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Structured output prediction 

 

 

 

 Structured feature/label joint map:  

 Linear discriminant:  

 Structured label loss:                  with  

 Hinge loss 

 Loss augmented discriminant:                                         
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Max-margin Markov networks 
and conditional random fields 

 Structured feature/label joint map:  

 Linear discriminant:  

 Structured label loss:  

 M3N: 

 

 

 CRF: 
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Max-margin Markov networks 
and conditional random fields 

 Structured feature/label joint map:  

 Linear discriminant:  

 Structured label loss:  

 M3N: 

 

 

 CRF: 
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Max-Margin Markov Networks 

 Major challenges 

 Large space of     , so need to (carefully) keep factorization 

 Loss is not smooth 
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Factorization for  
structured output space 

 

 

 

 Factorization 

 Feature factorization: 

 Loss factorization  

 
 

 Probability factorization 

10 



Non-smooth solvers: 
State of the art for M3N 
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Algorithm Rate of convergence 

BMRM / SVM-Struct 

Extragradient 

Exponentiated Gradient 

SMO 

Our algorithm 
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Intuition of smoothing 

 Find a smooth and tight approximation of the non-smooth 

objectives 
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Q: general 
procedure for 

smoothing? 
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 Find a smooth and tight approximation of the non-smooth 

objectives 
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Q: general 
procedure for 

smoothing? 

A: Fenchel 
conjugation 



Key observation 

 Loss for M3N has rich structure (though non-smooth) 

 

 

 Can be rewritten 

 A : a matrix stacking      features 
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Key observation 
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 Can be rewritten 

 A : a matrix stacking      features 

 

 

 Further written as      

    where     is a convex function with a compact domain 

17 



Key observation 

 Loss for M3N has rich structure (though non-smooth) 

 

 

 Empirical risk can be written as 

 A : a matrix stacking      features 

    : is a convex function with a compact domain  
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Significance of this  
reformulation: smoothing 

 It helps us to design a tight and smooth approximation 

 Use a prox-function d 

 d  is strongly convex with modulus 1 (wrt some norm on     ) 

                        , let 
 

 Desirable properties 

                   has Lipschitz continuous gradient (lcg)  
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Example approximation:  
tight and smooth 

 Example: hinge loss 
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Example approximation:  
tight and smooth 

 Example: hinge loss 

 Entropic prox-function: logistic loss 
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Example approximation:  
tight and smooth 

 Example: hinge loss 

 Quadratic prox-function 
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Smoothing M3N into CRF 

 M3N loss 

 

 

 Use entropic prox-function 

 
then 
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Excessive Gap Technique 
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Excessive Gap Technique 
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Excessive Gap Technique 
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Key technical challenges 

 

 

 

 

 

 Key challenges of excessive gap minimization 

 Let       approach 0 as rapidly as possible 

 Still allow        and       to be updated efficiently 
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Rates of convergence 

 Rates when using Euclidean prox-function 

 

 

 But, Euclidean prox-function does not work for M3N 

 Key issue: cannot maintain factorization in the updates 

 Need to evaluate the smooth objective 

 
 Maximizer must factorize over the graphical model. 

 Intuition: arithmetic mean of two iid densities is not iid. 
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Using Bregman divergence 
prox-function 

 We show Bregman divergence maintains factorization 

 Intuition: geometric mean of two iid densities is still iid 

 We show same      rates hold for Bregman divergence 

prox-function 
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Comparison 

 Resulting rates 

 

 Ours 
 

 
 (Collins et al, 2008) 
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Kernelization 

     enters the objective only via inner products 

 

 So kernelize on  

 Further factorize the kernel onto 

 Key idea: implicitly represent       in terms of  

 Roughly speaking:  

 

 

 This        factorizes over the graphical model 

 Then                         can be computed by using kernels 
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Conclusion 

 Excessive gap technique enjoys accelerated rates 

 But only shown for Euclidean prox-function 

 Euclidean prox-function is problematic for M3N 

 Does not allow computations to factorize 

 We extend prox-function to Bregman divergence 

 Efficient computation by graphical model factorization 

 Improved rates compared with state-of-the-art M3N solvers 

 Admits kernelization 
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