Accelerated Training of Max-Margin Markov Networks with Kernels

Xinhua Zhang

University of Alberta Alberta Innovates Centre for Machine Learning (AICML)

Joint work with

Ankan Saha (Univ. of Chicago) and SVN Vishwanathan (Purdue Univ)

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Structured output prediction

- Structured feature/label joint map: $\phi(\mathbf{x}^i, \mathbf{y}^i)$
- Linear discriminant: $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) \rangle$
- Structured label loss: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i)$ with $\ell(\mathbf{y}^i, \mathbf{y}^i; \mathbf{x}^i) = 0$
- Hinge loss $:=\Psi(\mathbf{y})$
 - Loss augmented discriminant: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) + \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \rangle$ \forall **y**

Structured output prediction

- Structured feature/label joint map: $\phi(\mathbf{x}^i, \mathbf{y}^i)$
- Linear discriminant: $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) \rangle$
- Structured label loss: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i)$ with $\ell(\mathbf{y}^i, \mathbf{y}^i; \mathbf{x}^i) = 0$
- Hinge loss
 - Loss augmented discriminant $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) + \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \rangle \forall \mathbf{y}$

 $:=\Psi(\mathbf{y})$

• Max over \mathbf{y} : $\max_{\mathbf{y}\in\mathcal{Y}} \{\Psi(\mathbf{y}) - \Psi(\mathbf{y}_i)\}$

Structured output prediction

- Structured feature/label joint map: $\phi(\mathbf{x}^i, \mathbf{y}^i)$
- Linear discriminant: $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) \rangle$
- Structured label loss: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i)$ with $\ell(\mathbf{y}^i, \mathbf{y}^i; \mathbf{x}^i) = 0$
- Hinge loss:
 - Loss augmented discriminant $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) + \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \rangle \forall \mathbf{y}$

 $:=\Psi(\mathbf{y})$

• Max over \mathbf{y} : $\max_{\mathbf{y}\in\mathcal{Y}} \left\{ \ell(\mathbf{y},\mathbf{y}^i;\mathbf{x}^i) - \left\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i,\mathbf{y}^i) - \boldsymbol{\phi}(\mathbf{x}^i,\mathbf{y}) \right\rangle \right\}$

Max-margin Markov networks and conditional random fields

- Structured feature/label joint map: $\phi(\mathbf{x}^i, \mathbf{y}^i)$
- Linear discriminant: $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) \rangle$
- Structured label loss: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i)$
- M³N:

$$J(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) - \left\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) - \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \right\rangle \right\}$$

• CRF:

$$J(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) - \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) \rangle\right)$$

Max-margin Markov networks and conditional random fields

- Structured feature/label joint map: $\phi(\mathbf{x}^i, \mathbf{y}^i)$
- Linear discriminant: $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}^i) \rangle$
- Structured label loss: $\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i)$
- M^3N :

$$J(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \frac{1}{n} \sum_{i=1}^n \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) - \left\langle \mathbf{w}, \phi(\mathbf{x}^i, \mathbf{y}^i) - \phi(\mathbf{x}^i, \mathbf{y}) \right\rangle \right\}$$

$$J(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) - \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) \rangle\right)$$

Max-Margin Markov Networks

- Major challenges
 - Large space of \mathcal{Y} , so need to (carefully) keep factorization
 - Loss is not smooth

$$J(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) - \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) \rangle \right\}$$

not smooth

- Factorization
 - Feature factorization: $\phi(\mathbf{x}^i, \mathbf{y}) = \bigoplus_{c \in \mathcal{C}} \phi(\mathbf{x}^i, y_c)$
 - Loss factorization

$$\ell(\mathbf{y}, \mathbf{y}^i; \mathbf{x}^i) = \sum_{c \in \mathcal{C}} \ell(y_c, y_c^i; \mathbf{x}^i)$$

Probability factorization

$$p(\mathbf{y}; \mathbf{x}) \propto \prod_{c \in \mathcal{C}} \exp\left(\psi_c(y_c, \mathbf{x})\right)$$

Non-smooth solvers: State of the art for M³N

Rate of convergence
$\langle G^2 \log \mathcal{V} \rangle$
$O\left(\frac{\frac{\alpha - \log \sigma }{\lambda\epsilon}}{\lambda\epsilon}\right)$
$\left(\left\ \boldsymbol{\phi}(\mathbf{x}^{i}, y_{c})\right\ \leq G\right)$
pd: $O\left(n \mathcal{Y} \log \frac{1}{\epsilon}\right)$ psd: $O\left(n \mathcal{Y} \frac{1}{\lambda \epsilon}\right)$
$O\left(G\sqrt{\frac{\log \mathcal{Y} }{\lambda\epsilon}}\right)$

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Intuition of smoothing

Find a smooth and tight approximation of the non-smooth objectives

Intuition of smoothing

Find a smooth and tight approximation of the non-smooth objectives

Q: general procedure for smoothing?

Intuition of smoothing

Find a smooth and tight approximation of the non-smooth objectives

Key observation

Loss for M³N has rich structure (though non-smooth)

$$\frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) + \underbrace{\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) \rangle}_{u_{\mathbf{y}}^{i} = \langle \mathbf{w}, A_{i, \mathbf{y}} \rangle} \right\}$$

- Can be rewritten
 - A: a matrix stacking ϕ features

$$\frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) + u_{\mathbf{y}}^{i} \right\} \qquad \mathbf{u} = A^{\top} \mathbf{w}$$

Key observation

Loss for M³N has rich structure (though non-smooth)

$$\frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) + \underbrace{\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) \rangle}_{u_{\mathbf{y}}^{i} = \langle \mathbf{w}, A_{i, \mathbf{y}} \rangle} \right\}$$

- Can be rewritten
 - A: a matrix stacking ϕ features

$$\frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) + u_{\mathbf{y}}^{i} \right\} \qquad \mathbf{u} = A^{\top} \mathbf{w}$$

• Further written as $g^{\star}(\mathbf{u})$

where ${\mathcal G}$ is a convex function with a compact domain Q

Key observation

- Loss for M³N has rich structure (though non-smooth) $\frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) + \underbrace{\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}) - \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y}^{i}) \rangle}_{u_{\mathbf{y}}^{i} = \langle \mathbf{w}, A_{i, \mathbf{y}} \rangle} \right\}$
- Empirical risk can be written as $g^*(A^\top \mathbf{w})$
 - A: a matrix stacking ϕ features
 - g: is a convex function with a compact domain Q

$$Q = \left\{ \boldsymbol{\alpha} : \alpha_{\mathbf{y}}^{i} \ge 0, \text{ and } \sum_{\mathbf{y}} \alpha_{\mathbf{y}}^{i} = \frac{1}{n}, \forall i \right\}$$
$$g(\boldsymbol{\alpha}) = \left\{ \begin{aligned} -\sum_{i} \sum_{\mathbf{y}} \ell_{\mathbf{y}}^{i} \alpha_{\mathbf{y}}^{i} & \text{if } \boldsymbol{\alpha} \in Q \\ +\infty & \text{otherwise.} \end{aligned} \right.$$

Significance of this $g^*(A^T \mathbf{w})$ reformulation: smoothing

- It helps us to design a *tight* and *smooth* approximation
- Use a prox-function *d*
 - d is strongly convex with modulus 1 (wrt some norm on Q)
 - $\min_{\boldsymbol{\alpha} \in Q} d(\boldsymbol{\alpha}) = 0$, let $\mathcal{D} = \max_{\boldsymbol{\alpha} \in Q} d(\boldsymbol{\alpha})$
- Desirable properties
 - $(g + \mu d)^{\star}$ has Lipschitz continuous gradient (lcg)

$$(g + \mu d)^{\star} - g^{\star} \in [-\mu \mathcal{D}, 0]$$

Example approximation: *tight* and *smooth*

• Example: hinge loss

Example approximation: *tight* and *smooth*

- Example: hinge loss
- Entropic prox-function: logistic loss

Example approximation: *tight* and *smooth*

- Example: hinge loss
- Quadratic prox-function

Smoothing M³N into CRF

M³N loss

$$g^{\star}(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \ell(\mathbf{y}, \mathbf{y}^{i}; \mathbf{x}^{i}) - u_{\mathbf{y}}^{i} \right\}$$

Use entropic prox-function

$$d(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \sum_{\mathbf{y}} \alpha_{\mathbf{y}}^{i} \log \alpha_{\mathbf{y}}^{i} + \log n + \log |\mathcal{Y}|,$$

then

$$(g + \mu d)^{\star}(\mathbf{u}) = \frac{\mu}{n} \sum_{i=1}^{n} \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\frac{u_{\mathbf{y}}^{i} + \ell_{\mathbf{y}}^{i}}{\mu}\right) - \mu \log |\mathcal{Y}|$$

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Excessive Gap Technique

Excessive Gap Technique

Key technical challenges

Key challenges of excessive gap minimization

- Let μ_k approach 0 as rapidly as possible
- Still allow \mathbf{w}_k and $\boldsymbol{\alpha}_k$ to be updated efficiently

Rates of convergence

• Rates when using Euclidean prox-function $d(\boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\alpha}\|^2$ $J(\mathbf{w}_k) - D(\boldsymbol{\alpha}_k) \le \frac{6\mathcal{D}}{(k+1)(k+2)} \frac{\|A\|^2}{\lambda}$

But, Euclidean prox-function does not work for M³N

- Key issue: cannot maintain factorization in the updates
- Need to evaluate the smooth objective $(g + \mu d)^* (A^\top \mathbf{w}) = \max_{\boldsymbol{\alpha} \in Q} \left\{ \left\langle A^\top \mathbf{w}_k, \boldsymbol{\alpha} \right\rangle - g(\boldsymbol{\alpha}) - \mu d(\boldsymbol{\alpha}) \right\}$
- Maximizer must factorize over the graphical model.
- Intuition: arithmetic mean of two iid densities is not iid.

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Using Bregman divergence prox-function

- We show Bregman divergence maintains factorization
 - Intuition: geometric mean of two iid densities is still iid
- We show same $\frac{1}{k^2}$ rates hold for Bregman divergence prox-function

$$Q = \left\{ \boldsymbol{\alpha} : \alpha_{\mathbf{y}}^{i} \ge 0, \text{ and } \sum_{\mathbf{y}} \alpha_{\mathbf{y}}^{i} = \frac{1}{n}, \forall i \right\}$$
$$d(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \sum_{\mathbf{y}} \alpha_{\mathbf{y}}^{i} \log \alpha_{\mathbf{y}}^{i} + \log n + \log |\mathcal{Y}|,$$
$$J(\mathbf{w}_{k}) - D(\boldsymbol{\alpha}_{k}) \le \frac{6 \log |\mathcal{Y}|}{(k+1)(k+2)} \frac{\max_{i,\mathbf{y}} \|\boldsymbol{\phi}(\mathbf{x}_{i},\mathbf{y})\|^{2}}{\lambda}$$

Resulting rates

Ours

$$\max_{i,\mathbf{y}} \|\boldsymbol{\phi}(\mathbf{x}_i,\mathbf{y})\| \sqrt{\frac{6\mathrm{KL}(\boldsymbol{\alpha}^*||\boldsymbol{\alpha}_0)}{\lambda\epsilon}}$$

• (Collins et al, 2008)

$$\max_{i,\mathbf{y}} \left\| \boldsymbol{\phi}(\mathbf{x}_i,\mathbf{y}) \right\|^2 \frac{\mathrm{KL}(\boldsymbol{\alpha}^* || \boldsymbol{\alpha}_0)}{\lambda \epsilon}$$

Outline

- Objective of max-margin Markov network (M³N)
- Smoothing for M³N
- Excessive gap technique in general, and problem for M³N
- Bregman divergence for prox-function
 - Retain the accelerated rates $\frac{1}{k^2}$
 - Efficient computation by graphical model factorization
- Kernelization
- Conclusion

Kernelization

- w enters the objective only via inner products $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \rangle$
- So kernelize on $\mathcal{X} \times \mathcal{Y}$
 - Further factorize the kernel onto $\mathcal{X} \times \{\mathcal{Y}_c\}_c$
- Key idea: implicitly represent w in terms of β
 - Roughly speaking:

$$\mathbf{w} = \sum_{i=1}^{n} \sum_{\mathbf{y} \in \mathcal{Y}} \beta_{\mathbf{y}}^{i} \boldsymbol{\phi}(\mathbf{x}^{i}, \mathbf{y})$$

- This $\beta_{\mathbf{y}}^{i}$ factorizes over the graphical model
- Then $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^i, \mathbf{y}) \rangle$ can be computed by using kernels

Conclusion

- Excessive gap technique enjoys accelerated rates $\frac{1}{k^2}$
 - But only shown for Euclidean prox-function
- Euclidean prox-function is problematic for M³N
 - Does not allow computations to factorize
- We extend prox-function to Bregman divergence
 - Efficient computation by graphical model factorization
 - Improved rates compared with state-of-the-art M³N solvers
 - Admits kernelization