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Abstract

Subspace learning seeks a low dimensional representation of data that enables
accurate reconstruction. However, in many applications, data is obtained from
multiple sources rather than a single source (e.g. an object might be viewed by
cameras at different angles, or a document might consist of text and images). The
conditional independence of separate sources imposes constraints on their shared
latent representation, which, if respected, can improve the quality of the learned
low dimensional representation. In this paper, we present a convex formulation
of multi-view subspace learning that enforces conditional independence while re-
ducing dimensionality. For this formulation, we develop an efficient algorithm
that recovers an optimal data reconstruction by exploiting an implicit convex reg-
ularizer, then recovers the corresponding latent representation and reconstruction
model, jointly and optimally. Experiments illustrate that the proposed method
produces high quality results.

1 Introduction
Dimensionality reduction is one of the most important forms of unsupervised learning, with roots
dating to the origins of data analysis. Re-expressing high dimensional data in a low dimensional
representation has been used to discover important latent information about individual data items,
visualize entire data sets to uncover their global organization, and even improve subsequent clus-
tering or supervised learning [1]. Modern data is increasingly complex, however, with descriptions
of increasing size and heterogeneity. For example, multimedia data analysis considers data objects
(e.g. documents or webpages) described by related text, image, video, and audio components. Multi-
view learning focuses on the analysis of such multi-modal data by exploiting its implicit conditional
independence structure. For example, given multiple camera views of a single object, the partic-
ular idiosyncrasies of each camera are generally independent, hence the images they capture will
be conditionally independent given the scene. Similarly, the idiosyncrasies of text and images are
generally conditionally independent given a topic. The goal of multi-view learning, therefore, is to
use known conditional independence to improve the quality of learning results.

In this paper we focus on the problem of multi-view subspace learning: reducing dimensionality
when data consists of multiple, conditionally independent sources. Classically, multi-view subspace
learning has been achieved by an application of canonical correlation analysis (CCA) [2, 3]. In
particular, many successes have been achieved in using CCA to recover meaningful latent represen-
tations in a multi-view setting [4–6]. Such work has been extended to probabilistic [7] and sparse
formulations [8]. However, a key limitation of CCA-based approaches is that they only admit effi-
cient global solutions when using the squared-error loss (i.e. Gaussian models), while extensions to
robust models have had to settle for approximate solutions [9].

By contrast, in the single-view setting, recent work has developed new generalizations of subspace
learning that can accommodate arbitrary convex losses [10–12]. These papers replace the hard bound
on the dimension of the latent representation with a structured convex regularizer that still reduces
rank, but in a relaxed manner that admits greater flexibility while retaining tractable formulations.
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Subspace learning can be achieved in this case by first recovering an optimal reduced rank response
matrix and then extracting the latent representation and reconstruction model. Such formulations
have recently been extended to the multi-view case [13, 14]. Unfortunately, the multi-view formu-
lation of subspace learning does not have an obvious convex form, and current work has resorted
to local training methods based on alternating descent minimization (or approximating intractable
integrals). Consequently, there is no guarantee of recovering a globally optimal subspace.

In this paper we provide a formulation of multi-view subspace learning that can be solved optimally
and efficiently. We achieve this by adapting the new single-view training methods of [11, 12] to the
multi-view case. After deriving a new formulation of multi-view subspace learning that allows a
global solution, we also derive efficient new algorithms. The outcome is an efficient approach to
multi-view subspace discovery that can produce high quality repeatable results.

Notation: We use Ik for the k×k identity matrix, A′ for the transpose of matrix A, ‖ · ‖2 for the
Euclidean norm, ‖X‖F =

√
tr(X ′X) for the Frobenius norm and ‖X‖tr =

∑
i σi(X) for the trace

norm, where σi(X) is the ith singular value of X .

2 Background

Assume one is given t paired observations
{[

xj
yj

]}
consisting of two views: an x-view and a y-view,

of lengths m and n respectively. The goal of multi-view subspace learning is to infer, for each pair,
a shared latent representation, hj , of dimension k < min(n,m), such that the original data can be
accurately modeled. We first consider a linear formulation. Given paired observations the goal is to
infer a set of latent representations, hj , and reconstruction models, A and B, such that Ahj ≈ xj
and Bhj ≈ yj for all j. Let X denote the n × t matrix of x observations, Y the m × t matrix of

y observations, and Z =
[
X
Y

]
the concatenated (n + m)× t data matrix. The problem can then be

expressed as recovering a (n + m) × k matrix of model parameters, C =
[
A
B

]
, and a k × t matrix

of latent representations, H , such that Z ≈ CH .

The key assumption of multi-view learning is that each of the two views, xj and yj , is condition-
ally independent given the shared latent representation, hj . Although multi-view data can always
be concatenated and treated as a single view, if the conditional independence assumption holds, ex-
plicitly representing multiple views enables more accurate identification of the latent representation
(as we will see). The classical formulation of multi-view subspace learning is given by canonical
correlation analysis (CCA), which is typically expressed as the problem of projecting two views so
that the correlation between them is maximized [2]. Assuming the data is centered (i.e.X1 = 0 and
Y 1 = 0), the sample covariance of X and Y is given by XX ′/t and Y Y ′/t respectively. CCA can
then be expressed as an optimization over matrix variables

max
U,V

tr(U ′XY ′V ) s.t. U ′XX ′U = V ′Y Y ′V = I (1)

for U ∈ Rn×k, V ∈ Rm×k [3]. Although this classical formulation (1) does not make the shared
latent representation explicit, CCA can be expressed by a generative model: given a latent represen-
tation, hj , the observations xj=Ahj+εj and yj=Bhj+νj are generated by a linear mapping plus
independent zero mean Gaussian noise, ε∼N(0,Σx), ν∼N(0,Σy) [7]. In fact, one can show that
the classical CCA problem (1) is equivalent to the following multi-view subspace learning problem.

Proposition 1. Fix k, let Z̃ =

[
(XX ′)−1/2X
(Y Y ′)−1/2Y

]
and

(C,H) = arg min
C,H
‖Z̃ − CH‖2F , (2)

where C =
[
A
B

]
. Then U = (XX ′)−

1
2A and V = (Y Y ′)−

1
2B provide an optimal solution to (1),

implying that A′A = B′B = I is satisfied in the solution to (2).

(The proof is given in Appendix A.) From Proposition 1, one can see how formulation (2) respects
the conditional independence of the separate views: given a latent representation hj , the reconstruc-
tion losses on the two views, xj and yj , cannot influence each other, since the reconstruction models
A and B are individually constrained. By contrast, in single-view subspace learning (i.e. principal
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components analysis)A andB are concatenated in the larger variable C, where C as a whole is con-
strained but A and B are not. A and B must then compete against each other to acquire magnitude
to explain their respective “views” given hj (i.e. conditional independence is not enforced). Such
sharing can be detrimental if the two views really are conditionally independent given hj .

Despite its elegance, a key limitation of CCA is its restriction to squared loss under a particular
normalization. Recently, subspace learning algorithms have been greatly generalized in the single
view case by relaxing the rank(H) = k constraint while imposing a structured regularizer that is
a convex relaxation of rank [10–12]. Such a relaxation allows one to incorporate arbitrary convex
losses, including robust losses [10], while maintaining tractability.

As mentioned, these relaxations of single-view subspace learning have only recently been proposed
for the multi-view setting [13, 14]. An extension of these proposals can be achieved by reformulating
(2) to first incorporate an arbitrary loss function L that is convex in its first argument, then relaxing
the rank constraint by replacing it with a rank-reducing regularizer on H . In particular, we consider
the following training problem that extends [14]:

min
A,B,H

L

([
A
B

]
H;Z

)
+ α‖H‖2,1, s.t.

[
A:,i

B:,i

]
∈ C for all i,

where C :=

{[
a
b

]
: ‖a‖2 ≤ β, ‖b‖2 ≤ γ

}
, C =

[
A
B

]
, (3)

and ‖H‖2,1 =
∑
i ‖Hi,:‖2 is a matrix block norm. The significance of using the (2, 1)-block norm

as a regularizer is that it encourages rows of H to become sparse, hence reducing the dimensionality
of the learned representation [15]. C must be constrained however, otherwise ‖H‖2,1 can be pushed
arbitrarily close to zero simply by re-scaling H/s and Cs (s > 0) while preserving the same loss.

Unfortunately, (3) is not jointly convex in A, B and H . Thus, the algorithmic approaches proposed
by [13, 14] have been restricted to alternating block coordinate descent between components A, B
and H , which cannot guarantee a global solution. Our main result is to show that (3) can in fact be
solved globally and efficiently for A, B and H , improving on the previous local solutions [13, 14].

3 Reformulation

Our first main contribution is to derive an equivalent but tractable reformulation of (3), followed
by an efficient optimization algorithm. Note that (3) can in principle be tackled by a boosting
strategy; however, one would have to formulate a difficult weak learning oracle that considers both
views simultaneously [16]. Instead, we find that a direct matrix factorization approach of the form
developed in [11, 12] is more effective.

To derive our tractable reformulation, we first introduce the change of variable Ẑ = CH which
allows us to rewrite (3) equivalently as

min
Ẑ

{
L(Ẑ;Z) + α min

{C:C:,i∈C}
min

{H:CH=Ẑ}
‖H‖2,1

}
. (4)

A key step in the derivation is the following characterization of the inner minimization in (4).
Proposition 2. min

{C:C:,i∈C}
min

{H:CH=Ẑ}
‖H‖2,1 defines a norm ||| · |||∗ (on Ẑ) whose dual norm is

|||Γ||| := max
c∈C,‖h‖2≤1

c′Γh.

Proof. Let λi = ‖Hi,:‖2 be the Euclidean norm of the i-th row of H . Then Hi,: = λiH̃i,: where
H̃i,: has unit length (if λi = 0, then take H̃i,: to be any unit vector). Therefore

min
{C:C:,i∈C}

min
{H:CH=Ẑ}

‖H‖2,1 = min
{C,λi:C:,i∈C,λi≥0, Ẑ=

∑
i λiC:,iH̃i,:}

∑
i λi = min

{t≥0:Ẑ∈tK}
t, (5)

where K is the convex hull of the set G := {ch′ : c ∈ C, ‖h‖2 = 1}. In other words, we seek a
rank-one decomposition of Ẑ, using only elements from G. Since the setK is convex and symmetric,
(5) is known as the gauge function and defines a norm on Ẑ (see e.g. [17, Proposition V.3.2.1]). This
norm has a dual given by

|||Γ||| := max
Z∈K

tr(Γ′Z) = max
c∈C,‖h‖2≤1

c′Γh, (6)
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where the last equality follows because maximizing any linear function over the convex hull K of a
set G achieves the same value as maximizing over the set G itself. �

Applying Proposition 2 to problem (3) leads to a simpler formulation of the optimization problem.

Lemma 3. (3) = min
Ẑ
L(Ẑ;Z)+αmax

ρ≥0
‖D−1

ρ Ẑ‖tr, whereDρ =

[√
β2+γ2ρ In 0

0
√
γ2+β2/ρ Im

]
.

Proof. The lemma is proved by first deriving an explicit form of the norm ||| · ||| in (6), then deriving
its dual norm. The details are given in Appendix B. �

Unfortunately the inner maximization problem in Lemma 3 is not concave in ρ. However, it is
possible to re-parameterize Dρ to achieve a tractable formulation as follows. First, define a matrix

Eη := D β2(1−η)
γ2η

=

[
β/
√
η In 0

0 γ/
√

1− η Im

]
, such that Dρ = E β2

γ2ρ+β2

.

Note that maxρ≥0 ‖D−1
ρ Ẑ‖ = max0≤η≤1 ‖E−1

η Ẑ‖, with ρ ≥ 0 corresponding to 0 ≤ η ≤ 1. The
following lemma proves that this re-parameterization yields an efficient computational approach.

Lemma 4. h(η) := ‖E−1
η Ẑ‖tr is concave in η over [0, 1].

Proof. Expand h(η) into

∥∥∥∥∥∥
 √ η

β2 Ẑ
X√

1−η
γ2 Ẑ

Y

∥∥∥∥∥∥
tr

= tr
(√

η
β2 (ẐX)′ẐX+ 1−η

γ2 (ẐY )′ẐY
)

, where tr(
√
·)

means summing the square root of the eigenvalues (spectral function). By [18], if a spectral function
f is concave on [0,∞), then tr(f(M)) must be concave on positive semidefinite matrices. The
result follows since η

β2 (ẐX)′ẐX+ 1−η
γ2 (ẐY )′ẐY is positive semi-definite for η ∈ [0, 1] and f =

√
·

is concave on [0,∞). �

From Lemmas 3 and 4 we achieve the first main result.
Theorem 5. (3) = min

Ẑ
L(Ẑ;Z) + α max

0≤η≤1
‖E−1

η Ẑ‖tr = max
0≤η≤1

min
Ẑ
L(Ẑ;Z) + α‖E−1

η Ẑ‖tr. (7)

Hence (3) is equivalent to a concave-convex maxi-min problem with no local maxima nor minima.

Thus we have achieved a new formulation for multi-view subspace learning that respects conditional
independence of the separate views (see discussion in Section 2) while allowing a globally solvable
formulation. To the best of our knowledge, this has not previously been achieved in the literature.

4 Efficient Training Procedure

This new formulation for multi-view subspace learning also allows for an efficient algorithmic ap-
proach. Before conducting an experimental comparison to other methods, we first develop an ef-
ficient implementation. To do so we introduce a further transformation Q̂ = E−1

η Ẑ in (7), which
leads to an equivalent but computationally more convenient formulation of (3):

(3) = max
0≤η≤1

min
Q̂

L(EηQ̂;Z) + α‖Q̂‖tr. (8)

Denote g(η) := minQ̂ L(EηQ̂;Z) + α‖Q̂‖tr. The transformation does not affect the concavity of
the problem with respect to η established in Lemma 4; therefore, (8) remains tractable. The training
procedure then consists of two stages: first, solve (8) to recover η and Q̂, which allows Ẑ = EηQ̂ to
be computed; then, recover the optimal factors H and C (i.e. A and B) from Ẑ.

Recovering an optimal Ẑ: The key to efficiently recovering Ẑ is to observe that (8) has a conve-
nient form. The concave outer maximization is defined over a scalar variable η, hence simple line
search can be used to solve the problem, normally requiring at most a dozen evaluations to achieve
a small tolerance. Crucially, the inner minimization in Q̂ is a standard trace-norm-regularized loss
minimization problem, which has been extensively studied in the matrix completion literature [19–
21]. By exploiting these algorithms, g(η) and its subgradient can both be computed efficiently.
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Recovering C and H from Ẑ: Once Ẑ is obtained, we need to recover a C and H that satisfy

CH = Ẑ, ‖H‖2,1 = |||Ẑ|||∗, and C:,i ∈ C for all i. (9)

We exploit recent sparse approximation methods [22, 23] to solve this problem. First, note from
(5) that |||Ẑ|||∗ = min{C,λi:C:i∈C,λi≥0, Ẑ=

∑
i λiC:,iH̃i,:}

∑
i λi, where ‖H̃i,:‖2 ≤ 1. Since we already

have |||Ẑ|||∗ = ‖E−1
η Ẑ‖tr from the first stage, we can rescale the problem so that |||Ẑ|||∗ = 1 without

loss of generality. In such a case, Ẑ =
∑
i λiC:,iH̃i,: where λ ≥ 0 and

∑
i λi = 1 (we restore the

proper scale to H̃ afterward). So now, Ẑ lies in the convex hull of the set G := {ch′ : c ∈ C, ‖h‖2 ≤
1} and any expansion of Ẑ as a convex combination of the elements in G is a valid recovery. From
this connection, we can now exploit the recent greedy algorithms developed in [22, 23] to solve the
recovery problem. In particular, the recovery just needs to solve

min
K∈convG

f(K), where f(K) := ‖Ẑ −K‖2F . (10)

where conv denotes the convex hull. Note that the optimal value of (10) is 0. The greedy (boosting)
algorithm provided by [22, 23] produces a factorization of Ẑ into C and H and proceeds as follows:

1. Weak learning step: greedily pick Gt = cth
′
t ∈ argminG∈G 〈∇f(Kt−1), G〉 . Note that this step

can be computed efficiently with a form of power method iteration (see Appendix C.2).

2. “Totally corrective” step: µ(t) = argmin
µ≥0,

∑
i µi=1

f
( t∑
i=1

µiGi

)
, then Kt =

t∑
i=1

µ
(t)
i Gi.

This procedure will find a Kt satisfying ‖Ẑ −Kt‖2F < ε within O(1/ε) iterations [22, 23].

Acceleration: In practice, this procedure can be considerably accelerated via more refined analysis.
Recall Ẑ is penalized by the dual of the norm in (6). Given Ẑ, it is not hard to recover its dual
variable Γ by exploiting the dual norm relationship: Γ=argmaxΓ:|||Γ|||≤1tr(Γ′Ẑ). Then given Γ, the
following theorem guarantees many bases in C can be eliminated from the recovery problem (9).

Theorem 6. (C,H) satisfying Ẑ = CH is optimal iff ‖Γ′C:,i‖ = 1 and Hi,: = ‖Hi,:‖2C ′:,iΓ, ∀i.

Theorem 6 prunes many elements from G and the weak learning step only needs to consider a proper
subset. Interestingly this constrained search can be solved with no increase in the computational
complexity. The accelerated boosting generates ct in the weak learning step, giving the recovery
C = [c1, . . . , ck] and H = diag(µ)C ′Γ. The rank, k, is implicitly determined by termination of the
boosting algorithm. The detailed algorithm and proof of Theorem 6 are given in Appendix C.

5 Comparisons

Below we compare the proposed global learning method, Multi-view Subspace Learning (MSL),
against a few benchmark competitors.

Local Multi-view Subspace Learning (LSL) An obvious competitor is to solve (3) by alternating
descent over the variables: optimize H with A and B fixed, optimize A with B and H fixed, etc.
This is the computational strategy employed by [13, 14]. Since A and B are both constrained and H
is regularized by the (2,1)-block norm which is not smooth, we optimized them using the proximal
gradient method [24].

Single-view Subspace Learning (SSL) Single view learning can be cast as a relaxation of (3),
where the columns of C =

[
A
B

]
are normalized as a whole, rather than individually for A and B:

min
{H,C:‖C:,i‖2≤

√
β2+γ2}

L(CH;Z) + α‖H‖2,1 = min
{Ĥ,Ĉ:‖Ĉ:,i‖2≤1}

L(ĈĤ;Z) + α(β2+γ2)−
1
2 ‖Ĥ‖2,1 (11)

= min
Ẑ
L(Ẑ;Z) + α(β2 + γ2)−

1
2 ‖Ẑ‖tr. (12)

Equation (12) matches the formulation given in [10]. The equality in (11) is by change of variable
C =

√
β2 + γ2Ĉ and Ĥ =

√
β2 + γ2H . Equation (12) can be established from the basic results

of [11, 12] (or specializing Proposition 2 to the case where C is the unit Euclidean ball). To solve
(12), we used a variant of the boosting algorithm [21] when α is large, due to its effectiveness
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Figure 1: Comparison between LSL and MSL on synthetic datasets with changing α, n = m = 20 and 10
repeats. (a) LSL often gets stuck in local minima, with a significantly higher objective than MSL. (b) For small
α, LSL is significantly slower than MSL. They scale similarly with the number of samples (c) Runtimes of SSL
and MSL for training and recovery with α = 10−3. For growing sample size, n = m = 20. MSL-R stands for
the recovery algorithm. The recovery time for SSL is almost 0, so it is not included.

when the solution has low rank. When α is small, we switch to the alternating direction augmented
Lagrangian method (ADAL) [25] which does not enforce low-rank at all iterations. This hybrid
choice of solver is also applied to the optimization of Q̂ in (8) for MSL. Once an optimal Ẑ is
achieved, the corresponding C and H can be recovered by an SVD: for Ẑ = UΣV ′, set C =

(β2+γ2)
1
2U and H= (β2+γ2)−

1
2 ΣV ′ which satisfies CH= Ẑ and ‖H‖2,1 =‖Ẑ‖tr, and so is an

optimal solution to (11).

6 Experimental results

Datasets We provide experimental results on two datasets: a synthetic dataset and a face-image
dataset. The synthetic dataset is generated as follows. First, we randomly generate a k-by-ttr matrix
Htr for training, a k-by-tte matrix Hte for testing, and two basis matrices, A (n-by-k) and B (m-
by-k), by (iid) sampling from a zero-mean unit-variance Gaussian distribution. The columns of A
and B are then normalized to ensure that the Euclidean norm of each is 1. Then we set

Xtr = AHtr, Ytr = BHtr, Xte = AHte, Yte = BHte.

Next, we add noise to these matrices, to obtain X̃tr, Ỹtr, X̃te, Ỹte. Following [10], we use sparse
non-Gaussian noise: 5% of the matrix entries were selected randomly and replaced with a value
drawn uniformly from [−M,M ], where M is 5 times the maximal absolute entry of the matrices.

The second dataset is based on the Extended Yale Face Database B [26]. It contains grey level
face images of 28 human subjects, each with 9 poses and 64 lighting conditions. To construct the
dataset, we set the x-view to a fixed lighting (+000E+00) and the y-view to a different fixed lighting
(+000E+20). We obtain a pair of views by randomly drawing a subject and a pose (under the two
fixed lightings). The underlying assumption is that each lighting has its own set of bases (A and B)
and each (person, pose) pair has the same latent representation for the two lighting conditions. All
images are down-sampled to 100-by-100, meaning n = m = 104. We kept one view (x-view) clean
and added pixel errors to the second view (y-view). We randomly set 5% of the pixel values to 1,
mimicking the noise in practice, e.g. occlusions and loss of pixel information from image transfer.
The goal is to enable appropriate reconstruction of a noisy image using other views.

Model specification Due to the sparse noise model, we used L1,1 loss for L:

L
([

A
B

]
H,Z

)
= ‖AH −X‖1,1︸ ︷︷ ︸

:=L1(AH,X)

+ ‖BH − Y ‖1,1︸ ︷︷ ︸
:=L2(BH,Y )

. (13)

For computational reasons, we worked on a smoothed version of the L1,1 loss [25].

6.1 Comparing optimization quality

We first compare the optimization performance of MSL (global solver) versus LSL (local solver).
Figure 1(a) indicates that MSL consistently obtains a lower objective value, sometimes by a large
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Figure 2: Signal-to-noise ratio of denoising algorithms on
synthetic data using recovered models on hold-out views. n =
m = 10. In (a), we used tL = 100 pairs of views for training
A and B and tested on 100 hold-out pairs, with 30 repeated
random draws of training and test data. In (b) we used tL =
300. Parameters were set to optimize respective methods.
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Figure 3: MSL versus SSL error in synthe-
sizing y-view, over 30 random runs. We set
n=m=200, tL=20, and ttest=80. In (a), LSL er-
ror is generally above the diagonal line, indicat-
ing higher error than MSL. In (b), SSL error is
considerably higher than MLS.

margin: more than two times lower for α = 10−4 and 10−3. Interestingly, as α increases, the
difference shrinks. This result suggests that more local minima occur in the higher rank case (a large
α increases regularization and decreases the rank of the solution). In Section 6.2, we will see that
the lower optimization quality of LSL and the fact that SSL optimizes a less constrained objective
both lead to significantly worse denoising performance.

Second, we compare the runtimes of the three algorithms. Figure 1(b) presents runtimes for LSL
and MSL for an increasing number of samples. Again, the runtime of LSL is significantly worse
for smaller α, as much as 4000x slower; as α increases, the runtimes become similar. This result
is likely due to the fact that for small α, the MSL inner optimization is much faster via the ADAL
solver (the slowest part of the optimization), whereas LSL still has to slowly iterate over the three
variables. They both appear to scale similarly with respect to the number of samples.

For SSL versus MSL, we expect SSL to be faster than MSL because it is a more straightforward
optimization: in MSL, each inner optimization of (8) over Q̂ (with a fixed η) has the same form
as the SSL objective. Figure 1(c), however, illustrates that this difference is not substantial for
increasing sample size. Interestingly, the recovery runtime seems independent of dataset size, and is
instead likely proportional to the rank of the data. For an increasing number of features, MSL scales
well, requiring only about a minute for 1000 features.

6.2 Comparing denoising quality

Next we compare the denoising capabilities of the algorithms on synthetic and face image datasets.
There are two methods for denoising. The simplest approach is to run the algorithm on the noisy
Ỹte, giving the reconstructed Ŷte as the denoised image. Another approach is to learn the models, A
and B, in a training phase. Given a new set of instances, X̃te = {x̃i}si=1 and Ỹte = {ỹi}si=1, noise
in X̃te and Ỹte can be removed using A and B, without re-training. This approach requires first
recovering the latent representation, Ĥte = (h1, . . . ,hs), for X̃te and Ỹte. We use a batch approach
for inference:

Ĥte =argmin
H

L1(AH, X̃te)+L2(BH, Ỹte)+α‖H‖2,1. (14)

The x-views and y-views are then reconstructed using X̂te = AĤte and Ŷte = BĤte. We compared
these reconstructions with the clean data, Xte and Yte, in terms of the signal-to-noise ratio:

SNR(X̂te, Ŷte) =
(
‖Xte‖2F + ‖Yte‖2F

)/(
‖Xte − X̂te‖2F + ‖Yte − Ŷte‖2F

)
. (15)

We present the recovery approach on synthetic data and the direct reconstruction approach on the
face dataset. We cross-validated over α ∈ {10−4, 10−3, 10−2, 10−1, 0.5, 1} according to the highest
signal-to-noise ratio on the training data. We set γ = β = 1 because the data is in the [0, 1] interval.

6.2.1 Using Recovered Models for Denoising

Figure 2 presents the signal-to-noise ratio for recovery on synthetic data. MSL produced the highest
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Figure 4: Reconstruction of a noisy image with 5% or 10% noise. LSL performs only slightly
worse than MSL for larger noise values: a larger regularization parameter is needed for more noise,
resulting in fewer local minima (as discussed in Figure 1). Conversely, SSL performs slightly worse
than MSL for 5% noise, but as the noise increases, the advantages of the MSL objective are apparent.

value of signal-to-noise ratio. The performance of LSL is inferior to MSL, but still better than SSL,
corroborating the importance of modelling the data as two views.

6.2.2 Image Denoising

In Figure 4, we can see that MSL outperforms both SSL and LSL on the face image dataset for
two noise levels: 5% and 10%. Interestingly, in addition to having on average a 10x higher SNR
than SSL for these results, MSL also had significantly different objective values. SSL had larger
reconstruction error on the clean x-view (10x higher), lower reconstruction error on the noisy y-
view (3x lower) and a higher representation norm (3x higher). Likely, the noisy y-view skewed the
representation, due to the joint rather than separate constraint as in the MSL objective.

6.3 Comparing synthesis of views

In image synthesis, the latent representation is computed from only one view: Ĥte =

argminH L1(AH, X̃te) + α‖H‖2,1. The y-view is then synthesized: Ŷte = BĤte.

Figure 3 shows the synthesis error, ||Ŷte−Yte||2F , of MSL, LSL, and SSL over 30 random runs: MSL
generally incurs less error than LSL, and SSL incurs much higher error because it is not modelling
the conditional independence between views.

7 Conclusion
We provided a convex reformulation of multi-view subspace learning that enables global learning, as
opposed to previous local formulations. We also developed a new training procedure which recon-
structs the data optimally and discovers the latent representations efficiently. Experimental results
on synthetic data and image data confirm the effectiveness of our method, which consistently out-
performed other approaches in denoising quality. For future work, we are investigating extensions
to semi-supervised settings, such as global methods for co-training and co-regularization. It should
also be possible to extend our approach to more than two views and incorporate kernels.
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Supplementary Material

A Proof of Proposition 1

To show that (1) and (2) have equivalent solutions we exploit some developments from [27]. Let
N = (XX ′)−

1
2 and M = (Y Y ′)−

1
2 , hence

Z̃Z̃ ′ =

[
I NXY ′M

MYX ′N I

]
.

First consider (1). Its solution can be characterized by the maximal solutions to the generalized
eigenvalue problem [3]:[

0 XY ′

Y X ′ 0

] [
u
v

]
= λ

[
XX ′ 0

0 Y Y ′

] [
u
v

]
,

which, under the change of variables u=Na and v=Mb and then shifting the eigenvalues by 1, is
equivalent to

≡
[

0 XY ′M
YX ′N 0

] [
a
b

]
= λ

[
N−1 0

0 M−1

] [
a
b

]
≡

[
0 NXY ′M

MYX ′N 0

] [
a
b

]
= λ

[
I 0
0 I

] [
a
b

]
≡ Z̃Z̃ ′

[
a
b

]
= (λ+ 1)

[
a
b

]
By setting

[
A
B

]
to the top k eigenvectors of Z̃Z̃ ′ one can show that U = NA and V = MB provides

an optimal solution to (1) [3].

By comparison, for (2), an optimal H is given by H = C†Z̃, where C† denotes pseudo-inverse.
Hence

min
C,H
‖Z̃ − CH‖2F = min

C
‖(I − CC†)Z̃‖2F

= tr(Z̃Z̃ ′)− max
{C:C′C=I}

tr(C ′Z̃Z̃ ′C).

Here again the solution is given by the top k eigenvectors of Z̃Z̃ ′ [28].1

B Proof for Lemma 3

First, observe that

(3) = min
{C:C:,i∈C}

min
H

L(CH;Z) + α‖H‖2,1 = min
Ẑ
L(Ẑ;Z) + α min

{C:C:,i∈C}
min

{H:CH=Ẑ}
‖H‖2,1

= min
Ẑ
L(Ẑ;Z) + α|||Ẑ|||∗,

where the last step follows from Proposition 2.

It only remains to show |||Ẑ|||∗ = maxρ≥0 ‖D−1
ρ Ẑ‖tr, which was established in [11]. We reproduce

the proof in [11] for the convenience of the reader.

We will use two diagonal matrices, IX = diag([1n;0m]) and IY = diag([0n;1m]) such that IX +
IY = Im+n. Similarly, for c ∈ Rm+n, we use cX (respectively cY ) to denote c1:m (respectively
cm+1:m+n).

The first stage is to prove that the dual norm is characterized by

|||Γ||| = min
ρ≥0
‖DρΓ‖sp. (16)

1 [29] gave a similar but not equivalent formulation to (2), due to the lack of normalization.
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where the spectral norm ‖X‖sp = σmax(X) is the dual of the trace norm, ‖X‖tr. To this end, recall
that

|||Γ||| = max
c∈C,‖h‖2≤1

c′Γh = max
c∈C
‖c′Γ‖2 = max

{c:‖cX‖2=β, ‖cY ‖2=γ}
‖c′Γ‖2

giving

|||Γ|||2 = max
{c:‖cX‖2=β, ‖cY ‖2=γ}

c′ΓΓ′c = max
{Φ:Φ�0, tr(ΦIX)≤β2, tr(ΦIY )≤γ2}

tr(ΦΓΓ′), (17)

using the fact that when maximizing a convex function, one of the extreme points in the constraint
set {Φ : Φ�0, tr(ΦIn)≤β2, tr(ΦIm)≤γ2} must be optimal. Furthermore, since the extreme points
have rank at most one in this case [30], the rank constraint rank(Φ) = 1 can be dropped.

Next, form the Lagrangian L(Φ;λ, ν,Λ) = tr(ΦΓΓ′) + tr(ΦΛ) + λ(β2 − tr(ΦIX)) + ν(γ2 −
tr(ΦIY )) where λ ≥ 0, ν ≥ 0 and Λ � 0. Note that the primal variable Φ can be eliminated
by formulating the equilibrium condition ∂L/∂Φ = ΓΓ′ + Λ − λIX − νIY = 0, which implies
ΓΓ′ − λIX − νIY � 0. Therefore, we achieve the equivalent dual formulation

(17) = min
{λ,ν:λ≥0, ν≥0, λIX+νIY �ΓΓ′}

β2λ+ γ2ν. (18)

Now observe that for λ ≥ 0 and ν ≥ 0, the relation ΓΓ′ � λIX + νIY holds if and only if
Dν/λΓΓ′Dν/λ�Dν/λ(λIX+νIY )Dν/λ = (β2λ+γ2ν)In+m, hence

(18) = min
{λ,ν:λ≥0, ν≥0, ‖Dν/λΓ‖2sp≤β2λ+γ2ν}

β2λ+γ2ν (19)

The third constraint must be met with equality at the optimum due to continuity, for otherwise we
would be able to further decrease the objective, a contradiction to optimality. Note that a standard
compactness argument would establish the existence of minimizers. So

(19) = min
λ≥0,ν≥0

‖Dν/λΓ‖2sp = min
ρ≥0
‖DρΓ‖2sp.

Finally, for the second stage, we characterize the target norm by observing that

|||Ẑ|||∗ = max
Γ:|||Γ|||≤1

tr(Γ′Ẑ)

= max
ρ≥0

max
Γ:‖DρΓ‖sp≤1

tr(Γ′Ẑ) (20)

= max
ρ≥0

max
Γ̃:‖Γ̃‖sp≤1

tr(Γ̃′D−1
ρ Ẑ)

= max
ρ≥0
‖D−1

ρ Ẑ‖tr. (21)

where (20) uses (16), and (21) exploits the conjugacy of the spectral and trace norms. The lemma
follows.

C Proof for Theorem 6 and Details of Recovery

Once an optimal reconstruction Ẑ is obtained, we need to recover the optimal factors C and H that
satisfy

CH = Ẑ, , ‖H‖2,1 = |||Ẑ|||∗, and C:,i ∈ C for all i. (22)

Note that by Proposition 2 and Lemma 3, the recovery problem (22) can be re-expressed as

min
{C,H:C:,i∈C ∀i, CH=Ẑ}

‖H‖2,1 = max
{Γ:|||Γ|||≤1}

tr(Γ′Ẑ). (23)

Our strategy will be to first recover the optimal dual solution Γ given Ẑ, then use Γ to recover H
and C.

First, to recover Γ one can simply trace back from (21) to (20). Let UΣV ′ be the SVD of D−1
ρ Ẑ.

Then Γ̃ = UV ′ and Γ = D−1
ρ UV ′ automatically satisfies |||Γ||| = 1 while achieving the optimal

trace in (23) because tr(Γ̃′D−1
ρ Ẑ) = tr(Σ) = ‖D−1

ρ Ẑ‖tr.
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Given such an optimal Γ, we are then able to characterize an optimal solution (C,H). Introduce the
set

C(Γ) := arg max
c∈C
‖Γ′c‖ =

{
c =

[
a
b

]
: ‖a‖ = β, ‖b‖ = γ, ‖Γ′c‖ = 1

}
. (24)

Theorem 6. For a dual optimal Γ, (C,H) solves recovery problem (22) if and only if C:,i ∈ C(Γ)

and Hi,: = ‖Hi,:‖2C ′:,iΓ, such that CH = Ẑ.

Proof. By (23), if Ẑ = CH , then

|||Ẑ|||∗ = tr(Γ′Ẑ) = tr(Γ′CH) =
∑
i

Hi,:Γ
′C:,i. (25)

Note that ∀C:,i ∈ C, ‖Γ′C:,i‖2 ≤ 1 since |||Γ||| ≤ 1 and Hi,:Γ
′C:,i = ‖Hi,:Γ

′C:,i‖2 ≤
‖Hi,:‖2‖Γ′C:,i‖2 ≤ ‖Hi,:‖2. If (C,H) is optimal, then (25) =

∑
i ‖Hi,:‖2, hence implying

‖Γ′C:,i‖2 = 1 and Hi,: = ‖Hi,:‖2C ′:,iΓ.

On the other hand, if ‖Γ′C:,i‖2 = 1 and Hi,: = ‖Hi,:‖2C ′:,iΓ, then we have |||Ẑ|||∗ =
∑
i ‖Hi,:‖2,

implying the optimality of (C,H). �

Therefore, given Γ, the recovery problem (22) has been reduced to finding a vector µ and matrix C
such that µ ≥ 0, C:,i ∈ C(Γ) for all i, and C diag(µ)C ′Γ = Ẑ.

Next we demonstrate how to incrementally recover µ and C. Denote the range of C diag(µ)C ′ by
the set

S := {
∑
i µicic

′
i : ci ∈ C(Γ),µ ≥ 0} .

Note that S is the conic hull of (possibly infinitely many) rank one matrices {cc′ : c ∈ C(Γ)}.
However, by Carathéodory’s theorem [31, §17], any matrix K ∈ S can be written as the conic com-
bination of finitely many rank one matrices of the form {cc′ : c ∈ C(Γ)}. Therefore, conceptually,
the recovery problem has been reduced to finding a sparse set of non-negative weights, µ, over the
set of feasible basis vectors, c ∈ C(Γ).

To find these weights, we use a totally corrective “boosting” procedure [21] that is guaranteed to
converge to a feasible solution. Consider the following objective function for boosting

f(K) = ‖KΓ− Ẑ‖2F , where K ∈ S.

Note that f is clearly a convex function in K with a Lipschitz continuous gradient. Theorem 6
implies that an optimal solution of (22) corresponds precisely to those K ∈ S such that f(K) = 0.
The idea behind totally corrective boosting [21] is to find a minimizer of f (hence optimal solution
of (22)) incrementally. After initializing K0 = 0, we iterate between two steps:

1. Weak learning step: find

ct ∈ argmin
c∈C(Γ)

〈∇f(Kt−1), cc′〉 = argmax
c∈C(Γ)

c′Qc, (26)

where Q = −∇f(Kt−1) = 2(Ẑ −Kt−1Γ)Γ′.

2. “Totally corrective” step:

µ(t) = argmin
µ:µi≥0

f
(∑t

i=1 µicic
′
i

)
, (27)

Kt =
∑t
i=1 µ

(t)
i cic

′
i.

Three key facts can be established about this boosting procedure: (i) each weak learning step can
be solved efficiently; (ii) each totally corrective weight update can be solved efficiently; and (iii)
f(Kt)↘ 0, hence a feasible solution can be arbitrarily well approximated. (iii) has been proved in
[21], while (ii) is immediate because (27) is a standard quadratic program. Only (i) deserves some
explanation. We show in the next subsection that C(Γ), defined in (24), can be much simplified, and
consequently we give in the last subsection an efficient algorithm for the oracle problem (26) (the
idea is similar to the one inherent in the proof of Lemma 3).

12



C.1 Simplification of C(Γ)

Since C(Γ) is the set of optimal solutions to
max
c∈C
‖Γ′c‖ , (28)

our idea is to first obtain an optimal solution to its dual problem, and then use it to recover the
optimal c via the KKT conditions. In fact, its dual problem has been stated in (18). Once we obtain
the optimal ρ in (21) by solving (8), it is straightforward to backtrack and recover the optimal λ and
ν in (18). Then by KKT condition [31, §28], c is an optimal solution to (28) if and only if∥∥cX∥∥ = β,

∥∥cY ∥∥ = γ, (29)

〈R, cc′〉 = 0, where R = λIX + νIY − ΓΓ′ � 0. (30)

Since (30) holds iff c is in the null space of R, we find an orthonormal basis {n1, . . . ,nk} for this
null space. Assume

c = Nα, where N = [n1, . . . ,nk] =

[
NX

NY

]
, α = (α1, . . . , αk)′. (31)

By (29), we have

0 = γ2
∥∥cX∥∥2 − β2

∥∥cY ∥∥2
= α′

(
γ2(NX)′NX − β2(NY )′NY

)
α. (32)

The idea is to go through some linear transformations for simplification. Perform eigen-
decomposition UΣU ′ = γ2(NX)′NX − β2(NY )′NY , where Σ = diag(σ1, . . . , σk), and U ∈
Rk×k is orthonormal. Let v = U ′α. Then by (31),

c = NUv, (33)
and (32) is satisfied if and only if

v′Σv =
∑
i

σiv
2
i = 0. (34)

Finally, (29) implies
β2 + γ2 = ‖c‖2 = v′U ′N ′NUv = v′v. (35)

In summary, by (33) we have
C(Γ) = {NUv : v satisfies (34) and (35)}

=
{
NUv : v′Σv = 0, ‖v‖2 = β2 + γ2

}
. (36)

C.2 Solving the weak oracle problem (26)

The weak oracle needs to solve
max

c∈C(Γ)
c′Qc,

where Q = −∇f(Kt−1) = 2(Ẑ −Kt−1Γ)Γ′. By (36), this optimization is equivalent to
max

v:v′Σv=0, ‖v‖2=β2+γ2
v′Tv,

where T = U ′N ′QNU . Using the same technique as in the proof of Lemma 3, we have
max

v:v′v=1,v′Σv=0
v′Tv

(let H = vv′) = max
H�0,tr(H)=1,tr(ΣH)=0

tr(TH)

(Lagrange dual) = min
τ,ω:τΣ+ωI−T�0

ω

= min
τ∈R

λmax(T − τΣ),

where λmax stands for the maximum eigenvalue. Since λmax is a convex function over real symmet-
ric matrices, the last line search problem is convex in τ , hence can be solved globally and efficiently.

Given the optimal τ and the optimal objective value ω, the optimal v can be recovered using a similar
trick as in Appendix C.1. Let the null space of ωI + τΣ − T be spanned by N̂ = {n̂1, . . . , n̂s}.
Then find any α̂ ∈ Rs such that v := N̂α̂ satisfies ‖v‖2 = β2 + γ2 and v′Σv = 0.
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