
Compiling MATLAB M-Files for Usage Within an
C-Application

Peter M. Roth, Martin Winter
{pmroth, winter}@icg.tu-graz.ac.at

December 17, 2004

1 Introduction

1.1 General Notes

The following guideline describes the steps to do to a proper compilation of MATLAB
source code (M-files) for integration into a C/C++ framework, i.e the FSP-Framework
zwork for Computer Vision applications. All examples presented in this work can be
downloaded at [17].

Due to some bugs and unresolved known problems in the MATLAB Compiler (Ver-
sion 3.0) of MATLAB 6.5 Rel.13, it is essential to follow some restrictions and a handful
of workarounds. The presented solutions are partially officially solutions published by
MathWorks Inc. but most of them result from our observations during the attempts to
compile and integrate our MATLAB code into stable applications under Linux.

1.2 Environment for that this guide is valid:

• MATLAB 6.5 Rel.13 (Linux, Windows)

• Windows XP : Visual Studio 6.0, gcc 2.3.2

• Linux: gcc 2.95, gcc 3.2.2, gcc 3.3.1

1.3 Structure of the Document

Section 2 gives a general overview of the usage of the MATLAB Compiler mcc that is
valid for Windows as well as for Linux operating system. Section 3 gives a detailed
guideline for compiling M-files under Windows XP using Visual Studio 6.0, as Section 4
gives a detailed guideline for compiling M-files under a Linux environment. In the end
Section 5 gives a short introduction how to include existing compiled M-files into a C
framework.

1

g0304934
Highlight

2 MATLAB Compiler mcc

2.1 Preliminary Notes

The MATLAB Compiler mcc can translate M-files into C or C++ source code. The
resulting files can be used in any of the supported executable types (MEX, stand-alone
executable, library) by generating an appropriate wrapper file. A wrapper file contains
the required interface between the mcc-generated code and a supported executable type.
For compilation and linking any ANSI C or C++ compiler may be used. Therefore the
mcc itself is not a ANSI C or C++ compiler! At the linking stage the resulting object files
are linked against the MATLAB C/C++ Math and Graphics Libraries (see: Figure 1).

To create a stand-alone C or C++ application, the the following steps are processed by
the MATLAB Compiler mcc:

1. Translation of the given M-files into C or C++ source code.

2. Generation of additional C or C++ source code modules (wrapper files).

3. Invocation of a C or C++ compiler and linker.

Figure 1: Creating a C stand-alone application [4]

2

g0304934
Highlight

2.2 mcc Compiler Option Flags

The following table gives a short overview of the most important compiler option flags
needed for generation of C/C++ code. For a complete list of all option flags refer to [4].

Option Description
-B filename Passes a bundle of compiler settings stored in filename to

the mcc. A set of predefined bundles are located in
matlab dir/toolbox/compiler/bundles.

-B sgl Builds an C stand-alone application linked to the C/C++ Graphics
Library. Equivalent to: -m -W mainhg libmwsglm.mlib

-c When used with a macro option, generates C code only.
-g Generates debugging information.
-G Debug only, no execution.
-h Compiles helper functions too.
-I directory Adds directory to path.
-L language Specifies output target language.

language = {C, Cpp}
-m Macro to generate a C stand-alone application.

Equivalent to: -W main -L C -t -T link:exe -h libmmfile.mlib
-o outputfile Specifies name/location of final executable.
-p Macro to generate a C++ stand-alone application.

Equivalent to: -W main -L Cpp -t -T link:exe -h libmmfile.mlib
-t Translates M code to C/C++ code
-T target Specify the desired output stage, available targets given in the list

below:

codegen Translates M-files to C/C++ files and generates a wrap-
per file (default).

compile:exe Same as codegen plus compiles C/C++ files to object
form suitable for linking into a standalone executable.

compile:lib Same as codegen plus compiles C/C++ files to object
form suitable for linking into a shared library/DLL.

link:exe Same as compile:exe plus links object files into a stan-
dalone executable.

link:lib Same as compile:lib plus links object files into a shared
library/DLL.

-v Verbose mode: displays compilation steps.
-W type Controls the generation of function wrappers.

type = {main, lib:libname}
libmwsglm.mlib Link to this library whenever needed.

Table 1: mcc compiler option flags for generating C/C++ code

3

2.3 Limitations and Restrictions

There are some limitations and restrictions using the MATLAB Compiler. Therefore mcc
(Version 3.0) cannot compile:

• M-files containing scripts.

• M-files that use objects.

• Calls to the MATLAB Java interface.

• M-files that use the MATLAB commands input or eval to manipulate workspace
variables. Input and eval calls that do not use workspace variables will compile and
execute properly.

• M-files that use the MATLAB command exist with 2(!) input arguments.

• M-files that load text files. Data exchange via files is best done using MAT-files.
This ensures for example that files created under Linux would be readable under
Windows.

As a consequence of some bugs and known unresolved problems there exist some workarounds
to cope with this problems:

• Sometimes the mcc doesn’t find, for some reasons, M-files of external toolboxes,
even though the correct path was set within a -I statement. Therefore these M-files
must be copied to the same directory as the main M-files that need this helper
functions.

• Many functions of the Image Processing Toolbox, i.e. those functions for morpholog-
ical operations, are not found by the compiler. To enable compiling this functions,
these M-files must be copied into the working directory.

• Functions that use the MATLAB command imlincomb, i.e. many functions of the
Image Processing Toolbox, would return a compiler error when generating C++
stand-alone applications. Therefore functions that use functionality of the Image
Processing Toolbox can not be translated to C++ code in general. As a workaround,
generate C stand-alone applications instead of C++ stand-alone applications.

2.4 Stand-Alone MATLAB Compiler

There are two versions of the MATLAB Compiler, one that is included in the MATLAB
environment and a stand-alone version. The latter one may be used in a Makefile to
automatize the build process (for some workarounds).

Unlike the MATLAB version, which inherits the paths from MATLAB, the stand-alone
version has no initial path. So you will have to set a -I option (e.g. in a Makefile) for
all directories you want to include into your search path. Another method is to set up a
default path by making an mccpath file:

4

g0304934
Highlight

g0304934
Highlight

g0304934
Highlight

g0304934
Highlight

1. Create a text file containing the text -I dir name for each directory you want on
the default path, and name this file mccpath.

2. Place this file in your preferences directory. To do so, run the following commands
at the MATLAB prompt:

cd(prefdir)
mccsavepath

The stand-alone version of the MATLAB Compiler searches for the mccpath file in your
current directory and then your preferences directory. Note that you may still use the
-I option on the command line to add other directories to the search path. Directories
specified this way are searched after those directories specified in the mccpath file.

2.5 MBUILD

MBUILD compiles and links source code files that call functions in the MATLAB C/C++
Math Library and/or Graphics Library into a stand-alone executable or a shared library.
Because MBUILD does nothing else than invoking the ANSI C or C++ compiler, we used
MBUILD only for debugging reasons to determine which libraries we needed to link with:

mbuild -n -Iusr incl dir/ -Lusr lib dir main.c -lusr lib 1 -lusr lib 2 ...

When specifying the -n option, MBUILD sets up the compile and link command lines
necessary to build a stand-alone application but does not execute the commands. View
the output of mbuild -n to determine the list of libraries you must link your application
with and the order in which you must specify them. Therefore MBUILD may be a good
tool for porting C/C++ source code from Windows to Linux and vice versa.

For more detailed information about MBUILD refer to [4] or call mbuild -help from the
Linux command line.

5

g0304934
Highlight

3 Windows XP

3.1 Compiling M-files to Stand-Alone Applications

• Extract MatLab Compiling Files Win32.zip to the local compiling directory. This
ZIP-file contains some MATLAB M-files not found by the compiler although they
are within the MATLAB’s default path (see Section A.1 for details). Additionally
some dynamic linked libraries which are necessary for compiling due to an unknown
reason (it seems, that the MATLAB Compiler uses these binaries as substitute
for the missing corresponding source-code files). Note, that there is a remove.bat
batchfile which removes the extracted files from the harddisk in an easy way.

• Check, that the folder with the M-files to compile is the current folder within
MATLAB.

• Start compiling with the following flags:

mcc -m -B sgl name of function.m

Result: An executable file, c-files, h-files and some other files are written to the actual
compiling directory.

Note: For executing the *.exe it is necessary to extract MatLab Runtime DLLs Win32.zip
to the current directory or have them within in your local path. This ZIP-file con-
tains all the necessary libraries needed during execution of compiled code (see Sec-
tion A.2 for details). This is due to the fact, that some MATLAB-functions are
only available as binaries (no sourcecode available). Note, that there is a remove.bat
batchfile which removes the extracted files from the harddisk in an easy way.

3.2 Compiling M-Files to a DLL:

• Extract MatLab Compiling Files Win32.zip to the local compiling directory

• Check, that the folder with the m-file to compile is current folder within MATLAB

• Start compiling with the following flags:

mcc -t -W lib:name of function lib -L C -T link:lib -h libmwsglm.mlib
libmmfile.mlib name of function.m

Result:

• the shared library name of function lib.dll

• library info file name of function lib.lib

• library header file name of function lib.h

6

• some other c-files, h-files a.s.o

Notes:

• You can use the .c and .h files for compiling a library with another compiler.

• For executing an application it is necessary to have all *.dll files in the actual folder
or within your local path-variable. For executing the *.exe it is necessary to extract
MatLab Runtime DLLs Win32.zip to the current directory or have them within in
your local path.

3.3 Compiling an Stand-Alone Application using the Shared Li-
brary in Visual Studio

3.3.1 Necessary Includes for C/C++ Code Generation

Name: ”matrix.h”

Path: C:\Programme\MATLAB\extern\lib\win32\microsoft\msvc60

3.3.2 Necessary Libraries for Linking

Name: libeng.lib libfixedpoint.lib libmat.lib libmatlb.lib libmatlbmx.lib libmex.lib lib-
mmfile.lib libmwarpack.lib libmwlapack.lib libmwmcl.lib libmwrefblas.lib libmwser-
vices.lib libmwsglm.lib libmx.lib libut.lib sgl.lib b

Path: C:\Programme\MatLab\extern\lib\win32\microsoft\msvc60

3.4 Compiling a MATLAB-Project with Visual Studio

Use the Project-Wizard integrated to Visual Studio during MATLAB installation.

3.5 Compiling using gcc for Windows

Since gcc is the standard compiler for Linux it would be desirable, e.g. for reasons of
portability, to use it for compiling under Windows as well. For any reason, gcc is not
officially supported my Mathworks Inc., so no suitable libraries1 are distributed with
MATLAB. Thus, you need to create import libraries for the dependent DLLs. Therefore
go to the directory matlab dir\extern\include, where you will find the definition files
*.def, and run the following command:

dlltool –def libname.def –dllname libname.dll –output-lib libname.a

1The original Libraries (*.dll Files) are located in matlab dir\bin\win32.

7

This will create an import library for an existing library libname.dll that now can be
linked against an application using gcc. An example bat-file creating these libraries is
given in Section A.3.

Thus, a Makefile written for Linux (see: Listing 1) can be used under Windows as well,
if the following restrictions are conidered:

• Special UX compiler and linker flags must be removed:
CFLAGS = -DUNIX -ansi -D GNU SOURCE -pthread
LDFLAGS = -pthread

• When creating a library the output libname.so must be renamed to libname.dll.

• When creating an executable the target exename may be renamed to exename.exe.
Some versions of the make command will add the exe-extension automatically if
missing.

Note that building MATLAB API applications or standalone MATLAB applications with
GCC on Windows are not supported; you will have to address any incompatibility issues
that may arise.

3.6 Compiling using lcc

lcc is a free C-compiler that is shipped with the MATLAB package. For compiling M-files
within the MATLAB environment you can choose either to use lcc or, if present, Visual
C++. Of course you may use lcc for compiling in command line as well. Therefore you
only need to link against the correct versions of the MATLAB libraries that are located in
matlab dir\extern\lib\win32\lcc. If lcc was selected as standard compiler for MATLAB,
use mbuilt to determine the correct parmeters.

Be careful, lcc is a plain ANSI C compiler. Thus, you necessarily have to set the target
language to C when converting the M-files! For more detailed information refer to [16] or
run the lcc-help that is included in the MATLAB package: matlab dir\sys\lcc.

8

4 Linux

4.1 Preliminary Notes

All steps described in this section may be done inside the MATLAB environment much
easier. On the one hand side all the paths are set correctly and therefore the system
would find all include files and all necessary libraries and on the other hand side the
MATLAB Compiler would automatically link to needed libraries. Therefore it is more
reasonable to do the generation of C/C++ source code, compiling and linking within
the MATLAB environment if you only need an executable stand-alone application. But
for our intended purpose, distributing C/C++ source files that should be compiled on a
different machine, combined with unresolved problems concerning functions of the Image
Processing Toolbox, there is no way around the following steps.

4.2 Libraries and Include Paths

For some reasons, i.e. for porting the MATLAB code to some other machines where no
MATLAB environment is available, it is necessary to compile and link the M-files outside
the MATLAB environment. Therefore the (relative) paths of libraries and include files
must be passed to the compiler manually at compile stage. The include files needed for
compilation are located in

matlab dir/extern/inlcude

and the MATLAB Libraries needed for linking are located in

matlab dir/extern/lib/glnx86
matlab dir/bin/glnx86
matlab dir/sys/os/glnx86.

The libraries located in the sys/os branch are are only needed if the Motif 2-libraries on the
local machine are missing or if the libstdc++-libc library on the local machine is different
from the version included in the installed MATLAB system. For reasons of portability
this libraries should be included in the linker path anyway. If the correct libraries are
installed on the local machine, the locally installed libraries would be linked.

If the C source code generated by the mcc compiler should be compiled and linked on
different machines the include files and the 3 library directories must be included in the
distribution package.

2Motif is the standard library for graphical user interface for the MATLAB system under Linux.

9

4.3 Compiling M-Files to Stand-Alone Applications

It is assumed that there is an M-file that serves as main file, that maybe calls some helper
functions. Moreover the main files may use functions of the MATLAB C/C++ Graphics
Library. To generate an executable stand-alone application from these files 3 steps are
necessary. Therefore it is convenient to use a Makefile rather than calling the compiler
from the command line. For reasons of readability the compiling and linking step is given
as a scratch of a Makefile [1], respectively (see: Listing 1):

(i) Convert M-Files to C source code using the mcc (no compiling):

mcc -t -W main -h -c libmmfile.mlib main.m
mcc -t -B sgl -h -c libmmfile.mlib main.m

(ii) Compile C source files:

gcc -c -I$(INCL) $(CFLAGS) $(SRCS)

(iii) Link compiled object files against MATLAB libraries to an executable:

gcc $(LDFLAGS) -o test $(OBJS) $(LDLIBS)

...

SRCS = $(wildcard *.c)
OBJS = $(wildcard *.o)

INCL = MATLAB_DIR/extern/inlcude
LIBBIN = MATLAB_DIR/bin/glnx86
LIBEXTERN = MATLAB_DIR/extern/lib/glnx86
LIBSYS = MATLAB_LIB_DIR/sys/os/glnx86

LIBS = -lmwsgl -lmwhg -lmwsglm -lmmfile -lmatlb -lmx -lmwservices\
-lmex -lut -lm -lm

LDLIBS = -Wl,--rpath -link ,$(LIBBIN),--rpath -link ,$(LIBEXTERN),...
...--rpath -link ,$(LIBSYS) -L$(LIBBIN) -L$(LIBEXTERN) -L$(LIBSYS) $(LIBS)

LDFLAGS = -pthread -g -O
CFLAGS = -DUNIX -ansi -D_GNU_SOURCE -pthread -g -O -DNDEBUG

...

Listing 1: Makefile

Annotation

(i) Using the second line the wrapper main-file would enable to link to the MATLAB
C/C++ Graphics Library at linking stage.

10

g0304934
Highlight

(ii) The CLFAGS used for compiling can be obtained by calling the mmc in the verbose
and debug mode. View the output of

mcc -t -W main -h -c -v -G libmmfile.mlib main.m

to determine the CLFAGS for compiling the code correctly. They should be the
same for all M-files.

(iii) To determine the LDFLAGS and the necessary libraries for linking the code correctly,
look again at the output of the mmc in the verbose and debug mode.

The linker option (initialized by -Wl,) −−rpath-link,lib dir name3 must be set for
all directories that include libraries that the application is linked with. Otherwise
some linkers would not find these shared libraries [2].

The usage of wildcard expressions is not a very pretty solution, but at compile time you
would not know which C-files the MATLAB Compiler would generate. Another bothering
consequence of using these wildcard expression in Makefiles is the fact that you cannot run
the convert, compile and link target within the same make command. Since the wildcard
expressions are evaluated when the Makefile is called, there would not exist any *.c or *.o
files that can be compiled or linked. As a simple workaround to fix this, you can write a
Makefile containing the targets convert, compile and link, that call a Sub-Makefile with
the same target, respectively.

4.4 Compiling M-Files to Shared Libraries

For creating a shared library the same 3 steps as in Section 4.3 are necessary. Only some
compiler option flags are different. The Makefile-notation refers again to Listing 1:

(i) Convert M-Files to C source code using the mcc (no compiling):

mcc -v -t -W lib:libname of lib -L C -T link:lib -h -c libmmfile.mlib

fun 2.m fun 1.m

mcc -v -t -W lib:libname of lib -L C -T link:lib -h -c libmmfile.mlib

libmwsglm.mlib fun 2.m fun 1.m ...

(ii) Compile C source files:

gcc -c -fPIC -I$(INCL) $(CFLAGS) $(SRCS)

(iii) Link compiled object files against MATLAB libraries to a library:

gcc $(LDFLAGS) -shared -o libtest.so $(OBJS) $(LDLIBS)

3The ... are inserted for readability reasons only. Using the -Wl option you must not use blanks,
otherwise the option would not be recognized by the linker. Therefore you cannot insert a manual line
break using a slash, since this will unfortunately insert a blank at the position of the line break.

11

Annotation

(i) Libraries under Linux are restricted to the prefix lib in the library name. Using the
second line the library will be linked to the MATLAB C/C++ Graphics Library at
linking stage.

(ii) The -fPIC option is to tell the compiler to create Position Independent Code (create
libraries that use relative addresses), so a compiled library can be loaded multiple
times at run-time [2].

(iii) Using compiler the flag -shared a shared library will be linked.

4.5 Distribution of MATLAB Executables

To distribute a stand-alone application for Linux, you must create a package containing
these components:

(i) The stand-alone executable

(ii) The contents, if any, of a directory named bin

(iii) Any MEX-files used by the application

(iv) The MATLAB Run-Time Libraries

(v) Any other library that was linked with the application

Annotation

(ii) The directory bin may contain the *.fig files that are required for correct displaying
the toolbar of a graphical application. This directory must be placed in the same
directory as the executable.

(iii) To determine which MEX-files would be needed, search for C-files called
* mex interface *.c generated by the MATLAB Compiler. The MEX-files apper-
taining to these C-files must be placed in the subdirectory called bin. MEX-files
installed in a private directory in MATLAB must also be installed in a private di-
rectory within the directory bin. For an example see [10]. If this still does not
work, all those the MEX-files will have to be copied into the same directory as
the executable. Unlike described in [10] this even works for functions of the Image
Processing Toolbox.

(iv) The MATLAB Run-Time libraries can be distributed using the executable
mglinstaller 4, which can be found under matlab dir/extern/lib/glnx86. This ap-
plication installs the MATLAB Math and Graphics Run-Time Libraries.

Once the installer has finished, the directory matlab rt dir/bin/glnx86 must be
added to the LD LIBRARY PATH environment variable as well as the parent path
of your own MATLAB libraries.

4For privacy policy and license agreement for this installer refer to [8].

12

5 Include compiled MATLAB functions to C-code

5.1 Preliminary Notes

C Code only
Generally it is possible to generate C code as well as C++ code from existing
MATLAB files. But there are still some problems in compiling functions that need
the C/C++ Graphics Library (e.g. [9, 11, 12, 13]). Although there exist some
workarounds, there are still some unresolved problems remaining. So we can only
generate C code from our MATLAB functions.

Naming Convention
All MATLAB functions translated to C code follow the same naming conventions.
The name of the C functions start with the prefix mlf followed by original function
name, whereby the first letter is capitalized. For example the translated C function
of the well known function svd (singular value decomposition) is called mlfSvd.

Include Libraries
The simplest way to include MATLAB functions into a C environment is to link
them together into a shared library. The result of the linking process are a shared
library (libname.dll/Windows, libname.so/Linux) and a header file libname.h. To
enable the execution of the library’s source code the library must be initialized.
Therefore the the MATLAB Compiler generated the functions libnameInitialize()
and libnameTerminate(), which can be compared to constructor and destructor
speaking in terms of C++ programming. For an example see: Listing 2.

If no libraries were generated you can link the compiled object files to your ex-
ecutable as well. If so you have to add a name of functionInitialize() and
name of functionTerminate() command for every compiled function you call to
your C main file.

Linking Library Bug
Due a bug in the mcc it is not possible to link more than one mcc generated library to
a C program directly on a Linux system. The variables lib info and reference count
are defined extern for each library. Therefore initializing a second library overrides
the settings of the first one. This causes a segmentation fault at run-time. As a
workaround for this problem, these extern defined variables must be renamed to a
unique name, e.g. by running PERL script within a Makefile.

Generating Unsupported Libraries
Nevertheless linking of libraries against the C/C++ Graphics Library is not offi-
cially supported by Mathworks [9, 12], we were able to create such libraries and link
them to pure C functions and got stable executables.

5.2 Example

The following simple example shows, how to integrate a library generated from MATLAB
functions into a C main-file.

13

1 #include "matlab.h"
2 #include "libsimple.h"
3
4 int main(int argc , char* argv [])
5 {
6 /* define variables */

7 double A = 2; double B = 3;
8 double C = 0; double D = 0;
9 char Head[] = "This is a Test String.";

10
11 mxArray *pmxA , *pmxB , *pmxC , *pmxD , *pmxHead;
12
13 /* enable automated memory management */

14 mlfEnterNewContext (0, 0);
15
16 /* initialize MatLab environment */

17 libsimpleInitialize ();
18
19 /* initialize mxArrays */

20 pmxC = mxCreateDoubleMatrix (1,1,mxREAL);
21 pmxD = mxCreateDoubleMatrix (1,1,mxREAL);
22
23 /* copy C double value to MatLab interface array */

24 pmxA = mlfScalar(A);
25 pmxB = mlfScalar(B);
26
27 /* assign values to mxArrays */

28 mlfAssign (&pmxHead , mxCreateString(Head));
29 mlfAssign (&pmxC , mlfSimple (&pmxD , pmxA , pmxB , pmxHead));
30
31 /* read data form MatLab interface arrays back to C variables */

32 C = mxGetScalar(pmxC);
33 D = mxGetScalar(pmxD);
34
35 /* print values */

36 printf("Output by C API Interface Function\n");
37 mlfPrintMatrix(pmxC);
38 mlfPrintMatrix(pmxD);
39
40 printf("Output by C Native Function\n");
41 printf("%f %f\n%f %f\n", A, B, C, D);
42
43 /* free memory of MatLab interface arrays */

44 mxDestroyArray(pmxA); mxDestroyArray(pmxB);
45 mxDestroyArray(pmxC); mxDestroyArray(pmxD);
46
47 /* terminate the MatLab environment */

48 libsimpleTerminate ();
49
50 /* disable automated memory management */

51 mlfRestorePreviousContext (0, 0);
52
53 return 0;
54 }

Listing 2: main.c

14

function [C, D] = simple(A, B, TestStr)

f p r in t f ([TestStr ,’\n\n’]);

C = A + B;
D = A * B;

return;

Listing 3: simple.m

This is a Test String.

Output by C API Interface Function
5
6

Output by C Native Function
2.000000 3.000000
5.000000 6.000000

Listing 4: Output of the Test Program

5.2.1 Additional Explanation for the Example Source Code

line 1: The include file matlab.h provides the interfaces for the MATLAB C Interface API.

line 2: The include file libsimple.h is created by the mcc compiler and must be included
in the beginning of the C-source code.

line 11: The data interface between any MATLAB functions and the C-source Code is
defined by a pointer to the data type mxArray (for more details see: [6]).

line 24: A more general way to convert double values to mxArrays, is to use a
mxCreateDoubleMatrix (see: line 20) and then make a memcpy operation. This
would be valid for all arrays:

memcpy(mxGetPr(pmxDoubleVar), &DoubleVar,n∗sizeof(double));

line 28: When working with MATLAB-functions the equal operator should be replaced by
the function mlfAssign. This ensures a robust memory management. mlfAssign
returns a pointer to the target array.

line 29: If a function has more than one output parameter, these parameters are passed to
the function as the first input parameter of the type **mxArray. All other input
parameters are of the type *mxArray.

Some other examples for mixing M-files and C-code can be find in [4]. For a complete list
of MATALB C/C++ API Functions with detailed short examples refer to [5, 7].

15

5.2.2 Compile the Example Source Code

Referring again to Listing 1 and following the steps in Section 4.4 an instruction for
compiling and linking the example in Section 5.2 is given below:

(i) Convert M-Files to C and create a library:

mcc -v -t -W lib:libsimple -L C -T link:lib -h -c

libmmfile.mlib simple.m

gcc -c -fPIC -I$(INCL) $(CFLAGS) $(SRCS)

gcc $(LDFLAGS) -shared -o libsimple.so $(OBJS) $(LDLIBS)

(ii) Compile C main source file and link it to library:

gcc -c -I$(INCL) $(CFLAGS) main.c

gcc $(LDFLAGS) -o example main.o -lsimple $(LDLIBS)

Annotation

(ii) After the main file was compiled, it is linked to the created library libsimple as well
to the origin MATLAB Libraries. If you didn’t copy your library into a directory
the linker will find it, you have to add a –rpath-link as well as a -L option for the
parent directory of your library.

5.3 Compile a Converted C Program on an Other Machine

(i) Make a package containing the MATLAB include files and the MATLAB libraries
described in Section 4.2, the C source code generated by mcc, any MEX-files that
are needed and the mglinstaller .

(ii) Write a Makefile referencing to the MATLAB include files and libraries. To deter-
mine the libraries you have to link with your library call mmc in the verbose and
debug mode(see: Section 4.3). To determine the libraries you have your C-program
to link with call mbuild (see: Section 2.5).

(iii) Compile and link your library using the compiler and linker settings of
Section 4.3.

(iv) Run the mglinstaller.

(v) Add the directory matlab rt dir/bin/glnx86 created by the mglinstallerto the
LD LIBRARY PATH environment variable as well as the parent path of your own
MATLAB libraries.

16

5.4 Simple C++ Template for a MATLAB Library

In the following we show a template for a wrapper-class for simply including compiled
MATLAB source code into an existing system. Listing 5 is a scratch of a simple main
function that calls a constructor, runs a function defined within the wrapper class and
finally calls a destructor. The class according to the created instance is given by Listing 6.

The main advantage of using such structure is that the programmer at C++ level must
not have any knowledge about the MATLAB-world. Initializing and destructing the
MATLAB-environment, converting the data to the correct format and calling functions
of the MATLAB C/C++ API is done within the wrapper-class. The same thing can be
done within only one C-function as well, but therefore the MATLAB environment has to
be initialized every time the function is called. For return values call by reference is used,
since the MATLAB functions often return more than one parameter. This is not a must,
but would be easier.

#include "wrapper.h"

int main(int argc , char* argv [])
{

// create the component

Template_Component* pComp = new Template_Component ();

// create the matrices in C-style

int Dim1 = 2; int Dim2 = 3;
double Matrix [2][3] = {{1,2 ,3},{4,5 ,6}};
double Result [2][3] = {0,0,0,0,0,0};

// call the service

pComp ->subscribe_demo ((double*)Matrix , Dim1 , Dim2 , (double*) Result1);

...

// display the result in C-style

printf("Sourcematrix :\n");
printf("%f %f %f\n",Matrix [0][0] , Matrix [0][1] , Matrix [0][2]);
printf("%f %f %f\n\n",Matrix [1][0] , Matrix [1][1] , Matrix [1][2]);

printf("Result Matrix :\n");
printf("%f %f %f\n",Result1 [0][0] , Result1 [0][1] , Result1 [0][2]);
printf("%f %f %f\n\n",Result1 [1][0] , Result1 [1][1] , Result1 [1][2]);

...

// delete the component

delete pComp;

return 0;
}

Listing 5: main.cpp

17

#include "wrapper.h"
#include "libcppdemo.h"

// constructor

Template_Component :: Template_Component ()
{

// initialize MATLAB environment

libcppdemoInitialize ();
}

// destructor

Template_Component ::~ Template_Component ()
{

// terminate the MatLab environment

libcppdemoTerminate ();
}

// example for simple member function

void Template_Component :: subscribe_demo(double* Matrix , ... , double* Result)
{

// define variables

int i,j;
double* Matrix_M = new double[Dim1*Dim2];
double* Result_M = new double[Dim1*Dim2];
mxArray *pmxInput , *pmxNumber , *pmxResult , *pmxResult2;

// convert the input -matrix from C-style to MATLAB -style

for (i=0; < Dim1; i++) {
for (j=0; j<Dim2; j++) {

Matrix_M[j*Dim1+i] = Matrix[i*Dim2+j];
}

}

// call compiled MATALB function

mlfAssign (&pmxInput , mlfDoubleMatrix(Dim1 , Dim2 , Matrix_M , NULL));
mlfAssign (&pmxResult , mlfDoubleMatrix(Dim1 , Dim2 , Result , NULL));
mlfAssign (&pmxResult , mlfDemo(pmxInput , pmxNumber));

// read data from MATLAB interface arrays back to C variables

double* pResult = mxGetPr(pmxResult);
double* pError = mxGetPr(pmxErrorcode);

for (i=0; < Dim1; i++) {
for (j=0; j<Dim2; j++) {

Result_M[i*Dim2+j] = pResult[j*Dim1+i];
}

}
memcpy(Result , Result_M , Dim1*Dim2* s i z eo f (double));

// free memory: MATLAB -arrays , temporary MATLAB -style matrices

delete [] Matrix_M;
mxDestroyArray(pmxInput);

...
}

Listing 6: wrapper.cpp

18

Appendix A

A.1 Needed M-files for Compiling

We needed to copy all files given in the list below to the local working directory when
generating C-source code:

applylut.m axes2pix.m bweuler.m
bwlabeln.m bwlabelnmex.dll bwmorph.m
bwpack.dll bwpack.m bwunpack.dll
bwunpack.m checkconn.m checkinput.m
checknargin.m checkstrs.m conndef.m
dataread.dll disp.m display.m
fspecial.m getcurpt.m getheight.m
getimage.m getline.m getneighbors.m
getnhood.m getpts.m getsequence.m
im2double.m imadd.m imcomplement.m
imdilate.m imerode.m imfill.m
imfilter.m imfilter mex.dll imformats.m
imftype.m imhist.m imhistc.dll
imlincomb.m imlincombc.dll imopen.m
imread.m imreconstruct.m imshow.m
msubtract.m imwrite.m ntline.m
ptgetpref.m ptprefs.m ptregistry.m
sflat.m utbridge.m utclean.m
utdiag.m utdilate.m uterode.m
utfatten.m utfill.m uthbreak.m
utiso.m utmajority.m utper4.m
utper8.m utremove.m utshrink.m
utsingle.m utskel1.m utskel2.m
utskel3.m utskel4.m utskel5.m
utskel6.m utskel7.m utskel8.m
utspur.m utthin1.m utthin2.m
utthin3.m utthin4.m kconstarray.m
morphmex.dll morphop.m num2ordinal.m
padarray.m reflect.m regionprops.m
rgb2gray.m roipoly.m stem.m
strel.m strelcheck.m strread.m
empname.m translate.m truesize.m
urlwrite.m usejava.m xlim.m
ylim.m zlim.m

These files are packed within MatLab Compiling Files Win32.zip mentioned in Section 3
and can be found within your local MATLAB installation path (standard MATLAB
toolbox, Image Processing Toolbox):

19

A.2 Needed MEX-files for compiling

Additionally to the functions that exist as M-file you would need to include those functions
that are compiled to a MEX-file. The list below gives all MEX-files (if using Linux replace
dll by mexglx) we needed in order to compile our applications:

bwlabelnmex.dll
bwpack.dll
bwunpack.dll
dataread.dll
imfilter mex.dll
imhistc.dll
imlincombc.dll
morphmex.dll

These files are packed within MatLab Runtime DLLs Win32.zip mentioned in Section 3
and can be found within your local MATLAB installation path (standard MATLAB
toolbox, Image Processing Toolbox).

A.3 Create gcc Libraries (Windows)

Listing 7 shows an example batch-file for generating import libraries that can be used
with gcc for Windows. The created libaries are moved into a seperate folder, that may be
included into the system variable PATH to ensure that the libraries are found at runtime.

d l l t o o l −−de f l i b eng . de f −−dllname l i b eng . d l l −−output− l i b l i b eng . a
d l l t o o l −−de f l i b f i x e d p o i n t . de f −−dllname l i b f i x e d p o i n t . d l l −−output− l i b l i b f i x e d p o i n t . a
d l l t o o l −−de f l ibmat . de f −−dllname l ibmat . d l l −−output− l i b l ibmat . a
d l l t o o l −−de f l ibmat lb . de f −−dllname l ibmat lb . d l l −−output− l i b l ibmat lb . a
d l l t o o l −−de f l ibmex . de f −−dllname libmex . d l l −−output− l i b l ibmex . a
d l l t o o l −−de f l i bmmf i l e . de f −−dllname l ibmmf i l e . d l l −−output− l i b l i bmmf i l e . a
d l l t o o l −−de f libmwmcl . de f −−dllname libmwmcl . d l l −−output− l i b libmwmcl . a
d l l t o o l −−de f l i bmwserv i c e s . de f −−dllname l ibmwserv i c e s . d l l −−output− l i b l ibmwserv i c e s . a
d l l t o o l −−de f libmwsglm . de f −−dllname libmwsglm . d l l −−output− l i b libmwsglm . a
d l l t o o l −−de f libmx . de f −−dllname libmx . d l l −−output− l i b libmx . a
d l l t o o l −−de f l i b u t . de f −−dllname l i b u t . d l l −−output− l i b l i b u t . a
d l l t o o l −−de f mclcom . de f −−dllname mclcom . d l l −−output− l i b mclcom . a
d l l t o o l −−de f mclcommain . de f −−dllname mclcommain . d l l −−output− l i b mclcommain . a
d l l t o o l −−de f mclxlmain . de f −−dllname mclxlmain . d l l −−output− l i b mclxlmain . a
d l l t o o l −−de f s g l . de f −−dllname s g l . d l l −−output− l i b s g l . a

md g c c l i b s
move ∗ . a .\ g c c l i b s

Listing 7: gengcclibs.bat

20

References

[1] Stallman R.M., McGrath R., Smith P., GNU Make, Free Software Foundation, 2002

[2] Stallman R.M., Using and Porting the GNU Compiler Collection (v2.95), Free Soft-
ware Foundation, 1999

[3] The MathWorks, Inc., MATLAB C/C++ Graphics Library User’s Guide
(Version 2), 2001

[4] The MathWorks, Inc., MATLAB Compiler User’s Guide (Version 2), 2002

[5] The MathWorks, Inc., MATLAB C Math Library Reference (Version 2), 1990

[6] The MathWorks, Inc., MATLAB C Math Library User’s Guide (Version 2), 1999

[7] The MathWorks, Inc., MATLAB External Interfaces Reference (Version 6), 2002

[8] About The MathWorks - Policies & Statements,
http://www.mathworks.com/company/aboutus/policies statements

[9] MATLAB Technical Solutions Number: 1-1BE7I,
http://www.mathworks.com/support/solutions/data/1-1BE7I.html

[10] MATLAB Technical Solutions Number: 27365,
http://www.mathworks.com/support/solutions/data/27365.html

[11] MatLab Technical Solutions Number: 29113,
http://www.mathworks.com/support/solutions/data/29113.html

[12] MATLAB Technical Solutions Number: 30672,
http://www.mathworks.com/support/solutions/data/30672.shtml

[13] MATLAB Technical Solutions Number: 32633,
http://www.mathworks.com/support/solutions/data/32633.shtml

[14] MATLAB Technical Solutions Number: 34757,
http://www.mathworks.com/support/solutions/data/34757.html

[15] MATLAB Solution Number: 1-19YRP,
http://www.mathworks.com/support/solutions/data/1-19YRP.html

[16] http://www.cs.virginia.edu/˜lcc-win32

[17] http://www.icg.tu-graz.ac.at/˜pmroth/M2C/examples

21

http://www.mathworks.com/company/aboutus/policies_statements
http://www.mathworks.com/support/solutions/data/1-1BE7I.html
http://www.mathworks.com/support/solutions/data/27365.html
http://www.mathworks.com/support/solutions/data/29113.html
http://www.mathworks.com/support/solutions/data/30672.shtml
http://www.mathworks.com/support/solutions/data/32633.shtml
http://www.mathworks.com/support/solutions/data/34757.html
http://www.mathworks.com/support/solutions/data/1-19YRP.html
http://www.cs.virginia.edu/~lcc-win32
http://www.icg.tu-graz.ac.at/~pmroth/M2C/examples

	Introduction
	General Notes
	Environment for that this guide is valid:
	Structure of the Document

	MATLAB Compiler mcc
	Preliminary Notes
	mcc Compiler Option Flags
	Limitations and Restrictions
	Stand-Alone MATLAB Compiler
	MBUILD

	Windows XP
	Compiling M-files to Stand-Alone Applications
	Compiling M-Files to a DLL:
	Compiling an Stand-Alone Application using the Shared Library in Visual Studio
	Necessary Includes for C/C++ Code Generation
	Necessary Libraries for Linking

	Compiling a MATLAB-Project with Visual Studio
	Compiling using gcc for Windows
	Compiling using lcc

	Linux
	Preliminary Notes
	Libraries and Include Paths
	Compiling M-Files to Stand-Alone Applications
	Compiling M-Files to Shared Libraries
	Distribution of MATLAB Executables

	Include compiled MATLAB functions to C-code
	Preliminary Notes
	Example
	Additional Explanation for the Example Source Code
	Compile the Example Source Code

	Compile a Converted C Program on an Other Machine
	Simple C++ Template for a MATLAB Library

	
	Needed M-files for Compiling
	Needed MEX-files for compiling
	Create gcc Libraries (Windows)

