
the topology is fixed, a new method has to be employed

to tackle this intrinsic problem.

A Fault-tolerant Routing Strategy for Gaussian Cube Using Gaussian Tree

Peter, K K, Loh
 1

 and Zhang, Xinhua
 2

1
School of Computer Engineering, Nanyang Technological University, Singapore

2
Dept. of Computer Science and Engineering, Shanghai Jiao Tong Univ., P.R.China

E-mail: askkloh@ntu.edu.sg

Abstract

Gaussian Cubes (GCs) are a family of interconnection

topologies in which the interconnection density and

algorithmic efficiency are linked by a common parameter,

the variation of which can scale routing performance

according to traffic loads without changing the routing

algorithm. However, there is no existing fault-tolerant

routing strategy for GCs as well as node/link diluted

cubes. In this paper, the void is filled for GC with an

algorithm based on a new topology: Gaussian Tree (GT).

With a many-to-one mapping, the original problem is

converted into routing in GT, which is found to be more

definite and predictable. A new approach to categorizing

faulty components is presented to overcome the problem

of low node availability and the maximum number of

faults tolerable is given. The algorithm is livelock free

and generates deadlock-free routes, which are at most 2F

hops longer than the optimal route in a fault-free setting,

if F faults are encountered. Finally, simulation is done to

show the algorithm’s performance, demonstrating its

contribution to making GC a more fault-tolerant topology.

1. Introduction

Gaussian Cubes (GCs) are a family of interconnection

networks parameterized by a modulus M and a dimension

n [1]. Their desirable scalability makes possible

generalized analysis of interconnection cost, routing

performance, and reliability. Besides, communication

primitives such as unicasting, multicasting, broadcasting

/gathering [7] can also be done rather efficiently in all

GCs [1]. However, although research achievements

abound in routing in binary hypercubes, there are no

existing fault-tolerant routing strategies for GCs or for

node/link dilution cubes. One of the difficulties lies in the

low network node availability (maximum number of faulty

neighbors of a node that can be tolerated without

disconnecting the node from the network). Therefore, if

In this paper, we present a new routing algorithm based

on a new topology called Gaussian Tree (GT). In

)2,(
α

nGC , GT is dependent only on α and divides all

the nodes in)2,(
α

nGC into
α

2 classes according to

their least significant α bits. So the original problem is

converted into first routing in GT (i.e. between different

classes) and then routing in one such class. The former is

facilitated by the definite and predictable routing in trees

while the latter is actually routing in ordinary binary

hypercube. Faults encountered in different stages of this

divide-and-conquer strategy lead to a new categorization

of faulty components, enabling analysis of routing strategy

in the presence of far more faults than the network node

availability. Methodologically speaking, this approach

also opens window to a brand-new way of analyzing

network reliability, which is especially valuable for

incomplete networks.

The characteristics of our routing strategy for

)2,(
α

nGC encompass:

1) Incurs message overhead of only O(n).

2) The computation complexity for intermediate nodes is

at most)log)((ααα −nO .

3) Guarantees a message path length not exceeding 2F

longer than the optimal path found in a fault-free setting,

provided the distribution of faulty components in the

network satisfies the precondition of Theorem 3 and 5.

4) Each node requires at most 1

2

1
+⎥

⎥

⎤
⎢
⎢

⎡ −
α

n
 rounds of fault

status exchange with its neighbors.

5) Each node maintains and updates at most F n-bit node

addresses, where F is the number of faults related to nodes

whose least significant α bits are same as the current

node.

6) Generates deadlock-free and livelock-free routes.

7) The number of faulty components tolerable is

presented in Figure 4 and Theorem 5.

This paper is organized as follows. Preliminaries are

given in Section 2 to provide an equivalent definition of

GC that facilitates the following discussion. Section 3

defines GT. The routing algorithm for the fault-free GC is

described in Section 4 separately to make the subsequent

section clearer. In Section 5, the fault-tolerant routing

strategy that deals with all categories of faults is studied.

Then in Section 6, simulation results are presented to

demonstrate the performance of our algorithm. The whole

paper is concluded by Section 7 where some suggestions

for further work are given.

2. Preliminary

The binary Gaussian Cube [1] is denoted by

),(MnGC , where n (network dimension) ≥ 0 and M

(modulus) ≥ 1. It has 2
n

nodes that are identified with

unique n-bit labels. A link connects two nodes p and q if

the following conditions are both true:

1) The labels of p and q differ in the
th

c bit for some c,

0 ≤ c ≤ (n – 1).

2) p and q are in the congruence class [c]M’ , where

M’ = min {2
c
, M}.

The congruence class of c modulo M, [c]M, is the set

}{ ZkckM ∈+ , where Z represents the set of integer.

According to the definition above, if node p

= 0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− (}1,0{∈ia for]1,0[−∈ ni) is

connected with q = 0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− , then there must

exist 1k and Zk ∈2 , such that:

(2) – (1) and take absolute value on both sides, we get:

2
c
 = '21 Mkk − (3)

Therefore, M’ must be the power of 2. Since M’ = min

{2
c
, M}, M must also be the power of 2 if M < 2

c
.

Otherwise, as M’ = min {2
c
, M} we can assume M < 2

n-1

without loss of generality. Consequently, there will be no

link spanning in any dimension c > ⎣ ⎦Mlog . Effectively,

the network is separated into
⎣ ⎦Mn log1

2
−−

 disconnected

subnetworks, with each combination of the first

⎣ ⎦Mn log1−− bits representing one such subnetwork.

Formally, GC (n, M) =
⎣ ⎦

U
1

log1
2

0

−−−

=

Mn

i
i

G . Each

subnetwork Gi is composed of <Vi , Ei>, where

Vi = ⎣ ⎦ ⎣ ⎦ 0log02log{ bbbaaa
jMiMn

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−− |

⎣ ⎦ ⎣ ⎦ },log0},1,0{ 02log iaaaMjb
iMnj

=⋅⋅⋅⋅⋅⋅≤≤∈ −−

Ei = },|),{(2121 ii
VvVvEvv ∈∈∈ , where E is the set

of edges in the original network.

Obviously, for ⎣ ⎦)2,0[,
log1 Mn

ji
−−∈∀ and ji≠ ,

=ji VV I Ф, Φ=ji EE I . So routing can be done within

the subnetwork Gi if the source and destination both

belong to Gi, or fails otherwise. Furthermore, as Gi is

isomorphic to GC (⎣ ⎦Mlog +1, ⎣ ⎦Mlog
2), this situation is

covered in the following case, where M is power of 2. So

henceforth, we assume M is power of 2.

(Theorem 1) In)2,(
α

nGC , node p = 021 aaaa
cnn

⋅⋅⋅⋅⋅⋅−−

(}1,0{∈ia for]1,0[−∈ ni) has a link in dimension c

(]1,1[−∈ nc) if and only if:

where ‘x % y’ represents the modulus of x divided by y,

like in C/C++. And each node has a link in dimension 0.

Proof: For dimension 0, since for any M ≥ 1, M’ = min

{2
0
, M} = 1. Any integer p and q must be in the

congruence class [0]M ’ = [0]1 . So each node has a link in

dimension 0. Two other cases should be considered to

prove Theorem 1.

(Case I)),(nc α∈ .

(Necessary) According to Equation (1),

0121 aaaaa
nn

⋅⋅⋅⋅⋅⋅−− α = k1M’+c. Thus,

ckaaaaaaa
nn

+⋅=⋅⋅⋅+⋅⋅⋅⋅ −−+−−
α

αα

α

αα 22 1021121 .

Take the modulus of
α

2 on both sides and due to the fact

that
α

αα 2021 <⋅⋅⋅−− aaa , we obtain

α

αα 2%021 caaa =⋅⋅⋅−− .

(Sufficient) If
α

αα 2%021 caaa =⋅⋅⋅−− , then

caaaaaa
nn

−⋅⋅⋅⋅⋅⋅ −−− 01121 αα can be wholly divided by

α
2 . Define Z

caaaaa
k

cnn ∈
−⋅⋅⋅⋅⋅⋅

= −−
α

2

0121
1 and if

0=
c

a , 2k =
α−+ c

k 21 otherwise 2k =
α−− c

k 21 . Then,

)2,2min(2 110121

αα c

cnn
kckaaaaa ⋅=+⋅=⋅⋅⋅⋅⋅⋅−−

= k1 M’ + c and 0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− = ck +⋅ α
22

= ck
c +⋅)2,2min(2

α = k2 M’ + c.

In other words, according to the original definition,

0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− has a link in dimension c.

(Case II)],1[α∈c . The proof is similar to case I. g

3. Gaussian Tree

According to Theorem 1, we can see that whether a

packet can be forwarded through dimension c at node p is

entirely irrelevant to αaaa
nn

⋅⋅⋅−− 21 , regardless of

whether c > α or not. So the last α bits in nodes’ address

α

αα 2%021 caaa =⋅⋅⋅−− if),(nc α∈

caaa
cc

=⋅⋅⋅−− 021 if],1[α∈c

0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− = k1 M’ + c (1)

0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− = k2 M’ + c (2)

are of more importance. We define a Gaussian Graph

based on these α bits.

(Definition 1) : Gaussian Graph

We call the undirected graph
n

G (2≥n) Gaussian

Graph if it is composed of <Vn, En>, where:

Vn = { 0121 aaaa
nn

⋅⋅⋅−− |]1,0[},1,0{ −∈∈ nifora
i

}

En = {(0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−− , 0121 aaaaa
cnn

⋅⋅⋅⋅⋅⋅−−) |

c = 0 or c∈[1, n-1] and 0121 aaaa
cc

⋅⋅⋅−− = c}.

Figure 1 demonstrates the topology of 2G , 3G , and

4G . They can be generated easily by adding edges,

according to the definition of
n

E , to the original graph

which is composed only of nodes.

2G :

3G :

(Lemma 1): Tree’s Equivalent Definition

Suppose graph G has n vertices and e edges. G is a tree if

and only if G is connected and 1−= ne . [2]

(Theorem 2)
n

G is a tree. (2≥n)

Proof:

Step 1.
n

G is connected.

This is evident from the following algorithm PC. It can

find a route from s to d in
n

G , when n, s and d are given.

(Algorithm 1) Path Construction Algorithm (PC)

path PC(n, 0121 sssss
nn

⋅⋅⋅= −− , 0121 ddddd
nn

⋅⋅⋅= −−)

{

Let c be the dimension corresponding to the leftmost

‘1’ in R = s ⊕ d; // ’⊕’ means bitwise exclusive OR

if (c==0)

 return (s, d); // s and d are neighbors,

suppose caaa
cc

=⋅⋅⋅−− 021 (},1,0{∈
i

a]1,0[−∈ ci)

path0 = (011 aass
ccn

⋅⋅⋅⋅⋅⋅ −− , 011 aass
ccn

⋅⋅⋅⋅⋅⋅ −−);

path1 = PC(0121 ssss
nn

⋅⋅⋅−− , 011 aass
ccn

⋅⋅⋅⋅⋅⋅ −−);

path2 = PC(011 aass
ccn

⋅⋅⋅⋅⋅⋅ −− , 021 ddd
nn

⋅⋅⋅−−);

return path1|| path0 || path2);

// Here, ‘||’ stands for the concatenation operation.

}

E.g., PC (010110,011110) = PC (010110, 010011) ||

(010011,011011) || PC (011011, 011110).

The recursion must be able to terminate within depth n

because the leftmost ‘1’ moves at least one bit rightward

after one recursion, until it reaches dimension 0 when the

source and destination will be neighbors. As links are not

found step by step from source to destination, it requires a

sort to re-order the final link set.

Step 2. There are
n

2 nodes in
n

G .(Obvious)

Step 3. There are only 12 −n
edges in

n
G .

We denote the number of links spanning in dimension i

as En (i) (]1,0[−∈ ni). En (0) =
1

2
−n

. A node has a link

on dimension 1 if and only if its rightmost bit is 1. Such

links only connect nodes in the form of

(121 xaa nn ⋅⋅⋅−− , 121 xaa
nn

⋅⋅⋅−−). So En (1) =
2

2
−n

. A

link spanning in dimension 2 can only connect node pairs

in the form of: (1021 xaa
nn

⋅⋅⋅−− , 1021 xaa
nn

⋅⋅⋅−−). So

En (2) =
3

2
−n

. Likewise, it is easy to prove that En (i) =

1
2

−−in
. Thus | En | = ∑

−

=

1

0

)(

n

i

n
iE = ∑

−

=

−−
1

0

1
2

n

i

in
= 12 −n

.

Combine 1-3 and apply Lemma 1, it can be concluded

that
n

G is a tree. g

From now on, we denote
n

G as
n

T and name it as

Gaussian Tree (GT) to emphasize this property. We

denote the node k in
n

T as)(kT
n

.

In PC Algorithm, since the path will not go to one node

more than once and we are routing in a tree, the resultant

route must be optimal. Besides, as the algorithm finds the

path link by link, the spatial and computational

complexities are dependent on the diameter of
n

T

(maximum distance between node pairs), denoted as

)(
n

TD . Figure 2 shows that)(
n

TD is)(nO . Thus, the

time and space complexity for running Path Construction

Algorithm is)((
n

TDO +))(log)(
nn

TDTD =)log(nnO .

The second term is for the sorting.

00
001 1011

4G :

Figure 1: Gaussian Graphs: (a) 2G , (b) 3G , (c) 4G

(a)

(b)

0000

0001

1011

1010

1110

1001

1000

1111

1101

1100

0010

0110

0111

0101

0100

0011

(c)

000 001 011

100 101 111 110

010

Diameter ~ Dimension

0

50

100

150

200

2 5 8 11 14 17 20 23

D
ia

m
e

te
r

Diameter

The existence of Gaussian Tree is crucial for our

algorithm because, for each source and destination pair in

a tree, there is a set of nodes, which the packet must cover

in its journey, and which can be calculated at the source.

This makes routing much more definite and predictable.

4. Routing in fault-free Gaussian Cube

(Definition 2) k-Ending Class

In)2,(
α

nGC , for]12,0[−∈∀ α
k , we call the

following set),,(knEC α k-ending class:

},1,0{|{),,(01121 ∈⋅⋅⋅⋅⋅⋅= −−− inn aaaaaaaknEC ααα

}],1,0[01 kaani =⋅⋅⋅−∈ −α .

),,(knEC α is abbreviated as)(kEC when the

)2,(
α

nGC is given. According to Theorem 1, if link

(21,vv) spans in dimension α≥c , then 21,vv

)2%(
α

cEC∈ .)(kEC corresponds to)(kTα in Gaussian

Tree αT . Let the dimensions in]1,[−nα on which each

node of)(kEC has a link comprise set Dim(n, α, k), then

Dim(n, α, k) = αα
2

][]1,[kn I− . When the)2,(
α

nGC is

given, Dim(n, α, k) is also abbreviated as Dim(k).

Suppose the source is s and the destination is d.

Denote R = s ⊕ d (Exclusive OR). If there is a ‘1’ in R

and its dimension c is no less than α, then the path from s

to d must cover at least one node x, such that ∈x

)2%(
α

cEC . Viewed in αT , that means the path must

begin from)2%(
α

α sT , end at)2%(
α

α dT and must pass

all nodes in S = {)2%(
α

α kT | ,α≥k 02& ≠k
R }, where

‘&’ stands for bitwise AND operation. Since the problem

has now been mapped to a tree, with the starting and

ending nodes as well as the intermediate nodes given, it is

simpler to find an optimal route. We can use Algorithm 1

to find a route from)(sTα to)(dTα in αT , when α, s and

d are given.

Secondly, we introduce an algorithm for arranging

multi-destination routing from a tree root. Several nodes

belonging to the tree need to be visited and then the

packet must go back to the root. It is easy to find that as

long as the following principle is met, the path generated

must be optimal: if the packet is currently at node p, it

can never backtrack to the parent unless no destination

still exists in the subtree of p.

(Algorithm 2) Closed-Traverse Algorithm in tree (CT)

Suppose we are at the

root 0121 rrrrr ⋅⋅⋅= −− αα

where }1,0{∈
i

r for all

]1,0[−∈ αi . We are to

visit D = {
n

ddd ,,, 21 ⋅⋅⋅ }

whose members are all

nodes in the tree and finally

go back to r. The prototype

of the algorithm is

),(DrCT . We first pick up

randomly one Dd ∈ and

use Algorithm 1 to find a

route L from r to d. Then

for each Dd
i
∈ , if

i
d is

covered by L, we only need

to record that fact. But if it

is not covered, we must find

a node in L at which the packet must branch away from L.

For example, in Figure 3, the bold line represents L,

and to reach
i

d , the route must branch at
i

b . However,

to calculate
i

b , we need not find the complete path from r

to
i

d . The following function FindBP(L, r, di) is enough.

Suppose CheckIn (v,L) returns whether v is covered by L.

Point FindBP(L, r, di) // FindBP(route, source, destination)

{

Let c be the dimension corresponding to the leftmost

‘1’ in R = s ⊕ di;

if (c==0) return r; //
i

b = r

suppose caaa
cc

=⋅⋅⋅−− 021 (},1,0{∈
i

a]1,0[−∈ ci);

(21,vv) = (011 aarr
cc

⋅⋅⋅⋅⋅⋅ −−α , 011 aarr
cc

⋅⋅⋅⋅⋅⋅ −−α);

if (CheckIn(1v , L) && !CheckIn(2v , L)) return 1v ;

if (CheckIn(1v , L) && CheckIn(2v , L))

return FindBP(L, 2v , di);

if (!CheckIn(1v , L) && !CheckIn(2v , L))

return FindBP(L, r, 2v);

 // !CheckIn(1v , L) && CheckIn(2v , L) is impossible

}

As a node in L might serve as branch point for more

than one destination in D, we use a table to record it. We

denote the mapping as)(⋅B . For example, in Fig. 3,
i

b is

the branch point for
i

d and jd , so)(
i

bB = {
i

d , jd }.

r

d

i
d

branch

point for

i
d

bi

jd

Figure 3 Example for

CT algorithm

Figure 2 Diameter of
n

T versus n (Dimension)

dimension n

After all members in D are processed and table)(⋅B is

obtained, we begin to go from r to d by following L.

Once we arrive at a node p where Φ≠)(pB , run this

algorithm again by calling))(,(pBpCT . After that, we

proceed along L, until d is reached. Then go back to r in a

reverse direction of L. Since this is a distributed

algorithm, CT is not recursive as it appears here. g

Finally, we present the complete routing algorithm for

fault-free Gaussian Cube.

 (Algorithm 3) Fault Free GC Routing (FFGCR)

The input of FFGCR is: n and α for)2,(
α

nGC , binary

source 021 ssss
nn

⋅⋅⋅= −− , destination 021 dddd
nn

⋅⋅⋅= −− .

FFGCR (n, α, 0121 sssss
nn

⋅⋅⋅= −− , 0121 ddddd
nn

⋅⋅⋅= −−)

{

// map the problem from)2,(
α

nGC to αT

R = s ⊕ d; s’ =)2%(
α

α sT , d’ =)2%(
α

α dT ;

P={ 02&|]1,[≠−∈ i
Rni α }, D={ PxxT ∈|)2%(

α

α };

L = PC(s’, d’) ; // αTL ⊂

Build table)(⋅B for all nodes Ln∈ with FindBP().

n = s’;

while (n�Null) // traverse using the least significant

{ // α dimensions in)2,(
α

nGC

if (Φ≠)(nB)

call CT(n, B(n)) to traverse all nodes in B(n)

and go back to n ;

if ()Dn∈

go through all preferred dimensions

αα
2

][]1,[xnc I−∈

n = getNext(L, n); // get next node in L

} // getNext(L, d’) = Null.

}

It can be easily deduced that the message overhead is

O (n) and the computation complexity is O (α(n–α)logα).

5. Fault-tolerant routing strategy in GC

To overcome the problem of low node availability, we

categorize faulty components.

(Definition 3) A-category (link) fault

If a link error occurs at a dimension α≥c , it is called

A-category (link) fault.

(Definition 4) B-category fault

If all link failures incurred by an error are in

dimensions less than α, then the error is called B-category

fault. B-category faults can be both link error and node

error as long as that node has no incident link spanning in

a dimension α≥c . A link error is either A or B-category.

(Definition 5) C-category (node) fault

If a node error implies break down of links in

dimensions both smaller and no smaller than α, it is called

C-category (node) fault. A node error is either B or C-

category.

(Definition 6) k-Ending-t-Equivalent Class

In k-ending class),,(knEC α , for

]12,0[
|)(| −∈∀ −− kDimn

t
α (see Definition 2 for the meaning

of Dim(k)), we call the set),,,(tknEEC α k-ending-t-

equivalent class:),,,(tknEEC α

= { |),,(011 kanECaaaa
n

∈⋅⋅⋅⋅⋅⋅ −− αα bits in dimensions

other than U]−1[0,α Dim (k) comprise value t}.

k-Ending-t-Equivalent Graph),,,(tkanGEEC is

defined as a subgraph of)2,(
α

nGC whose vertex set is

),,,(tknEEC α with original edges connecting vertex in

),,,(tknEEC α .

(Theorem 3)

If only A-category faults exist in)2,(
α

nGC , and in

all),,,(tknGEEC α (]12,0[−∈ α
k ,)2,0[

)|(| kDimn
t

−−∈ α
 ,

the number of faulty component is less than

N (k) =),(1
2

1
αδ

α
k

kn
−+⎥⎦

⎥
⎢⎣

⎢ −−
 (0:1?),(ααδ <= kk),

there is a fault-tolerant and cycle-free routing strategy for

any source and destination pair.

Proof. Obviously,),,,(tkanGEEC is a binary hypercube

embedded in)2,(
α

nGC . Let source be s and destination

be d. Let p = s ⊕ d. Denote: P =

{ 02|]1,[≠−∈ i
ANDpni α }, D = { Pxx ∈|2%

α
},

I ={ DxxEC ∈|)(}. As there are only A-category faults,

traversing through links spanning in the least significant α

dimensions is always successful. So it is guaranteed that

for any member)(kEC in I, a packet can reach at least

one node in)(kEC . Suppose a packet reaches)(kEC

I∈ by arriving at node x and ∈x),,,(tknEEC α . The

,,23,22,2),(⋅⋅⋅⋅+⋅++≥ ααα
α kkkkifk ,0max(+k

α

α
2)

2

1
⋅⎥⎦

⎥
⎢⎣

⎢ −− kn
 bits of x and d are 1)|(|10' −⋅⋅⋅= kDimxxxx

and 1)|(|10' −⋅⋅⋅= kDimdddd respectively. Then we can

focus on routing in binary hypercube),,,(tknGEEC α

from 'x to 'd , which is guaranteed by the precondition of

the theorem and FTCR in [4] or strategies in [5][6] which

ensure a packet to be sent from any non-faulty source to

any non-faulty destination in a deadlock-free fashion, as

long as the number of faulty links is less than the

dimension of the binary hypercube. After all the bits in

0

5

10

15

20

25

30

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Dimension (n)

alpha=1 alpha=2 alpha=3 alpha=4

)))2,(((log2

α
nGCT ~ n

Figure 4)))2,(((log2

α
nGCT ~ n (dimension)

dimensions]1,[][
2

−nk αα I are set to be same as d, use

links spanning in the last α dimensions to go to another

member in I. Finally destination d is reached. g

Suppose there are only A-category faults and F A-

category faults are encountered, then the resultant route is

at most 2F longer than the optimal route found in a fault

free setting. We can also conclude that in)2,(
α

nGC , the

maximum number of faulty links tolerable is:

∑
−

=

−− −=
12

0

)0,1max(2))2,((

α

αα

k

k

tn
tnGCT k

where),(1
2

1
αδ

α
k

kn
t
k

−+⎥⎦

⎥
⎢⎣

⎢ −−
= .

Figure 4 demonstrates the trend of log2))2,((
α

nGCT

versus n, when α < 5.

 (Definition 7) Exchanged Hypercube

The Exchanged Hypercube is defined as),(tsEH =

),(EV (1,1 ≥≥ ts), where

}1,0{,,|{ 0101 ∈⋅⋅⋅⋅⋅⋅= −− cbacbbaaV
jits

for i�[0,s], j �[0,t]}

1|),{(2121 =⊕×∈= vvVVvvE or]1:[1 ++ ttsv =

1]0[]0[,1])1:[],1:[(],1:[21212 ===++ vvtvtvHttsv

or ,1])1:[],1:[(],1:[]1:[2121 =++++= ttsvttsvHtvtv

0]0[]0[21 == vv }

Here,]:[yxv represents the bit pattern of v between

dimension y and x inclusive. H (x, y) stands for the

Hamming distance between x and y.

In),(tsEH , the 0-ending nodes together with the links

connecting in between comprise 2
t

s-dimension binary

hypercubes (denoted as)),((tsEHB
s

 collectively). For

any)2,0[
t

k ∈ , we denote as)),,((ktsEHB
s

 the binary

hypercube whose nodes are composed of the following set:

)),,((ktsEHV
s

 = |0{ 0101 bbaa
ts

⋅⋅⋅⋅⋅⋅ −− ,01 kbb
t

=⋅⋅⋅−

∈∈ iba ji },1,0{,)},0[),,0[tjs ∈ . If)),,((ktsEHVx
s

∈

and]1:[++ ttsx = p, we denote such nodes as

),),,((pktsEHV
s

.

Likewise, the 1-ending nodes together with the links

connecting in between comprise
s

2 t-dimension binary

hypercubes (denoted as)),((tsEHB
t

 collectively). For

any)2,0[
s

l ∈ , we denote as)),,((ltsEHB
t

 the binary

hypercube whose nodes are composed of the following set:

|0{)),,((0101 bbaaltsEHV tst ⋅⋅⋅⋅⋅⋅= −− ,01 laa
s

=⋅⋅⋅−

)},0[),,0[}1,0{, tjsiba ji ∈∈∈ . If)),,((ltsEHVx
t

∈

and qtx =]1:[, we denote x as),),,((qltsEHV
s

. So

]1:)[,),,((tspktsEHV
s

+ =]1:)[,),,((tskptsEHV
t

+ .

Suppose there are
s

F faulty components in

)),((tsEHB
s

, and
t

F faulty components in)),((tsEHB
t

.

Let)),((0 tsEHE = 1|),(),{(2121 =⊕∈ vvtsEHvv }.

Suppose there are 0F faulty links in)),((0 tsEHE

\ |),(),{(21 tsEHvv ∈ 1v or 2v is faulty}. We have:

(Theorem 4)

If sFF
s

<+ 0 and tFF
t

<+ 0 , there is a deadlock-free

and livelock-free algorithm that can deliver messages

from a nonfaulty source r to a nonfaulty destination d in

no more than 2)(2),(+++
ts

FFdrH hops.

This theorem is evident from the following algorithm:

(Algorithm 4) Fault-tolerant Routing in),(tsEH (FREH)

(Case I) Suppose),),,((10 lktsEHBr
s

= and

),),,((10 kltsEHBd
t

= . Since sFF
s

<+ 0 , it is

affordable to communicate within each)),,((ktsEHB
s

 in

the initialization phase, so that each node in it knows and

records the set of nodes in)),,((ktsEHB
s

whose link in

)),((0 tsEHE (i.e. in dimension 0) is faulty.

In one case, if r finds that),),,((00 lktsEHB
s

’s link in

dimension 0 is non-faulty, it sends the packet within

)),,((0ktsEHB
s

 to),),,((00 lktsEHB
s

. This is

guaranteed to succeed as was proved in Theorem 3. After

that,),),,((00 lktsEHB
s

 sends the packet to

),),,((00 kltsEHB
t

 via the link in dimension 0. Finally,

the packet is sent in)),,((0ltsEHB
t

 to

),),,((10 kltsEHB
t

, which is guaranteed by tFF
t

<+ 0 .

 In the other case, if by looking up its local table, r

finds that the 0-dimension link of),),,((00 lktsEHB
s

 is

faulty, then there must be a nonfaulty neighbor of r whose

0-dimension link is also nonfaulty. This is guaranteed by

sFF
s

<+ 0 . Denote it as),),,((20 lktsEHB
s

. So the

packet is sent to),),,((20 lktsEHB
s

, which in turn, sends

the packet to),),,((02 kltsEHB
t

. Now there must be a

nonfaulty neighbor of),),,((02 kltsEHB
t

 in

)),,((2ltsEHB
t

whose 0-dimension link is also nonfaulty.

If there is such a neighbor in preferred dimension, then

use it. Otherwise, use the spare dimension and mask it so

that it will not be used again. After going back to

)),((tsEHB
s

, the process above repeats and finally the

packet reaches d.

Due to the use of mask for dimensions in [1, t], the

route is livelock free. Deadlock-freeness is still

guaranteed. Since faulty components might cause the use

of a spare dimension, which brings about for and pro

between)),((tsEHB
t

 and)),((tsEHB
s

, the number of

hops is bounded by)(2),(
ts

FFdrH ++ .

(Case II) If),),,((10 kltsEHBr
t

= and

),),,((10 lktsEHBd
s

= , as),(tsEH is isomorphic to

),(stEH , the algorithm is the same as case I.

(Case III) Suppose),),,((00 lktsEHBr
s

= and

),),,((11 lktsEHBd
s

= . If 01 kk = , then it is routing in s-

dimension binary hypercube. Otherwise, the packet is

sent to)),,((0ktsEHB
t

 via the 0-dimension link of r or

one of its neighbors in)),,((0ktsEHB
s

. Then the

problem is the same as in case I. But now, the number of

hops is bounded by 2)(2),(+++
ts

FFdrH because of

the extra hops in dimension 0.

(Case IV) Suppose),),,((00 kltsEHBs
t

= and

),),,((11 kltsEHBd
t

= (01 ll ≠).

This case is handled in the same way as in case III. g

Come back to)2,(
α

nGC . Suppose)(pTα and)(qTα

are neighbors in αT . For each ,0[∈k

]12
)|(|)|(| −−−− qDimpDimn α

, define graph),,,,(kqpnG α =

<),,,,(kqpnV α ,),,,,(kqpnE α >, where),,,,(kqpnV α

is the set of nodes in)2,(
α

nGC whose bits in dimensions

other than Dim (p) U Dim (q)]1,0[−αU comprise k in

value and whose rightmost α bits represent p or q.

),,,,(kqpnE α is the subset of links in)2,(
α

nGC which

connect nodes in),,,,(kqpnV α . The links in

),,,,(kqpnE α that span between)),,,,((kqpnGB
t

α and

)),,,,((kqpnGB
s

α comprise)),,,,((0 kqpnGE α . If the

last α bits are viewed as dimension 0 that can take value

only in {p, q}, then),,,,(kqpnG α is effectively

isomorphic to Exchanged Cube |,)((| pDimEH

|))(| qDim (or EH (|Dim (q)|, |Dim (p)|)). Suppose there

are),,,,(kqpne
t

α faulty components in

)),,,,((kqpnGB
t

α and),,,,(kqpne
s

α faulty

components in)),,,,((kqpnGB
s

α . The number of faulty

links in)),,,,((0 kqpnGE α \ |),(),{(21 tsEHvv ∈ 1v or

2v is faulty} is denoted as),,,,(0 kqpne α .

(Theorem 5)

In)2,(
α

nGC , for all)(pTα and)(qTα which are

neighbors in αT , if),,,,(kqpne
s

α +),,,,(0 kqpne α

< |)(| pDim and),,,,(kqpne
t

α +),,,,(0 kqpne α <

|)(| qDim , for all ,0[∈k]12
)|(|)|(| −−−− qDimpDimn α

, then

there is a fault-tolerant and cycle-free routing strategy for

any source and destination pair.

Proof. (Outline)

The algorithm used in Theorem 3 fails only when links

spanning in dimension [0, α�1] are broken. With our

discussion about the fault-tolerant routing in Exchanged

Cube, such a problem is solved as long as the fault

number satisfies the precondition of Theorem 5. g

6. Simulation results

A software simulator is constructed to imitate the

behavior of the real network, and thus test the

performance of our algorithm. The assumptions are: (1)

source and destination nodes must be nonfaulty, (2) Eager

readership is employed where packet service rate is faster

than packet arrival rate, (3) a faulty node makes all of its

incident links faulty, (4) a node knows the status of its

links to neighboring nodes and B or C category faults

related to nodes which have the same least significant α

bits as the node itself.

The performance of routing algorithm is measured by

two metrics: average latency and throughput. Average

latency is defined as LP/DP, where LP is the total latency

of all packets that have reached destination while DP is

the number of such packets. Throughput is defined as

DP/PT, where PT is the total processing time taken by all

nodes. We use its logarithm with base 2 for clearer

comparison. Fig. 5 and Fig. 6 demonstrate the result of

fault-free GC (n, M) (n�[6, 14], M�{1, 2, 4}).

From Figure 5, it can be observed that the average

latency of Gaussian Cube increases as the networks

dimension increases from 6 to 14. As the network size

increases, the diameter of the hypercube also increases. A

packet to be transmitted has to take a longer path to reach

its destination, resulting in a higher average latency.

Furthermore, as M increases, the network average latency

also increases. This is due to the dilution of links with

increasing M. The influence of M on the average latency

is even more significant than network dimension.

In Fig. 6, it is demonstrated that the throughput of all

networks is

increasing as

the dimension

is increased

from 6 to over

14. This is due

to the

parallelism of

the networks

and the

increase in the

number of

nodes that can

generate and

route packets

in the network,

is faster than

the time

complexity of

)log)((ααα −nO

where

Mlog=α .

By increasing

the network

size, the

number of link

is also

increasing at a

higher rate

than the node

number. This

in turn

increases the

total allowable

packets in the

network. With

parallelism,

more packets

will reach

destination in a

given duration.

Figure 7 and

8 demonstrate

the result for

)1,(nGC

(]13,5[∈n),

with the

comparison

between two

situations: fault

free and one

faulty node in

presence. It is

clear that when the number of faults increases, the trend of

average latency is to increase while the throughput is to

decrease. This is because when more faults appear, the

packet is more likely to use spare dimensions which

makes the final route longer. Thus, the latency increases

and throughput decreases.

7. Discussion and conclusion

In this paper, a new effective fault-tolerant routing

strategy is proposed for Gaussian Cubes. Gaussian Tree

is introduced to facilitate the algorithm and helps to make

routing more definite. The routing strategy ensures

livelock freeness and generates deadlock-free routes with

the length no more than 2F longer than the optimal route

found in the fault-free setting. The space and computation

complexity as well as message overhead size are all

reasonable. Although the Gaussian Cube is very sparsely

connected, which partially caused the current non-

existence of fault tolerant routing strategies for it, our

algorithm can still tolerate a satisfactory number of faults,

with careful analysis of their location and influence.

Some of our results can still be improved upon. For

example, although the idea of categorizing the faulty

components is useful in Gaussian Cube and possibly in

other node/link diluted cubes, the exact way of

categorization might vary due to different topologies. A

new unified metric needs to be designed to measure the

fault-tolerance ability of interconnection networks so that

it is fair despite their different routing algorithms and

different methods of fault categorization.

8. References

[1] Hsu, W. J., Chung, M. J., and Hu, Z., "Gaussian Networks

For Scalable Distributed Systems", The Computer Journal,

Vol. 39, No. 5, 1996 , pp 417-426.

[2] Hsu, W. J., Chung, M. J. and Hu, Z. “A New Gaussian

networks and Their Applications” Int’l Symp. Parallel and

Distributed Supercomputing, Japan, 1995.

[3] Douglas B. West, “Introduction to Graph Theory - Second

edition” Chapter 2 N.J.: Prentice Hall, 2001.

[4] Peter K. K. Loh, H. Schröder, W. J. Hsu, “Fault-tolerant

routing on complete Josephus Cubes”. Proc. 6
th

 Australian

Conf. Computer systems architecture, IEEE Computer

Society Press. Queensland, Australia, 2001, pp. 95-104.

[5] Wu, J., “Reliable Unicasting in Faulty Hypercubes Using

Safety Levels”, IEEE Transactions on Computers, Vol. 46,

No. 2, February 1997 , pp 241-247.

[6] Lan, Youran, “An Adaptive Fault-Tolerant Routing

Algorithm for Hypercube Multicomputers”, IEEE

Transactions on Parallel and Distributed Systems , Vol. 6,

No. 11, November 1995 , pp 1147-1152.

[7] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and

Distributed Computation: Numerical Methods”. Englewood

Cliffs, NJ: Prentice-Hall, 1989, ch. 1, pp. 27–68.

Throughput ~ Dimension

0

5

10

15

20

25

30

6 7 8 9 10 11 12 13 14

Dimension

T
h
r
o
u
g
h
p
u
t
(
p
k
t
s
/
s
)

M=1 M=2 M=4

Fig 6. Throughput ~ Dimension

Ave. Latency ~ Dimension

0

50
100

150

200
250

300

5 6 7 8 9 10 11 12 13
Dimension

L
a
t
e
n
c
y
(
u
s
/
p
k
t
)

No Fault One Fault

Fig. 7 Fault’s influence on

Ave. Latency

Throughput ~ Dimension

0

5

10

15

20

25

30

5 6 7 8 9 10 11 12 13

Dimension

T
h
r
o
u
g
h
p
u
t
(
p
k
t
/
s
)

No Fault One Fault

Fig. 8 Fault’s influence

on Throughput

Ave. Latency ~ Dimension

0

200

400

600

800

6 7 8 9 10 11 12 13 14

Dimension

M=1 M=2 M=4

Fig. 5 Average. Latency

versus Dimension

