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Abstract  

We present a new method for semi-supervised 
learning based on any given valid kernel. Our 
strategy is to view the kernel as the covariance 
matrix of a Gaussian process and predict the la-
bel of each instance conditioned on all other in-
stances. We then find a self-consistent labeling 
of the instances by using the hinge loss on the 
predictions on labeled data and the ε insensitive 
loss on predictions on the unlabeled data. Com-
putationally, this leads to a quadratic program-
ming problem with only bound constraints. We 
examine the similarities and differences between 
the algorithm and other semi-supervised learning 
algorithms. Evaluation of the method on both 
synthetic and real-world datasets gives encourag-
ing results. 

1.  Introduction 

In many applications, labeled data are expensive but 
unlabeled data can be easily obtained. In these applica-
tions, it is desirable to exploit the unlabeled data to im-
prove performance of learning algorithms. Methods that 
learn from both labeled and unlabeled data are called 
transductive or semi-supervised learning algorithms.   

Kernel methods have been used successfully in various 
machine learning problems including classification, re-
gression, ranking and dimensionality reduction. The use 
of kernels allows non-linear functions to be used effi-
ciently in these problems by mapping the instances into a 
higher dimensional feature space. By designing the ker-
nels appropriately, a rich family of high dimensional 
mappings is available to suit various learning problems.  
In view of the advantages and flexibility of kernel meth-
ods, effective semi-supervised kernel learning algorithms 
could be quite useful.  

We use the self-consistency principle to design a semi-
supervised kernel classification method. The idea behind 
this principle is to label the unlabeled data in such a way 
that the classifier trained using a subset of the (labeled 
and artificially labeled) data would have low validation 
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error on the (labeled and artificially labeled) data that is 
not used in training. This principle was used in designing 
the mincut based semi-supervised learner in (Blum & 
Chawla, 2001) where the algorithm was shown to able to 
generate a labeling that minimizes the leave-one-out cross 
validation (LOOCV) error of the 1-nearest neighbor algo-
rithm. A normalized version of the algorithm based on 
minimizing the ratiocut (Spectral Graph Transducer) was 
proposed in (Joachims, 2003).  

We propose a support vector style algorithm with ε-
insensitive regression cost constraints for self-consistency 
on unlabeled points and hinge loss penalties on labeled 
points. The problem can be formulated as a quadratic 
programming problem with only bound constraints, for 
which global optimum can be found efficiently. As the 
method is based on leave-one-out Gaussian process pre-
diction using kernels, we call the method kernel self-
consistent labeling.  

Kernel self-consistent labeling has interesting connections 
with many existing algorithms. Without the ε-insensitive 
self-consistency constraints, the method is very similar to 
a leave-one-out version of the support vector machine. 
The Representer Theorem states that the support vector 
machines can be represented by linearly combining only 
kernel functions that are associated with the labeled data, 
regardless of whether unlabeled data is present. Interest-
ingly, kernel self-consistent labeling utilizes kernel func-
tions of both the labeled and unlabeled instances even 
when only the hinge loss penalties on labeled points are 
used. 

Like many semi-supervised learning methods, it is also 
possible to view the kernel self-consistent labeling as a 
graph-based semi-supervised learning method. Both the 
mincut and the Spectral Graph Transducer algorithms are 
based on minimizing edge costs on graphs. Similarly, 
(Zhu, Ghahramani & Lafferty, 2003) minimizes the sum 
of squared differences of the function on all pairs of 
points (edges), weighted by the pair-wise similarity in the 
graph. Instead of minimizing weighted cost on edges, a 
second class of graph algorithms minimizes the node cost. 
They express the predicted label of one instance based on 
the average of other instances’ labels, weighted by mutual 
similarity. In (Roweis & Saul, 2000), the cost function is 
defined on each node as the squared difference between 
the node’s own function value and the weighted average 
values of its neighbors in a certain locality. Similarly, we 
can view kernel self-consistent labeling as a method for 



 

 

minimizing node costs on a graph by using what is known 
as the equivalent kernel (Silverman, 1984) of the original 
kernel as the weight matrix in a graph. 

Conversely, in some graph-based semi-supervised learn-
ing methods such as in the harmonic energy minimization 
(Zhu et al., 2003), the Laplacian of the graph (Chung, 
1999) can be viewed as the pseudo-inverse of a kernel 
(Ham et al., 2004). Kernels can be interpreted as the co-
variance matrix of a Gaussian process except with inde-
pendent Gaussian noise added to the output (Seeger, 
2004). Thus, relationship between given labels, the prob-
ability distribution of unknown labels, and pair-wise simi-
larity among examples can be represented under the 
framework of multivariate Gaussian distributions. Inter-
estingly, in Gaussian distributions, the expected label of 
an unlabeled point, conditioned on known labels, turns 
out not to utilize the other unlabeled data once the kernel 
is fixed. In the harmonic energy minimization (Zhu et al., 
2003), the unlabeled data is utilized to construct the 
Laplacian and changing an unlabeled instance would re-
sult in a different kernel and hence different predictions 
on the other unlabeled data. In contrast, kernel self-
consistent labeling uses a fixed kernel and allows the 
change of an unlabeled instance to affect predictions on 
other unlabeled instance by self-consistency and optimiz-
ing an appropriate cost function. 

The rest of this paper is organized as follows. Section 2 
gives some background on Gaussian process and intro-
duces the leave-one-out prediction algorithm which estab-
lishes the relationships among all data points based on 
any valid kernel. Section 3 presents the proposed mixed 
classification and regression leave-one-out style algorithm 
that uses the hinge loss on labeled data and the ε-
insensitive loss function on unlabeled data. The model’s 
connections to existing learning algorithms are discussed 
in Section 4. Computational efficiency is considered in 
Section 5. Section 6 contains experimental results. Finally 
the paper is concluded in Section 7. 

2.  Leave-one-out Gaussian Process Prediction 

We assume that either a proper kernel function k0 (x, x’) 
that satisfies Mercer’s theorem or a valid Gram matrix K0 
(symmetric and positive semi-definite) (Schölkopf & 
Smola, 2002) for both labeled and unlabeled data is given. 
By Mercer’s Theorem, we have 

0 ( , ) ( ) ( )i i ii
k x x x xλ φ φ′ ′= ∑  

where  { ( )}iφ ⋅  are the eigenfunctions of 0 ( , )k ⋅ ⋅ , or eigen-
vectors of Gram matrix. Then we define Bayesian Linear 
Regression: 

( ) ( )Tz x xθ φ= ,     ( ) ( ) ( )Ty x z x xε θ φ ε= + = +  

where 1 2( ) ( ( ), ( ),...)Tx x xφ φ φ= , (0, )Nθ Σ∼ , 

1 2( , ,...)diag λ λΣ = , and noise 2(0, )Nε σ∼  which is 
independent between different x. Then covariance 

cov( ( ), ( ))z x z x′  0( ) ( ) ( , ')Tx x k x xφ φ ′= Σ =  
cov( ( ), ( ))y x y x′  

2( ) ( ) ( , )Tx x x xφ φ σ δ′ ′= Σ +    
                    2

0 ( , ) ( , )k x x x xσ δ′ ′= +  

where ( , )x xδ ′  is Kronecker delta.  So we can view 
{ ( )}Z x  as Gaussian Process (GP) with covariance matrix 
K0 if K0 is nonsingular. Suppose we have L labeled exam-
ples 1{( , )}L

i i ix c =  with { 1,1}ic ∈ − . Then the log posterior 
of the Gaussian process Z(x) is given by  

 1
02

1 1( ) ( )
2 2

T TJ c z c z z K z
σ

−= − − +  (1) 

where the first term is log likelihood and the second term 
is the log of the prior, acting as a regularization factor. 
Assume there are U unlabeled examples 1{( , )}L U

i i Lx +
= +⋅  and 

denote N = U + L. We can view { ( )}Y x  as a GP as well 
with covariance matrix 2

0K K Iσ= + ⋅ . Suppose K can 
be written as 

LL LU

UL UU

K K
K

K K
 

=  
 

. 

As K0 is positive semi-definite, K must be positive defi-
nite if 0σ ≠ . Conditioning on the given labels c, the ex-
pected value of unlabeled data’s label yU is 1

UL LLK K c− .   

Unfortunately, the result shows that unlabeled data are not 
used in predicting yU, i.e., only KLL and the row corre-
sponding to the single test example T

xk  are involved. 
Unlabeled data are not mutually related, directly or indi-
rectly via labeled data, in the process of classifying other 
unlabeled data.  

Our strategy of utilizing unlabeled data is to do leave-one-
out prediction for each instance assuming that the labels 
of the other N – 1 instances are known and impose self-
consistency.  

We compute a decision vector y with each element asso-
ciated with one example and then assign labels based on y. 
For labeled data, we do not fix its associated element in y 
to any predefined value, allowing it to vary. Assume we 
know zi = (y1, …, yi–1, yi+1 ,…, yN)T then the prediction of 
yi is 1T

i i ik T z− , where T
ik  is the ith row vector of K, without 

the ith element.  Ti is the matrix after removing the ith row 
and ith column of K. Let  T

ib  be the vector created by in-



 

 

serting 0 at the ith element of 1T
i ik T − , then the prediction of 

yi based on all other elements is T
ib y . The function ( , )b ⋅ ⋅  

is called equivalent kernel or dual kernel and is very simi-
lar to the equivalent kernel in (Silverman, 1984; Sollich, 
2004), defined in a supervised learning settings. Let B = 
(b1, …, bN). We call B the GP prediction coefficient ma-
trix. 

3.  Leave-one-out ρ-ε Learning 

Having built up the relationship among all examples 
through the leave-one-out prediction formula, we can im-
plement the self-consistency principle. For labeled data, 
since we are only concerned about their class and it is a 
classification problem, there is no need to force a strong 
match to target value like in regression. Rather, the 
maximum margin principle should be preferable. On 
unlabeled data, if we still use margin constraints, as in 
Transductive SVM (Joachims, 1999), to find an assign-
ment such that 

1T
j j jy b y ξ⋅ ≥ − , where yj is variable, 

then we inevitably come up with a non-convex optimiza-
tion problem. One simple alternative is using regression 
constraints such as the ε-insensitive loss function (Vapnik, 
1995). Finally, regularization is incorporated in the same 
way as in (1).  Putting it all together, suppose the label for 
the first L instances is known and K has already incopo-
rated Gaussian noise, the problem is formulated as: 

Minimize with respect to { , , '}y ξ ξ : 

 ( )1
1 2

1 1

1
2

L N
T

i j j
i j L

y K y C Cξ ξ ξ−

= = +

′+ + +∑ ∑  (2) 

s.t.                  1T
i i ic b y ξ⋅ ≥ −        1...i L=  (3) 

     T
j j jb y y ε ξ− ≤ +     1,...,j L N= +  (4) 

     T
j j jy b y ε ξ ′− ≤ +     1,...,j L N= +  (5) 

                    0, 0i jξ ξ ′≥ ≥    1...i N= , 1,...,j L N= +  (6) 

The constraint (3) is margin constraint. The constraints (4) 
and (5) are for ε-insensitive regression. The first term in 
(2) is for regularization. We name this mixed classifica-
tion-regression algorithm as ρ-ε learning because ρ is usu-
ally used to denote margin. The whole problem is a quad-
ratic programming (QP) problem with K (thus K–1) being 
positive definite. 

The Lagrangian is: 

=L  ( )1
1 2

1 1

1
2

L N
T

i j j
i j L

y K y C Cξ ξ ξ−

= = +

′+ + +∑ ∑  

( ) ( )
1 1

1
L N

T T
i i i i j j j j

i j L
c b y y b yα ξ β ε ξ

= = +

− + − − − + +∑ ∑          

( )
1 1 1

N N N
T

j j j j i i j j
j L i j L

b y yγ ε ξ λ ξ σ ξ
= + = = +

′ ′− − + + − −∑ ∑ ∑     (7) 

So            1 0i i iCξ α λ∂ ∂ = − − =L       1...i L∈  (8) 
        2 0j j jCξ β λ∂ ∂ = − − =L     1,...,j L N∈ +  (9) 
        2 0j j jCξ γ σ′∂ ∂ = − − =L     1,...,j L N∈ +   (10) 

1

1 1 1
0

L N N

i i i j j ex j j ex
i j L j L

K y c b b b
y

α β β γ γ−

= = + = +

∂
= − + − − + =

∂ ∑ ∑ ∑L  

where 
}0's

(0,...,0 , )
L

T T
exβ β= , 

}0's

(0,...,0 , )
L

T T
exγ γ= . So 

 
1 1 1

L N N

i i i j j ex j j ex
i j L j L

y K c b b bα β β γ γ
= = + = +

 
= − + + − 

 
∑ ∑ ∑ (11) 

Define ( , , )T T T Tx α β γ= , ( )1 1 1 2 2, ,..., L L N LR c b c b c b
×

= , 

( ) ( )2 1,..., 0 , T
L N U L UR b b I+ ×= − + ,  R = (R1, R2, –R2)     (12) 

where UI  is U U×  identity matrix and 0U L×  is U L×  
zero matrix. We obtain 

 1 2 2( )y K R R R KRxα β γ= + − =            (13) 

Substituting (8)~(13) into (7), we obtain the dual problem:  

Maximize with respect to { , , }α β γ : 

 ( )
1 1

1
2

L N
T T

i j j
i j L

x R KRx α ε β γ
= = +

− + − +∑ ∑  (14) 

s.t. 1[0, ]i Cα ∈               1...i L∈  (15) 
 2 2[0, ],   [0, ] j jC Cβ γ∈ ∈  1,...,j L N∈ +  (16) 

and the prediction formula is (13). 

Now the constraints are all bound constraints and the 
bound constrained QP can be solved very efficiently. In 
our experiments using the TRON algorithm (Lin & Moré, 
1999), the optimization usually converges to global opti-
mum within 10 seconds for 4000 variables, converging 
after about 10 to 20 iterations. As in standard SVM which 
employs L1 norm penalty, the solutions to ρ-ε learning 
also enjoys a sparse structure. 

4.  Model Interpretation and Connections to 
Other Works 

The principle idea for our model is to minimize the leave-
one-out (LOO) cross validation error. This is embodied 
by both Gaussian process prediction formula and mixed 
classification-regression ρ-ε model.  



 

 

4.1  LOO Gaussian Process prediction 

Semi-supervised learning relies heavily on similarity be-
tween instances. Since kernels can also be viewed as de-
scription of similarity, it is interesting to interpret existing 
semi-supervised learning algorithms from the perspective 
of kernels, or Gaussian process. In (Zhu et al., 2003), 
RBF kernel W is used as similarity measure: 

 
2 2exp 2ij i jw x x σ= − −  (17) 

Defining a decision vector ( , )T T T
L Uf f f=  with fL fixed to 

the given labels 0/1, we minimize the weighted sum of the 
squared differences of f on each edge, also interpreted as a 
plausible cost for a one-dimensional embedding of nodes: 

 2

, 1
( )

N

ij i j
i j

w f f
=

−∑  (18) 

Let 1( ,..., )ND diag d d= , where 
1

N
i ijj

d w
=

= ∑  and define 
graph Laplacian as L D W= − . The algorithm essentially 
minimizes the quadratic form Tf Lf . Suppose 

LL LU

UL UU

L L
L

L L
 

=  
 

 

Then the closed-form solution is: 1
U UU UL Lf L L f−= − .    (19) 

Locally linear embedding (LLE) (Roweis & Saul, 2000) 
established cost functions on each node. Suppose for node 
xi, the combined contribution from all other nodes is 

ij j
j i

w f
≠

∑ , subject to 1ijj
w =∑ , 0ijw ≥  (if requiring re-

construction of each point lying within the convex hull of 
its neighbors), and wij = 0 if xj does not belong to the set 
of neighbors of xi. Then we would like the weighted aver-
age to be close to fi. So we have the following problem: 

Minimize 
2

i ij j
i j i

f w f
≠

 
− 

 
∑ ∑  (20) 

Using notation above, it is essentially minimizing 
T Tf L Lf  and a similar closed-form solution can be given. 

(Ham et al., 2004) pointed out that both Laplacian algo-
rithm (18) and LLE are kernel PCA with kernels being the 
pseudo-inverse of L (denoted as L† ) and max

TI L Lλ −   (or 
its centered form) respectively, where maxλ  is the largest 
eigenvalue of TL L . In the minimization problems (18, 20) 
for classification tasks, it is TL L  in LLE that plays a simi-
lar role as L in Laplacian method. To make L† and †( )TL L  
valid covariance matrices of the associated Gaussian 
process, we add very small noise 2 Iσ . Surprisingly, from 
this perspective, the prediction, say (19), does not make 
use of information in the lower-right U U× sub-matrix of 

covariance matrix (kernel) associated with unlabeled data. 
This is because for a multivariate Gaussian distribution of 
( , )T T T

L Ux x  with zero mean and covariance 

LL LU

UL UU

Σ Σ 
 Σ Σ 

 

the expected mean of xU given xL is 1
UL LL Lx−Σ Σ . What (18) 

seeks is the xU which minimizes the logarithm of Gaus-
sian probability distribution function with xL fixed, and its 
solution (19) should be exactly the expected conditional 
mean of xU. Note, however, that when these methods are 
used for semi-supervised learning, it is the Laplacian that 
is constructed from the unlabeled data, hence the kernel 
changes when the unlabeled data change. 

One restriction of the Laplacian algorithm is the require-
ment of nonnegative similarity. Otherwise the Laplacian 
will no longer be positive semi-definite. In LLE, weights 
are decided by minimizing a function and it may also 
require positive weights for certain applications. As some 
kernel functions may assume negative value, this restric-
tion precludes a rich source of similarity functions. Using 
our leave-one-out Gaussian process prediction, we can 
obtain a naturally scaled formula for combining the con-
tributions from all other nodes while utilizing kernel func-
tions, even those that may assume negative values. The 
objective function now becomes minimizing 

( )2T
i ii

f b f−∑ with respect to fU in ( , )T T T
L Uf f f= , 

clamping  fL to given labels 1±  or 0/1. This LOO Gaus-
sian process prediction algorithm makes it possible to 
utilize general kernels as similarity for graph algorithms. 

4.2  LOO Mixed ρ-ε Learning 

It is interesting to investigate the model’s behavior as an 
interpolation between putting unlabeled data on similar 
footing as the labeled data and ignoring unlabeled data 
completely. In min-cut class graph algorithms, the re-
weighting of labeled and unlabeled data can usually be 
carried out by modifying the weight between nodes, ad-
justing the original weight by a factor η (0 1)η≤ ≤ when 
an edge connects unlabeled nodes. The simplest corre-
sponding manipulation in our model is to convert matrix 
B as follows: 

1
1

LL LU LL LU

UL UU UL UU

B B B B
B B

B B B B
η
ηη

   ′= → =   +   
 

In general cases, 1η ≤  as unlabeled points are less reli-
able and less informative than labeled data. 

Another method is to tune ε to provide the tradeoff. By 
applying Karush-Kuhn-Tucker (KKT) conditions, we 
have: 

( ) 0T
j j j jb y yβ ε ξ+ − + =  

( ) 0T
j j j jb y yγ ε ξ ′+ + − =  



 

 

When ε is very large, the constraints (4) and (5) are 
unlikely to be active, so jβ  and jγ  are almost certainly 0. 
The only remaining constraints are on labeled data. In this 
sense, tuning ε can re-weight the effect of unlabeled data 
on our model. 

If 0jβ ≈  and 0jγ ≈ , then Rx 1R α≈  and the prediction 
formula is:  

 1y KR α=  (21) 

Substituting (21) into (14), we have a simplified model: 

Maximize 1 1
1

1
2

L
T T

i
i

R KRα α α
=

− + ∑  (22) 

s.t. 1[0, ]    1...i C i Lα ∈ ∈  (23) 

Specifically, for data point x, the prediction 

 1
1 1

TL L
T T

x x x i i i i i i x
i i

y k R k b c b c kα α α
= =

 
= = ⋅ = ⋅ 

 
∑ ∑  (24) 

where kx is the 1N ×  vector ( )1( , ),..., ( , ) T
Nk x x k x x  corre-

sponding to unlabeled instance x in K. Since 
1

L

i i i
i

b cα
=

⋅∑  is 

independent of x, this result shows that the optimal solu-
tion must lie in the span of kernels evaluated at the la-
beled and unlabeled data points. In comparison, accord-
ing to the Representer Theorem (Schölkopf & Smola, 
2002), the solution of the Support Vector Machine can be 
represented entirely with kernels associated with labeled 
data, even when unlabeled data is present. Note also that 
the Representer Theorem, applied to ρ-ε learning also 
shows that the solution for ρ-ε learning can be represented 
using only kernels associated with the labeled and unla-
beled data and do not require kernels associated with un-
seen data. Hence, when additional examples are given for 
testing, the model can perform in an inductive fashion 
rather than only in the transductive style.  

There is a natural connection between our mixed ρ-ε 
model and leave-one-out SVM (LOOSVM) (Herbrich, 
2002). The LOOSVM is formulated as: 

Minimize 
1

L

i
i

ξ
=
∑  (25) 

s.t. 
1,

( , ) 1
L

i j j i i
j j i

c K x x bα ξ
= ≠

 
+ ≥ − 

 
∑   1...i L∈  (26) 

                        0 0   i iξ α≥ ≥         1...i L∈  (27) 

The constraints for our mixed ρ-ε model has the form 

1T
i i ic b y ξ≥ −  

which is different to (26) but is still a leave-one-out pre-
diction constraint. The objective function (2) has an addi-
tional regularization term compared to (25) which just 
minimizes the L1 norm of penalty. Despite these differ-
ences, both LOOSVM and our model are minimizing the 
leave-one-out error, using similar frameworks to produce 
the prediction of one instance’s label assuming the others’ 
labels are known.  

5.  Efficiency Considerations 

Two costly operations involved in this algorithm are ma-
trix inversion for building the GP prediction coefficient 
matrix B, and the calculation of the Hessian matrix for 
quadratic programming. To calculate B, one needs 1T

i ik T −  
for all 1...i N=  so the bottleneck lies in 1

iT − . Here we can 
apply Matrix Inversion Lemma in its simplest form: 

1 1 1 1 1( ) (1 )T TA uv A A u vA v A u− − − − −+ = − ⋅ +  

where A is a N N×  invertible matrix, u and v are 1N ×  
vectors. We first calculate 1

1T − .  Noticing that Ti+1 ( 1i ≥ ) 
is different from Ti only by the ith row and ith column, we 
have 1 1 1T T

i i i i i iT T u v+ = + ⋅ + ⋅ , where 1i  is a ( 1) 1N − ×  
vector with all elements being 0 except the ith element 
being 1. So 1 1

2 ,..., NT T− − can be calculated one after one. As 
each application of matrix inversion lemma has computa-
tional complexity O(N 2 ), the total cost of building B is 
O(N 3). 

The QP itself can be solved efficiently. The calculation of 
the Hessian matrix in (14) with R defined in (12) can also 
be done quickly. But if one-against-all approach is 
adopted for multi-class tasks, calculating RTKR for multi-
ple times can be costly. However, as R = (R1, R2, –R2) and 
only R1 is related to labels which change in the one-
against-all process, we only need to calculate 1 2

TR KR  and 

1 1
TR KR  repeatedly. They both cost 2( )O U L , under the 

typical settings of semi-supervised learning that L U= . 
Therefore, both can be done efficiently.  The 3( )O U  step 
for producing 2 2

TR KR  needs to be done only once. 

6.  Experimental Results 

We evaluate our algorithm on eight datasets. Three are 
from the 20 newsgroup dataset (19997 instances) (Lang, 
1995): baseball-hockey (1993 instances / 2 classes), re-
ligion-atheism (1424 / 2), and pc-mac (1943 / 2). Two 
are from handwritten digits recognition task: odd-even 
and 10 digits (10-way), for which we used a simplified 
form available at http://www.cs.colorado.edu/~grudic/ 
data, with 196 features each ranging between 0 and 9. We 
extracted 200 examples from each class (so 2000 in-
stances in all). The other three datasets are synthetic 2-



 

 

spiral (194 / 2 / 2 features), wine (178 / 3 / 13) (UCI Re-
pository), and yeast (1484 / 10 / 8). All input feature vec-
tors are normalized to have length 1, except the three 20 
newsgroup datasets and the 2-spiral dataset. We randomly 
pick training sets and test prediction accuracy on the re-
maining examples under the constraint that all classes, 
including each digit as subclasses for the odd-even dataset, 
must be present in labeled set. For multi-class tasks, the 
one-against-all heuristic is used and we pick the class 
whose function has the largest value. The program is writ-
ten in Matlab, except the QP solver which is implemented 
more efficiently by applying TRON algorithm provided 
by the Toolkit for Advanced Optimization (TAO) (Benson 
et al., 2004). 

We compare our algorithm with the SVM. To ensure that 
comparison is fair we use RBF kernel for both models. 
For SVM, we choose the RBF kernel bandwidth 2

SVMσ  (as 
in (17)) and tradeoff parameter C that yield the best aver-
age generalization performance, i.e., maximizing the av-
erage testing accuracy of all choices of training dataset 
size. For kernel self-consistent labeling, we fix Gaussian 
noise variance to 10– 4. After some experiments, we find 
that C1 = C2 = 10, ε = 1 performs well throughout all data-
sets and all possible number of labeled data. In fact, the 
performance is not very sensitive to the exact value of C1 
and C2, as long as they are at a proper magnitude. This is 
similar to the property of tradeoff parameter C in SVM. 
However, the RBF kernel bandwidth σ 2  needs to be tuned 
for each dataset. To demonstrate that good values for 2σ  
can be found with reasonable effort, we experimented 
with four bandwidths for all datasets: 2 2

SVM rσ σ= , 
where r = 1, 10, 20, 100. In practice, when enough labeled 
data exists, k-fold cross validation can be used to select 
good settings for the parameters. 

Figure 1 to Figure 4 demonstrate the resulting accuracies. 
Each result is averaged over 30 trials of randomly picking 
labeled data. We observe that self-consistent labeling with 
r = 20 outperformed SVM for 6 out of the 8 datasets. For 
the other datasets, yeast and 10-digit (both 10-way multi-
class tasks), we tried more settings to see if settings that 
can outperform the SVM exist and indeed we found better 
settings as shown in Figure 4. For yeast dataset, r = 2 
yields consistently better results, while for 10-digit dataset, 
the result given by r = 5–1 is of little statistical difference 
from SVM in most cases. Whether the preference for 
smaller r is due to the larger number of classes or just due 
to the property of the dataset itself requires further inves-
tigation, because the effect of one-against-all heuristic on 
kernel self-consistent labeling is less known. One avenue 
of investigation, as future work, is to try to transplant 
strategies that extend SVM for multi-class classification 
to our algorithm. 

For all the datasets except the 10-digit dataset, we find 
that 1r >  yields better results than 1r <  (not shown be-
cause of the already consistently poor performance at r = 
1 and the trend shown). In normal supervised learning, 

larger training set size usually allows the use of smaller 
bandwidths to improve performance. This suggests that 
kernel self-consistent labeling is able to take advantage of 
the unlabeled data and use kernels with smaller bandwidth 
effectively.    

It is interesting to investigate the influence of the ratio 
between labeled positive and negative data. For all the 5 
binary tasks, the performance of SVM grows worse under 
the sequence #postive/#negative = 10/10, 10/20, 10/30, 
10/40, though the total number of training data is increas-
ing. Kernel self-consistent labeling has a different trend 
when using unbalanced training data in the 2-spiral data-
set. With the number of labeled data growing in that se-
quence, albeit increasingly unbalanced, there is consistent 
improvement in accuracy. 

The 2
SVMσ  and optimal C for SVM are given in Table 1. 

Table 1. Optimal parameters for SVM 

 baseball - 
hockey 

religion -
atheism 

pc - mac odd - even 
2
SVMσ  40000 169000 105 0.5 
C 100 106 103 105 

      10 digits 2-spiral wine yeast 
2
SVMσ  0.05 5× 10– 4 50 0.5 
C 100 104 104 100 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Accuracy results (in percentage) for 2-spiral data. In 
the upper figure, there is equal number of positive and negative 
labeled data. The lower figure shows different numbers of 
pos/neg labeled data. 1, 10, 20, 100 in legend are the values of r. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Accuracy results for baseball vs hockey (left), religion vs atheism (middle), and pc vs mac (right). The upper middle figure 
has no curve for r = 1 because its accuracy is always below 52%.  

 

 

 

 

 

Figure 3. Accuracy results for odd vs even. 

7.  Conclusions 

In this paper, we describe a new method of utilizing unla-
beled data for classification based on leave-one-out Gaus-
sian process prediction and mixed classification-
regression. We motivate this approach using the princi-
ples of low training error on labeled data and low 
LOOCV error on whole dataset. The essence of the algo-
rithm is to view any generic valid kernel or Gram matrix 
as covariance matrix of a Gaussian process and then es-

tablish the leave-one-out prediction formula based on 
conditional expectation under multivariate Gaussian dis-
tribution. This formula connects all instances and can also 
possibly be interpreted as a similarity measure. Built upon 
this connection, a support vector style model is proposed 
by minimizing the hinge loss on labeled data for classifi-
cation, and the ε-insensitive cost on unlabeled data for 
regression. The model reduces to a local-optima-free 
quadratic programming problem with only bound con-
strain and can be solved efficiently. Both the Hessian ma-
trix and GP prediction coefficient matrix can be computed



 

 

 

 

 

 

 

 

 

Figure 4. Accuracy results for wine (left), yeast (middle), and 10-digit (right). For these multi-class tasks, we do not show the influ-
ence of different ratio of labeled data from each class. There is no line for r = 100 in the right figure (10-digit) because its accuracy is 
always below 80%. 

efficiently, by matrix block decomposition and matrix 
inversion lemma respectively. Experimental results illus-
trate the advantage of semi-supervised learning using ker-
nel self-consistent labeling when compared to using the 
SVM. 

Further work needs to be done to extend the current bi-
nary classification settings so that it uses an in-built 
mechanism for multi-class classification, rather than gen-
eral one-against-all heuristics. Other variants of SVM 
such as -SVMγ or other loss functions like Huber’s ro-
bust loss (Schölkopf & Smola, 2002) can also be utilized 
under the framework of self-consistency. Finally, it is 
desirable to explore and establish, under the settings of 
semi-supervised learning, stronger theoretical connections 
with RKHS models and learning theory, where many 
state-of-the-art learning models are rooted. 
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	Text1: Note: some results are inaccurate due to bugs found after ICML submission.


