\[\dot{x}(b) = \dot{x}(t) = 0 \] by (a). So now construct a continuous curve from \(P \) to \(Q \) in \(S(3) \):

\[
\begin{align*}
y(t) &= \left\{ \begin{array}{ll}
x_1(t) & t \in [0, t_1] \\
x_3(t-t_1+a) & t \in [t_1, t_1 + b-a] \\
x_2(t-b) & t \in [t_1 + b-a, t_1 + b-a + t_2]
\end{array} \right.
\end{align*}
\]

7.2 \[||\dot{x}(t)|| = \text{constant} \Rightarrow \dot{x}(t) \cdot \dot{x}(t) = ||\dot{x}(t)||^2 = 0, \text{ i.e. } \dot{x}(t) \perp \dot{x}(t) \]

7.3 Let \(S(t) = \int_0^t ||\dot{x}(t)|| dt \). As \(\dot{x}(t) \to 0 \), so \(S(t) \) monotone increasing so \(S(t) \) is invertible. Let \(h = S^{-1} \). \(h \) is onto by definition. \(h' = \frac{1}{\dot{x}(h(t))} ||\dot{x}(h(t))|| > 0 \)

\[\beta = \dot{x}(h(t)) \cdot h'(t) = \dot{x}(h(t)) \cdot \frac{\dot{x}(h(t))}{||\dot{x}(h(t))||} \] so \(\beta \) is unit speed.

7.5 \(\dot{x}(t) \) for "if part" is by Example 2 in this chapter

"only if" \(\dot{x}(0) = (\cos b, \sin b, c) \), which has covered all possible points on cylinder \(\dot{x}(0) = (-10 \sin b, 10 \sin b, 0) \)

So \(\dot{x}(0) \) has covered all possible initial velocity in \(S_0(0) \).

As geodesic is uniquely determined by initial position and initial velocity, these are all possible geodesics on cylinder \(S \).

Another proof is by looking at \((6) \) on page 41. \(N(x, y, z) = (x^2, y, 0) \)

7.6 "if part" is covered by Example 3 in this chapter

"only if" \(\dot{x}(0) = 0 \), \(\dot{x}(0) = a \dot{e}_2 \). Since \(e_2 \in S_{n-1} \), \(a \) allows all norm of velocity \(0, \) allows all possible initial position. \(\dot{x}(0) \) allows all possible initial velocity due to uniqueness of geodesic by initial position and velocity, these are all possible geodesics on unit \(n \)-sphere.

7.7 "if part": \(\ddot{x}(h(t)) h(t) = \dot{x}(a+b) \cdot a \)

\[\dot{x}(t) \perp S_{n+1}(b) \forall t. \] So \(\beta(t) \in S_{n+1}(a+b) \). So \(\beta(t) \) is geodesic "only if": \(\ddot{x}(t) = \dot{x}(h(t)) \cdot \dot{x}(h(t))^T + \dot{x}(h(t)) \cdot h'(t) \) if \(\beta \) is geodesic, \(\dot{x}(h(t)) \cdot S_{n+1}(h(t)) \) so \(S_{n+1}(h(t)) \) and \(\dot{x}(h(t)) \) are parallel.

\(\ddot{x}(h(t)) \) are parallel so we must require \(h'(t) = 0 \) (e.g. \(\dot{x}(t) = e^{x \cos t} \sin t \dot{x}(t) = e^{x \sin t} \dot{e}_x \sin t \) for \(\Theta_{x} = 0 \) \(S_{n+1} \) \(\dot{x} \) and \(\dot{x} \) are never parallel).

So \(h(t) = a+b \). We can't see why \(a > 0 \). Since \(a \neq 0 \) when \(a = 0 \), \(\beta \) is still geodesic.
7.8 (a) \(\dot{x}(t) = (\dot{x}_1(t), \dot{x}_2(t) \cos \theta, \dot{x}_2(t) \sin \theta) \)

\[\dot{\beta}_1(t) = (0, -2x_2(t) \sin \theta, x_2(t) \cos \theta) \]

\[\dot{x}(t) \cdot \dot{\beta}_i(t) = 0 \]

(b) \(\dot{\beta}_2(t) = (\dot{x}_1(t), \dot{x}_2(t) \cos \theta, \dot{x}_2(t) \sin \theta) \)

\(S^p_p N(\beta(t)) = \pm \beta(t) \), hard to write. So must find another way.

Notice that \(\dot{\beta}_1(t) \in \mathcal{S}_p \), \(\dot{\beta}_2(t) \in \mathcal{S}_p \) by definition because \(\dot{\beta}_1(t), \dot{\beta}_2(t) \) are both on \(S^p_p \).

by (a) \(\dot{x}(t) \perp \dot{\beta}_1(t), \dot{\beta}_2(t) \) form a basis of \(\mathcal{S}_p(p = \dot{\beta}_1(t)) \)

So one only needs to check that \(\dot{x}(t) \) is orthogonal to \(\dot{\beta}_1(t), \dot{\beta}_2(t) \)

\(\dot{\beta}_1(t) = \dot{x}(t) \perp \dot{x}(t) = -x_1(t) \dot{x}_1(t) - x_2(t) \dot{x}_2(t) \cos \theta \cos \theta + x_2(t) \dot{x}_2(t) \sin \theta \sin \theta \)

As \(\dot{x}(t) = (x_1(t), x_2(t)) \) has constant speed, by Ex 7.2, \(\dot{\beta}_1(t) \) and \(\dot{\beta}_2(t) \) is easy to check.

(c) \(\dot{\beta}_1(t) = (0, -x_2(t) \cos \theta, -x_2(t) \sin \theta) \), obviously \(\dot{\beta}_1(t) \perp \dot{\beta}_2(t) \)

\(\dot{\beta}_1(t) \perp \dot{\beta}_2(t) \) \(\iff \) \(x_1(t) \dot{x}_1(t) + x_2(t) \dot{x}_2(t) = 0 \) \(\sin \theta x_1(t) = 0 \) \(x_1(t) = 0 \) \(\iff \) \(\frac{x_1(t)}{x_2(t)} = 0 \)

7.9 First check \(\dot{x}(t) \) is a maximal geodesic with initial velocity \(\mathbf{v} \) : \(\beta(0) = x(0) \)

\(\dot{x}(t) = c \cdot \dot{x}(t) \). So \(\dot{x}(t) \big|_{t=0} = c \cdot \mathbf{v}(t) \big|_{t=0} = \mathbf{v} \).

\(\dot{\beta}(t) = c^2 \dot{x}(t) \). As \(x \) is geodesic, so \(\dot{x}(t) \in \mathcal{S}_p(t) \). So \(\dot{\beta}(t) \in \mathcal{S}_p(t) \)

So \(\dot{\beta}(t) \) is geodesic. I is easily since the geodesic with initial position and velocity given is unique, \(\beta(t) \) is what we the maximal geodesic in \(S \) with initial velocity \(\mathbf{v} \).

The domain \(I \) can be easily taken care of.

7.10 Define \(\gamma(t) = \beta(t + t_0) \), then \(\gamma(t) = \beta(t) = \mathbf{v}(t) = \mathbf{v} \). So if \(\gamma(t) \) is geodesic, then by uniqueness theorem, \(\gamma(t) = \dot{x}(t), \) i.e., \(\beta(t + t_0) = \dot{x}(t) \), i.e., \(\beta(t) = \dot{x}(t) \)

I is taken care of because \(x \) is maximal.

7.11 Let \(\gamma(t) = \beta(t) \), \(\gamma(t) = \beta(t) \), \(\gamma(t) = \dot{x}(t) \), \(\dot{\gamma}(t) = \dot{x}(t) \). So by Ex 7.10.

\(\gamma(t) = \beta(t) \) i.e., \(\beta(t) = \beta(t) \) i.e., \(\beta(t) = \beta(t) \)

7.12 (a) complete by Example 3.

(b) incomplete \(x(t) = (1, 0, -0) \cos t + (0, 0, 1) \sin t \) is geodesic but \(t = \frac{\pi}{2} \pm 2k\pi \) for \(k \in \mathbb{Z} \)

(c) incomplete \(x(t) = (0, 1, 0) \) is geodesic.

(d) complete by Example 2.

(e) in complete \(x(t) = (0, 0, 1) \) is geodesic.

(f) \(x(t) = (1, 0) \) is geodesic, \(t = \frac{\pi}{2} \pm 2k\pi \) for \(k \in \mathbb{Z} \)