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Abstract

Many real world applications employ multi-
variate performance measures and each ex-
ample can belong to multiple classes. The
currently most popular approaches train an
SVM for each class, followed by ad hoc
thresholding. Probabilistic models using
Bayesian decision theory are also commonly
adopted. In this paper, we propose aBayesian
online multi-label classification framework
(BOMC) which learns a probabilistic linear
classifier. The likelihood is modeled by a
graphical model similar to TrueSkillTM, and
inference is based on Gaussian density fil-
tering with expectation propagation. Us-
ing samples from the posterior, we label
the testing data by maximizing the expected
F1-score. Our experiments on Reuters1-v2
dataset show BOMC compares favorably to
the state-of-the-art online learners in macro-
averaged F1-score and training time.

1 Introduction

Real world applications often involve a large number
of classes and each example can be associated with
multiple classes. For instance, many web related ob-
jects such as blogs, bookmarks, RSS feeds are attached
with tags which are essentially forms of categoriza-
tion. A news article on “Obama supported the $170
billion AIG bailout after intense debate” can be asso-
ciated with insurance, economics, and politics. In
the search industry, revenue comes from clicks on the
ads embedded in the result page. The selection and
placement of ads can be significantly improved if ads
are automatically tagged, or further categorized into
a hierarchy or ontology. This setting is referred to as
multi-label classification in machine learning, which is
also useful in many other applications such as bioin-
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formatics (Seki & Mostafa, 2005) and video retrieval
(Qi et al., 2007).
Learning with multi-label data is usually faced with
the following practical challenges:
1. The problem scale is large in the number of data
points n, number of features D, and number of classes
C. Usually, we can afford at most O(nDC) computa-
tions. Hence efficiency is critical and expensive opera-
tions such as pairwise comparison must be avoided.
2. Often multi-variate performance measures are used,
e.g. macro-average Fβ-score and area under the ROC.
They couple the labels of all data points and/or classes
in a nondecomposable way. As a result, models learned
by minimizing the training error often perform poorly
under this new measure, and it is important to cali-
brate the trained model according to the testing data.
3. Labels can be highly correlated and many applica-
tions employ a tree structured ontology. One example
is the Pascal challenge on large scale hierarchical text
classification which is based on the ODP web directory
data: lshtc.iit.demokritos.gr.

Existing algorithms for multi-label classification can
be categorized into three dimensions: a) batch v.s. on-
line, b) frequentist v.s. Bayesian, and c) using struc-
tures in the label space v.s. treating the labels as in-
dependent. These dimensions help us to analyze how
much a learning algorithm fits the above three chal-
lenges, and to eventually motivate our new algorithm.

A typical max-margin frequentist method generalizes
the binary hinge loss to the maximum inconsistency
(Elisseeff & Weston, 2001). Intuitively, for each pair
of associated label c and non-associated label c′, the
linear score of c is expected to exceed that of c′ by
a certain margin. However, this method may take
O(C2) time, and is hence inapplicable when the num-
ber of classes is large. Among the probabilistic meth-
ods, mixture models are the most natural. They as-
sume that each document has an unknown “topic”,
and each word is generated by the topic through a
multinomial distribution. To cater for the multi-label
scenario, McCallum (1999) proposed expanding the la-
tent topic space to the power set of the topics.
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Unfortunately, all of these batch methods are very ex-
pensive in training, and hence do not scale well. For
large datasets, online learning becomes effective. It
employs cheap updates and works well for stream data.
Although it has been widely used for binary classifica-
tion, it is less studied for the multi-label scenario. For
example, the additive online category ranking (Cram-
mer & Singer, 2003) uses pairwise class comparison but
is made efficient by precomputation. Bayesian online
learning (Opper, 1998) has also been studied. They es-
sentially perform assumed density filtering, where at
each step the posterior of the model is updated based
on the likelihood of a single data point, followed by ap-
proximations, e.g. using Gaussians (Minka, 2001). We
are unaware of any published Bayesian online learner
for multi-label classification.

Bayesian methods learn a distribution over a fam-
ily of models. They are both useful and commonly
adopted. Although learning and applying distribu-
tions over models is generally more computationally
expensive that point estimates, they provide more flex-
ibility in decision making and allow the model to be
used for different purposes. A case in point is the sec-
ond challenge above, multi-variate performance mea-
sures. Joachims (2005) tailored the training of SVM
for the multi-variate measure, however the testing ex-
amples were still labeled by applying the learned model
independently. Other frequentist methods also rely on
ad hoc thresholding. In contrast, with a distribution
of models available, the Bayesian method provides a
principled framework for labeling the test data by op-
timizing the posterior expectation of the multi-variate
measure in a batch fashion. Also, the model can be
estimated independent of the performance measure.
This is especially useful for online learning where data
points are intrinsically decoupled.

Finally, to make use of the structure in the label space
as desired from the third challenge, some frequentist
methods such as (Rousu et al., 2006) use the frame-
work of maximum margin Markov network, where the
class hierarchy is represented by a Markov tree. This
tree plays a key role in the definition of the discrepancy
between labels, and of the joint kernels (kernels on the
pair of feature and label). On the Bayesian side, the
most straightforward way to incorporate label interde-
pendence is through conditional random fields (CRFs),
based on which Ghamrawi & McCallum (2005) di-
rectly incorporated label co-occurrences into the fea-
tures. Interestingly, this CRF model can also induce
the structure of labels from the data, instead of relying
on a given structure that is assumed by Rousu et al.
(2006). However, the CRF was trained in a batch fash-
ion and it is not clear whether it can also be learned
efficiently in the stochastic online setting for the multi-
label data.

We propose a Bayesian online multi-label classifica-
tion framework (BOMC) which learns a probabilistic
model of the linear classifier (Section 2). The labels
are loosely coupled via a global bias for the multi-
label scenario. The training labels are incorporated to
update the posterior of the classifiers via a graphical
model similar to TrueSkillTM (Herbrich et al., 2007).
Inference is based on assumed density filtering through
the stream of training data, and expectation propaga-
tion (Minka, 2001) is applied on each training example
(Section 3). This allows us to efficiently learn from a
large amount of training data. Using samples from
the posterior of the model, we label the testing ex-
amples by maximizing the expected Fβ-score (Section
4). Encouraging experimental results are presented in
Section 5, including the comparison in macro-average
Fβ-score and training time. Section 6 concludes the
whole paper with future work.

2 A Bayesian model formulti-label data

Suppose we have n training examples whose feature
vectors are

{
xi ∈ RD

}n
i=1

. Assume there are C classes
{1, . . . , C} =: [C], and the label vector yi ∈ {0, 1}C
encodes in the multi-label setting that yic = 1 if exam-
ple xi is relevant to class c, and 0 otherwise.

Our model uses a probabilistic linear discriminant wc

for each class c, and {wc}c are independent diago-
nal Gaussians whose mean and variance are estimated
from the training data. We start from a special case of
multi-label: multi-class where exactly one label is rel-
evant. Our key model is the likelihood p(y| {wc}c ,x),
the probability of label y given the weights {wc}c. By
Bayes’ rule, the posterior of {wc}c can be computed
by p({w}c |y,x) ∝ p(y| {wc}c ,x)p({wc}c |x).

2.1 Multi-class case

We model the likelihood using a factor graph shown
in Figure 1 (below the dashed line), where class 2 is
assumed to be the correct class. ac = 〈wc,x〉 (in-
ner product) is simply a linear discriminant, which is
encoded by the factor Fwa(wc, ac) := δ(ac − 〈wc,x〉)
where δ is the Dirac/impulse function. To model the
noise for practical purposes, Gaussian noise N (0, β2)
is added to ac yielding fc, which is represented by the
factor Faf (ac, fc) := N (fc − ac, β2). Our key assump-
tion on the labeling mechanism is that the likelihood
is non-zero only when f2 is greater than all other fc
by a margin ε. This rule is implemented by first in-
troducing a difference node dc = f2− fc via the factor
Ffd(fc, f2, dc) := δ(dc− (fc− f2)). And then we check
whether dc is greater than ε: Fd(dc) := I(dc > ε),
where here I(x) := 1 if x is true and 0 otherwise.

By definition, the product of the factors below the
dashed line in Figure 1 is αp(y,a, f ,d|w,x) where α
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Figure 1: A factor graph for multi-class classification.
The graph corresponds to an example x whose label is 2.
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Figure 2: Multi-label classification via pair-
wise comparison. Class 2 and 4 are relevant.
dij = fi− fj , where i is relevant and j is not.
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Figure 3: Multi-label classification via total
ordering and a global bias.

is independent of w. So the product of all the factors
in Figure 1 is proportional to p(y|w,x)p(w|x) in w.
Therefore, the posterior p({w}c |y,x) can be obtained
by simply marginalizing out a, f , and d in the graph.

It is noteworthy that our likelihood model and fac-
tor graph are very similar to the TrueSkillTM diagram
(Herbrich et al., 2007). Our factor graph corresponds
to a fixed example x while in TrueSkillTM it corre-
sponds to a match. The classes in our setting cor-
respond to the teams. The parameter we estimate is
the weights which are linearly combined using x, while
TrueSkillTM learns the players’ skills, which are com-
bined according to how teams are formed.

2.2 Multi-label case

In the multi-label scenario, the likelihood model can
be extended using the pairwise comparison principle
as in (Elisseeff & Weston, 2001). Figure 2 illustrates
this idea where the noisy discriminant value fc of rele-
vant classes is enforced to exceed that of the irrelevant
classes. Unfortunately, this method may cost O(C2)
computations, which is not affordable. As a simpli-
fication, we assume a total order underlying the rel-
evance of the labels. This translates to thresholding
the discriminant of the classes by a global bias, as il-
lustrated by Figure 3. One can further incorporate a
“local” bias for each class by, e.g., adding an artificial
constant feature. This could even eliminate the need
for global bias and decouple all the classes. We will
compare these two models in experiment.

3 Online learning and inference
To estimate the model w and b from the training data,
we adopt the Gaussian density filtering scheme (GDF,

Maybeck, 1982) which is also used in (Herbrich et al.,
2007). It employs a Gaussian prior p0(w), and at each
iteration “absorbs” the likelihood of one training ex-
ample (xi,yi), computes the posterior

pi(w) := p(w|xi,yi) ∝ pi−1(w)p(yi|w,xi),
and approximates it by a Gaussian that is closest in
the sense of the Kullback-Leibler divergence.

In this paper, we restrict the prior and posterior to
diagonal Gaussians though covariance could be incor-
porated at a much higher computational cost. As
analyzed before, the posterior can be computed by
marginalizing out a, f , and d in the factor graph in
Figure 3. This marginalization and subsequent Gaus-
sian approximation can be effectively performed by ex-
pectation propagation (EP, Minka, 2001).

3.1 EP and message passing schedule

Intuitively, EP is similar to loopy belief propagation,
but further approximates the messages as much as pos-
sible. In particular, it approximates the marginals of
the factors by Gaussians via matching the first and
second moments. Consequently, the posterior is also
approximated by a Gaussian. Since the set of factors
used in our model is the same as in TrueSkillTM, the
message formulae can be found in Table 1 of (Herbrich
et al., 2007).

One important issue in implementing EP is the mes-
sage passing schedule. There is no loop in all the
graphical models from Figure 1 to 3. However, they all
have non-Gaussian factors I(· > ε), which necessitates
running EP repeatedly on the graph. Observe that the
shortest paths between these factors only involve fac-
tors {αc, βc}, variables {dc} and bias b (see Figure 3).
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Hence we only need to run EP iteratively over b and
{αc, dc, βc}c as the arrows show. This significantly re-
duces the cost of each EP iteration from O(DC) (for
all weights) to O(C).1 In practice, suppose we only
send messages from factors to variables, then we just
need to repeatedly perform:

¬ : {αc → dc}Cc=1;  : {βc → dc}Cc=1; ® : {αc → b}Cc=1.

3.2 Dynamic learning

Our model is static, while many real world applications
benefit from modeling temporal and spatial evolutions.
For example, the categorization rule of news wire may
vary with time. Besides, GDF depends on the random
order of training examples and the belief of our model
only propagates in the forward direction of the data
stream. In the batch setting, we may add dynamic
factors between the weight nodes of the factor graphs
of adjacent time steps to allow smooth temporal varia-
tion. Dangauthier et al. (2008) extended TrueSkillTM

to dynamic scenarios, where EP is performed back and
forth over the whole dataset. While theoretically ap-
pealing, it is very expensive in both time and space,
and hence we stick to GDF in this paper.

4 Generalization for multi-variate
performance measure

Given a set of test data Xtest :=
{
xi ∈ RD : i ∈ [n]

}
,

our task is to label xi with a subset of [C] using the
posterior of weights {wc ∼ N (µc,Σc) : class c ∈ [C]}
where Σc = diag(σ2

c,1, . . . , σ
2
c,D) and a global bias b ∼

N (µ0, σ
2
0). Our objective is to optimize some multi-

variate performance measure as found, e.g., in many
applications like information retrieval. In the case of
binary classification, let l ∈ {0, 1}n be the reference
label, and y ∈ {0, 1}n be a predicted label. Multi-
variate measures such as Fβ-score and area under ROC
require that the predicted labels on the test set be
optimized as a whole. For example, the F1-score is
defined as the harmonic mean of precision and recall:

F1-score(y, l) :=
2
∑n
i=1 y

i · li∑n
i=1 y

i +
∑n
i=1 l

i
. (1)

Furthermore, in the multi-label scenario, Eq. (1) de-
fines for each class c an F1-score F1(c), and the overall
macro-average F1-score (Lewis et al., 2004) is defined
as the average of F1(c) given by

∑
c F1(c)/C. Clearly,

it can be optimized by maximizing F1(c) for each c in-
dependently. So in the sequel, we will focus on binary
classification and omit the class index c when it is clear
from the context. Following the principles of Bayesian
decision theory, we will optimize the expected value

1After EP converges, it still takes O(DC) complexity
to record the final posterior.

of the multi-variate performance measure under the
posterior model.

Let yi be a Bernoulli random variable, with yi = 1
indicating xi belongs to class c according to our model
and 0 otherwise. Given an instantiation of w and b, we
define the label y as p(y = 1|w, b) := I(〈w,x〉−b > 0).
Therefore using the posterior of w and b, we have

p(y = 1) = E
w,b

[p(y = 1|w, b)] = Φ

(
〈µ,x〉 − µ0√
σ2

0 + x>Σx

)
,(2)

where Φ is the cumulative distribution of the stan-
dard normal distribution. Since there is no theoreti-
cal guarantee that thresholding p(y = 1) at 0.5 opti-
mizes the multi-variate performance measure, we will
label Xtest in a much more principled Bayesian fash-
ion, which is based on the joint distribution of all labels
y := (y1, . . . , yn)>. Given the model, all labels

{
yi
}

are assumed to be independent. However after inte-
grating out w and b, the independence is lost under

p(y|Xtest) := E
w,b

[∏n

i=1
p
(
yi|xi,w, b

)]
. (3)

4.1 Expected F1-score and optimization

Suppose we label Xtest by l ∈ {0, 1}n. Then the ex-
pected F1-score will be

ExpFs(l) := Ey∼p(y) [F1-score(y, l)] ,

and it is natural to choose the l which maximizes it:
l∗ := argmax

l∈{0,1}n
ExpFs(l) = argmax

l∈{0,1}n
E
y

[F1-score(y, l)] . (4)

In general, closed form solutions rarely exist for maxi-
mizing expected multi-variate measures, and comput-
ing the expectation in (4) is intractable. So we resort
to approximations. The most related algorithm that
tackles the problem (4) is by Jansche (2007). Intu-
itively, for a fixed value of

∑
i l
i, l appears only in the

numerator of the objective and optimization gets eas-
ier. However, in order to solve argmaxl:

∑
il

i=rExpFs(l)
by simply sorting E

[
yi
]
, Jansche (2007) assumed that

the yi are independent which is unrealistic in both the-
ory and practice.

Although we do recognize the importance of the cor-
relation between {yi}, it is too expensive to compute
and store. We resort to a heuristic which respects the
order of p(yi = 1) but tunes the threshold: given a
certain threshold θ ∈ [0, 1], we consider the class to be
relevant if, and only if, p(yi = 1) > θ. So

l(θ) := (I(p(y1 = 1) > θ), . . . , I(p(yn = 1) > θ))>. (5)

We now find the deterministic labeling by maximizing
the expected F1-score of l(θ) wrt θ ∈ [0, 1]:

θ∗ := argmaxθ∈[0,1] ExpFs(l(θ)). (6)

This reduction of search space from {0, 1}n to [0, 1] sig-
nificantly simplifies optimization, although l(θ∗) is not
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Figure 4: Example curves of ẼxpFs(l(θ)) (solid blue) and F1-score(l(θ),y∗) (dotted red) as functions of θ.

guaranteed to recover l∗. Given l = l(θ), there is still
no closed form to compute ExpFs(l), so we evaluate it
approximately based on samples {ỹ1, . . . , ỹS} drawn
independently and identically (iid) from p(y) (via iid
samples of w and b, then thresholding 〈w,x〉−b at 0):

ẼxpFs(l) :=
1
S

S∑
s=1

∑n
i=1 ỹ

i
sl
i∑n

i=1 ỹ
i
s +

∑n
i=1 l

i
. (7)

The concentration of ẼxpFs(l) around ExpFs(l) can
be easily quantified in probability by McDiarmid’s in-
equality (Herbrich, 2002, Theorem A.119). Unfortu-
nately, a näıve application of (7) costs O(nSCD) time,
which is impractical for large datasets. We will de-
sign a more efficient algorithm in Section 4.3 using the
“sufficient statistics”. Before that, we first justify the
labeling criteria in (6) and (5).

4.2 Soundness of Bayesian labeling criteria

Our labeling criteria l∗ := argmaxl∈{0,1}n ExpFs(l) is
deemed as sound if l∗ is “close” to the ground truth y∗,
as long as p(w, b) has been well estimated. However,
the intractability of finding l∗ precludes direct check.
Fortunately, we can indirectly check the soundness of
maxθ∈[0,1] ExpFs(l(θ)) by comparing two curves:

1. Expected F1-score: ExpFs(l(θ)) versus θ.
2. True F1-score: F1-score(l(θ),y∗) versus θ.

If these two curves are “similar”, then it suggests that
optimizing ExpFs(l(θ)) over θ is a good proxy to max-
imizing the real testing F1-score against the ground
truth. In practice, we can only use the sample based
estimates ẼxpFs(l), ẼxpFs(l(θ)) and its maximizer θ̃∗.

Figure 4 shows an experimental result on comparing
ẼxpFs(l(θ)) and F1-score(l(θ),y∗) as functions of θ. It
uses the topics group of Reuters dataset with 5 ran-
dom samples. Due to space constraints, only 4 typical
plots are shown. It can be observed that both curves
follow roughly similar trend. Indeed, we only need
the maximizer of ẼxpFs(l(θ)) (solid) to give approxi-
mately the max of F1-score(l(θ),y∗) (dotted), i.e.

F1-score(l(θ̃∗),y∗) be close to maxθ F1-score(l(θ),y∗).

In this example, this is actually pretty much the case:
the first term is 60.97 after summing up all the 101
classes, while the second term is 63.26.

4.3 Efficient calculation of empirical
expected F1-score

We design an efficient algorithm to compute
ẼxpFs(l(θ)), and use the Reuters dataset as an exam-
ple. Here C=300, D=5 · 104, n=105, average number
of non-zero features per example D̄=70, and we use G
= 20 candidate θ. Our key idea is to collect three “suf-
ficient statistics” α,β,γ derived from the definition:

ẼxpFsc(l(θg)) =
1
S

S∑
s=1

(for class c threshold θg)

:=αc,s,g︷ ︸︸ ︷
n∑
i=1

I
(〈

xi, w̃s,c

〉
− b̃s > 0

)
· I(p(yic = 1) > θg)

n∑
i=1

I
(〈

xi, w̃s,c

〉
− b̃s > 0

)
︸ ︷︷ ︸

:=βc,s

+
n∑
i=1

I(p(yic) = 1) > θg)︸ ︷︷ ︸
:=γc,g

.

α,β,γ are cheap in space, but it is challenging to com-
pute α,β efficiently due to the following constraints.
1) Memory or privacy constraints force the testing data
to be accessed as a stream, which cannot be stored or
revisited. In some cases, although revisiting is allowed,
we can only afford at most a dozen of passes due to the
cost of IO and parsing. 2) Sampling is also expensive
in time and space. For the Reuters dataset, w costs
8CD bytes = 120 MB, and it takes O(nCD̄) time to
apply one sample to all the testing data, which means
2× 109 time cost. Hence we can neither compute nor
store over a dozen samples of w, and so we let S = 10.

If we are only allowed to visit the test dataset for a sin-
gle pass, then for each testing example, we must apply
all the samples of w. Since there is not enough memory
to store all the weight samples, we have to regenerate
these samples for every testing example. Furthermore,
to ensure good statistical performance, we also store
the seed of the random number generator for all the
weight components, which allows us to apply the same
samples of w to all the testing examples.

5 Empirical evaluation

In this section, we compare the empirical performance
of several variants of our Bayesian online multi-label
classifier (BOMC) with batch SVM and two state-of-
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the-art online learning classifiers. We focus on macro-
average F1-score and training time, and the dataset
used is Reuters1-v2.

5.1 Dataset

The Reuters1-v2 dataset (Lewis et al., 2004) consists of
three groups of categories: topics, industries, and
regions, which contain 103, 354, and 366 categories
(classes) respectively. It has 804,414 documents and
every document is associated with zero or more labels
from each of the three groups. In the experiment, the
training and test sets were both sampled uniformly at
random from the whole dataset.

tf-idf features (Salton & Buckley, 1988) were used
for documents. On average each example has only
about 77 non-zero features, although the whole train-
ing set contains about 35k features.

5.2 Algorithms

We compared different variants of BOMC with two
state-of-the-art online learners. All these algorithms
randomized the order of the training examples.

To train BOMC, the feature weights had prior N (0, 1),
while the prior of the global bias was N (0, 104). The
noise level was β = 0.01 and the margin ε = 1. EP
was used for inference. On average, the relative change
of mean and variance of the messages falls below 10−3

after only three iterations. All variants of BOMC were
implemented in F#.

In practice, many classes only have very few positive
examples, and this skewness is commonly dealt with
by two heuristics. Yang (2001); Lewis et al. (2004)
tune the threshold by cross validation (CV), which
translates the separating hyperplane towards the neg-
ative region. However, CV is expensive and is in-
trinsically batch. The second approach requires more
prior knowledge but is much cheaper. It uses different
costs for misclassifying positive and negative exam-
ples, e.g. the “-j” parameter in SVMlight. Intuitively
it increases the influence of the less common classes.
Using this heuristic with SVMlight, Lewis (2001) won
the TREC-2001 batch filtering evaluation.

All algorithms under comparison perform very poorly
when neither heuristic is used. Therefore we assume
some prior knowledge such as the frequency ratio of
positive and negative examples (denoted by r). BOMC
can easily encode this prior by changing the factor
I(· > 1) to I(d > ln(e + 1/r)) for positive examples.
The intuition behind this choice is that if the dataset
has only a small fraction of positive examples, then
the model is expected to correctly classify these posi-
tive examples with a higher margin (or confidence).

BMOC with sampling (BOMC Sample) To label
the test data, we drew 5 samples from the posterior

of the learned model. 10 or 20 samples did not lead to
any improvement.

BOMC with class mass normalization (BOMC CMN)
A much simpler but non-Bayesian heuristic for tuning
the threshold is by matching the zero-th order moment
(Zhu et al., 2003): sort p(yi = 1) and threshold by
making the class ratio in the testing set identical to
that in the training set.

BMOC: training all classes independently
(BOMC IND CMN and BOMC IND Sample) We also tried
training all classes independently, i.e. each class c has
its own bias bc without using the shared global bias.
Now the posterior can be computed in closed form
for each training example. During testing, both CMN
and sampling are again applicable, and hence called
BOMC IND CMN and BOMC IND Sample, respectively.

Batch SVM (SVM Batch) Although online learning
is the focus of this paper, we also tried out a batch
SVM as a baseline. It has an unfair advantage over
online learning because it revisits training examples.
One SVM is trained for each class independently. To
deal with class skewness, we tuned the threshold us-
ing nested CV (Yang, 2001) which outperformed the
heuristic of reweighting false positive and false nega-
tive. We used the liblinear2 implemented in C.

LaSVM (LaSVM) LaSVM3 is an online solver for SVM,
which, according to Bordes et al. (2005), takes a single
pass to achieve similar generalization performance as
the batch SVM. We tuned the bias using the CV based
strategy because of its superior empirical performance.

Passive-Aggressive (PA) PA (Crammer et al.,
2006) optimizes the regularized risk of the current
example at each step. We tuned the threshold by
CV, which can use PA or batch SVM. We call them
PA OnlineCV and PA BatchCV respectively. PA is
equivalent to running liblinear for one iteration.

5.3 Results

We compared all algorithms with respect to the testing
macro-average F1-score, and the CPU time cost for
training. We randomly sampled the training and test
data five times which allowed us to plot error bars.

5.3.1 Macro-average F1-score

Figure 5 shows the macro-average F1-score as a func-
tion of the number of training examples. Among all
online learners, BOMC CMN achieves the highest macro-
average F1-score most of the time. BOMC Sample is in-
ferior to BOMC CMN, but still competitive. Notice that
CMN is also a method to choose the threshold, so it

2http://www.csie.ntu.edu.tw/∼cjlin/liblinear
3http://leon.bottou.org/projects/lasvm
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(a) #test = 200k, industries
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(b) #test = 700k, industries
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(c) #test = 200k, regions
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(d) #test = 700k, regions
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(e) #test = 200k, topics

1 2 4 8
x 10

4

55

60

65

70

Number of training examples

M
ac

ro
−

av
er

ag
e 

F
−

sc
or

e 
(%

)

 

 

BOMC_CMN
BOMC_Sample
SVM_Batch
PA_BatchCV
PA_OnlineCV
LaSVM

(f) #test = 700k, topics

Figure 5: Comparison of F1-score for the category aaaa
groups industries, regions, and topics.
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(c) #test = 200k, regions
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(d) #test = 700k, regions
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(e) #test = 200k, topics
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(f) #test = 700k, topics

Figure 6: F1-score of coupled models minus F1-score
of independent models. Height of bars represents rel-
ative difference. The bars in five colors correspond
to five random draws of traning/testing examples.

suggests that the model is well trained, and our sample
based method to find the threshold can be improved.
Comparing Figure 5(c) and Figure 5(d) on the group
regions, we observe that BOMC CMN significantly bene-
fits from a large test set. This is not surprising because
the assumption made by CMN is more likely to hold
when the test set is large.

Unsurprisingly, SVM Batch usually yields the highest
F1-score. However, BOMC CMN often performs as well
as or even better than SVM Batch by a single pass, es-
pecially on the dataset industries, or when the train-
ing set size is medium. PA OnlineCV and PA BatchCV
perform worse than other algorithms probably due to
being susceptible to noise. In contrast, LaSVM employs
a removal step to handle noise, and converges to the
true SVM solution if multiple passes are run. LaSVM is
slightly worse than BOMC CMN, but competitive.

5.3.2 Comparing coupled and decoupledBOMC

The benefit of modeling the interaction between la-
bels has been confirmed by existing algorithms such
as (Rousu et al., 2006; Ghamrawi & McCallum, 2005).

Our multi-label model in Figure 3 loosely couples all
the classes via the global bias. A natural question is
why not introduce a “local” bias to all the classes and
learn the model of all the classes independently. We
now demonstrate in Figure 6 how much the macro-
average F1-score of BOMC CMN (Fcoupled) is relatively
higher than that of BOMC IND CMN (Find) as quantified
by the relative macro-average F1-score difference:

200 · (Fcoupled − Find)/(Fcoupled + Find).

On the industries and regions groups, BOMC CMN de-
livers significantly higher macro-average F1-score than
BOMC IND CMN. We observed that the global bias in
BOMC CMN is much more confidently learned (higher
precision) than the feature weights and the local bias
in BOMC IND CMN. This is because the global bias serves
as a hub and is updated more often. On the topics
group, BOMC IND CMN performs slightly better.

5.3.3 Training time

Figure 7 presents the CPU time cost for training with
these algorithms. If an algorithm uses CV, then only
the cost for training the final model is included.
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Figure 7: CPU time for training.

The key observation is that the training time of all al-
gorithms except LaSVM is linear in the number of train-
ing examples. This matches their algorithmic prop-
erty. Training BOMC IND CMN takes slightly more time
than BOMC CMN, which suggests that the cost for updat-
ing local bias outweighs the savings from closed form
posterior. PA and SVM Batch can be trained faster than
BOMC by a factor of 2–3, which could be attributed to
the programming language (C vs F#).

Although LaSVM is the online learner which achieves
closest testing F1-score to BOMC, it takes much more
training time. This is because LaSVM operates in the
dual and has not been optimized for linear kernels.

6 Conclusion and future directions

We proposed a Bayesian online learning algorithm for
multi-label classification. It uses Gaussian density fil-
tering for efficient inference and can label unseen data
in a principled manner, as opposed to the ad hoc
thresholding schemes used in frequentist approaches.
Empirically, it delivers favorable macro-average F1-
score compared with state-of-the-art online learners,
and is even competitive with batch SVM.

This work can be extended in several directions. We
are designing efficient algorithms to train the dynamic
models briefed in Section 3.2, which is expected to
yield a more accurate model. Label noise studied by
Kim & Ghahramani (2006) can also be modeled in a
straightforward way. For example, the common noise
that flips the label by a probability ρ can be modeled
by replacing the factor I(d > ε) with ρI(d > ε) + (1−
ρ)I(d < −ε). Finally, label hierarchies can also be
conveniently incorporated using graphical models.
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