \{ x \in U \mid f(x) = c \} \).
\(\Sigma \times \{ x \in U \mid f(x) = c \} \), there must be a \(\Sigma \in \mathbb{S} \), s.t. \(\Sigma \times \mathbb{F} \). As \(\Sigma \in \mathbb{S} \), so \(\Sigma \times \mathbb{F} \times \mathbb{S} \subseteq \mathbb{S} \). Thus, \(\{ x \in U \mid f(x) = c \} \subseteq \mathbb{S} \).
Hence \(\mathbb{S} = \{ x \in U \mid f(x) = c \} \), i.e. \(\mathbb{S} \) is a surface.

15.14 Suppose \(\alpha(t) = \alpha(t_1) \) for some \(t_1 + t_2 \in I \). Suppose the maximal integral curve of \(X \) through \(\alpha(t) \) is unique, then denoted as \(\beta(t) \) and \(\beta(0) = \alpha(t_1) \), then \(\alpha(t) = \beta(t-t_1) \) and \(\alpha(t) = \beta(t-t_2) \) for all \(t \). Setting \(T = t_1-t \), we have \(\alpha(t) = \beta(t-T-t_1) = \alpha(t_1) \) for all \(t \) such that \(t \) and \(t+T+T \in I \).
Thus if \(\alpha \) is not one to one then it is periodic.
To prove that the maximal integral curve \(X \) through \(\alpha(t) \) is unique, we notice