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Abstract— Information-theoretical approaches can ensure
security, regardless of the computational power of the attackers.
Requirements for the application of this theory are: 1) assuring
an advantage over the eavesdropper quality of reception and
2) knowing where the eavesdropper is. The traditional metrics
are the secrecy capacity or outage, which are both related to
the quality of the legitimate link against the eavesdropper link.
Our goal is to define a new metric, which is the characteristic
of the security of the surface/environment where the legitimate
link is immersed, regardless of the position of the eavesdropping
node. The contribution of this paper is twofold: 1) a general
framework for the derivation of the secrecy capacity of a surface,
which considers all the parameters that influence the secrecy
capacity and 2) the definition of a new metric to measure the
secrecy of a surface: the secrecy pressure. The metric can be
also visualized as a secrecy map, analogously to weather forecast.
Different application scenarios are shown: from “forbidden zone”
to Gaussian mobility model for the eavesdropper. Moreover, the
secrecy outage probability of a surface is derived. This additional
metric can measure, which is the secrecy rate supportable by the
specific environment.

Index Terms— Physical-layer security, secrecy pressure, secrecy
capacity, secrecy outage, security of wireless communications.

I. INTRODUCTION

IN WIRELESS networks, transmission between legitimate
nodes can easily be intercepted by an eavesdropper due

to the broadcast nature of the wireless medium. This makes
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wireless transmissions highly vulnerable to eavesdropping
attacks. Existing communications systems typically adopt
cryptographic techniques in order to achieve confidential trans-
mission, to prevent an eavesdropper from interpreting data
transmission between legitimate users.

It is known that encrypted transmission is not perfectly
secure, since the cipher text can still be decrypted by an eaves-
dropper through a brute-force attack, an exhaustive search of
the encryption key into the cipher text.

To this end, physical-layer security is an emerging alter-
native paradigm to protect wireless communications against
eavesdropping attacks, including brute-force attacks. In fact,
the security of cryptographic techniques is implicitly set into
the practical assumption that the attacker does not have enough
computational power to hack the cipher text in a reasonable
amount of time. Thus, security of encryption algorithm cannot
be measured exactly. On the contrary, information-theoretical
physical-layer security does not need to make any assumption
of the computational power of the attacker, and, in addition,
the security of a communication link can be exactly measured.

Physical-layer security work was pioneered by Shannon
and evolved by Wyner in [1], where a discrete memoryless
wiretap channel was examined for secure communications
in the presence of an eavesdropper. Perfectly secure data
transmission can be achieved if the channel capacity of the
legitimate link is higher than the eavesdropper link (from
source to eavesdropper). In [2], Wyners results were extended
to Gaussian wiretap channel: a new metric, the secrecy capac-
ity, was proposed. The secrecy capacity was derived as the
difference between the channel capacity of the legitimate
link and of the eavesdropper link. If the secrecy capacity
is above zero, the legitimate source can adapt the data rate
in order to let the destination decode the information, while
the data overheard by the eavesdropper is too few and noisy
to be decoded. If the secrecy capacity falls below zero, the
transmission from source to destination becomes completely
insecure, and the eavesdropper can succeed in interpreting the
data. In order to improve the security against eavesdropping
attacks, one solution is to reduce the probability of occurrence
of an intercept event through enlarging the secrecy capacity.

As a consequence, there are extensive works aimed at
increasing the secrecy capacity of wireless communications by
exploiting multiple antennas [3] and/or cooperative relays [4].

A. Related Works

There are some examples in literature of papers attempting
to create a physical region to face the randomness of the

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MUCCHI et al.: NEW METRIC FOR MEASURING THE SECURITY OF AN ENVIRONMENT 3417

eavesdropper location and/or the amplitude fluctuation due
to fading. All these attempts are basically based on the use
of multiple antennas and beamforming [5], [10]–[12]. These
works aim at building a region as small as possible where the
message can be considered secure. The region is built by using
beamforming and/or antenna coding between the legitimate
transmitter and receiver, or with the help of friendly surround-
ing nodes (artificial noise injection, jamming). Actually, the
definition of the physical region can differ from paper to paper,
but mainly beamforming or jamming are used in the works
based on information-theoretical parameters, in the form of
antenna arrays [10] or distributed antennas [5].

In [6] secrecy rate maximization and power consump-
tion minimization for a multiple-inputmultiple-output (MIMO)
secrecy channel is investigated. A multiantenna cooperative
jammer is employed to improve secret communication in
the presence of a multiantenna eavesdropper. In [7] and [8]
a phase-shifting array is used to produce security in a given
direction (directional modulation). The resulting signal is
direction-dependent and thus the signal can be purposely
distorted in other directions but the desired one. This approach
can be used to enhance the security of multiuser multi-
input multiple output (MIMO) communication systems when
a multiantenna eavesdropper is present [9].

The metric used to measure the security of the legitimate
link is always the received signal to noise plus interference
ratio (SINR) or the secrecy outage. The metric, such as
the secrecy outage, is well known in literature and it is
related to the quality of the legitimate link, given the position
of transmitter and receiver, the transmit parameters (power,
coding, beamforming, etc.), as well as the location of eaves-
dropping nodes and interference sources. Other papers based
on information-theoretical security typically use the metrics
such as secrecy capacity or secrecy outage to measure the
security level of the legitimate link by supposing to know the
positions and the channel state information of the eavesdrop-
pers and interferers. In order to drop out the dependance on the
positions of the eavesdropping or interference nodes,1 a more
general secrecy metric which is basically a characteristic of the
network topology can be reached by averaging out the secrecy
capacity over all the possible positions of eavesdroppers or
interferers [13], [14]. Anyway, all the above mentioned papers
deal with metrics which express a characteristic of the link,
not of the surface where the link is immersed.

B. Our Contribution

The secrecy capacity is a good metric to evaluate how
much is secure a single communication link. But in many
practical scenarios a metric which is related to the specific
environment can be more effective. For this reason we propose
and test here a new metric which bonds the secrecy to the
surface of the environment. We named this metric secrecy
pressure, taking an analogy from the weather forecasting. The
secrecy pressure is defined as the secrecy capacity insisting
over the infinitesimal element of the surface. This metric can

1The eavesdroppers and interferers are supposed to be spatially distributed
around the legitimate link with a point poisson process (PPP) distribution.

be used for several practical scopes: from deriving the secrecy
of a specific surface/environment, to calculate which is the
optimum transmitting antenna orientation or friendly jammer
position.

Differently from traditional metrics such as the conventional
secrecy capacity, our metric does not imply to know where Eve
is. To be more clear, in our approach the secrecy capacity is
calculated for each point (x, y) of a surface S. To do this we
suppose that Eve is located in (x, y). Then, we integrate over
x and y along the surface S, thus eliminating the dependence
on the position of the eavesdropper. The integration operation
is, de facto, as taking the average over the space (instead of
time). The resulting metric is the secrecy capacity than the
entire surface S has got. We call this metric secrecy pressure
since it tells how much security insists over a surface S. In
other words, we calculate how much secure is an environment,
given the position of Alice, Bob and (if present) interferers.
It is more practical because 1) we do not have to make any
assumptions on the position of the eavesdropper; 2) the new
metric is a property of the environment, and not of the point
where Eve is located; 3) we calculate a number which gives
an insight on how much secure is the environment were going
to transmit. The closest concept to this new metric is the
network secrecy developed by M. Win et al. [13]. The network
secrecy is a metric which evaluates the secrecy of an entire
network of nodes (not an environment). Legitimate nodes
and eavesdropping nodes are randomly distributed as Poisson
point processes (PPP). The secrecy capacity is calculated for
each legitimate link, given the position of the eavesdroppers.
The dependence on the eavesdroppers positions is dropped
by averaging out respect to all possible realization of the
PPP distribution of the eavesdropper nodes.

The paper also includes a general framework which eval-
uates the secrecy capacity over a surface. The framework
describes all the parameters affecting the secrecy capacity:
spatial distribution of the nodes (legitimate and interfering)
on a surface, antennas’ orientations and patterns, path loss and
fast fading statistics of the communication links, transmitting
powers. No hypothesis is made over the position of the
eavesdroppers, the metric is calculated over the entire surface,
as the eavesdropper could be in each point of the surface.
Static as well as statistical mobility model are supposed for the
eavesdropper. The results show how the metric can be useful
in giving an immediate insight on the leakage zones in the
surface, and how to adjust the parameters in order to maximize
the secrecy. The optimization problem is here formulated for
the transmitting antenna orientation and for the position of a
friendly jammer.

It is important to highlight that the secrecy pressure does
not need to know the position of the eavesdropper (Eve)
on the surface of interest. Typically the papers in literature
assume to know the position of Eve, which is usually an
unpractical assumption. The secrecy pressure or the secrecy
map parameters are calculated by assuming that Eve can
stay in each point of the surface. If no information about
eavesdropper is known, it could be located in any point of
the surface with equal probability. We did not introduce a
PPP distribution of eavesdropping nodes, although this is a
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common approach, since we suppose that Eve can stay in each
point of the surface. Typically, the PPP distribution is used
to calculate how many eavesdroppers are within the range of
the legitimate transmitter, and than average out the secrecy
capacity. Our approach is different, we are interested in a
new metric which is a characteristic of the surface. Anyway,
a PPP distribution for the presence of Eve over the surface
can be easily assumed in our case too. The secrecy pressure
contains all the parameters that can cause a variation of the
secrecy capacity, and thus it can be optimized respect to many
(known) parameters (transmit antenna orientation, interference
node positions or powers, etc.), separately or jointly.

Another known metric in information-theoretical physical-
layer security is the secrecy outage, i.e., the probability that
the secrecy capacity is below a target rate. We have derived
here the secrecy outage probability of a surface (SOPS). In this
case we have supposed that the presence of Eve on the surface
is not perfectly known, but it has an uncertain which we have
modelled as a Gaussian distribution.

The instant fading coefficient of Eve’s channel should be
anyway known or estimated in order to derive the secrecy
pressure instant by instant. This estimation can be relaxed
if the evaluation of the secrecy pressure is done in ergodic
channel. The ergodic secrecy pressure can be a useful tool in
many practical applications.

Practical applications of the propose metric could be tactical
communications: a scenario in which the transmission cannot
surely be overheard in a particular zone of the surface. Another
scenario could be when the information cannot be leaked along
a specific path or street, where the eavesdropper is supposed
to move.

The remainder of this article is organized as follows. Sec. II
describes the system model; the framework for the evaluation
of the secrecy capacity over a surface is introduced, including
all the parameters on which it depends, antenna orientation and
pattern, nodes position and power, etc. In Sec. III, the new
metric called secrecy pressure is defined. Sec. IV proposes
the optimization problems, analytical solutions and graphs.
In Sec. V some practical application scenarios are considered;
antenna orientation as well as friendly jammer problems are
solved in specific scenarios: from forbidden zone to mobility
of the eavesdropper. In Sec. VI the closed-form of the secrecy
outage probability of a surface is derived and discussed.
Sec. VII concludes the paper.

II. SYSTEM MODEL

Consider a 2D surface S described by Cartesian coordinates
(x, y). Into this space there are the legitimate transmitter
(node i ) and receiver (node j ), as well as a given number
of interferers Ik with k = 1, · · · , NI (Fig. 1). For better
comprehension, let’s assume that the space is a geographical
urban area, the transmitter is a base station, the receiver
is a mobile terminal and the interferers are other base
stations or access points. We do not assume any specific
position for the eavesdropper in the space. In fact, we want
to derive how the secrecy is mapped all over the given
environment.

Fig. 1. General scenario. Two legitimate nodes (i and j) want to exchange a
confidential message. They are immersed in an environment S together with
interfering nodes Ik . The eavesdropper node can be located anywhere over
the surface.

A. The Scenario

We assume to have a surface S where Alice and Bob are
located and their position is known (Fig. 3). In the environ-
ment S there are also interfering nodes, whose positions are
also known. Interfering nodes could be intentional jamming
sources or simply other systems (base stations) radiating in
the same frequency band of the legitimate transmission. To
simulate this scenario, the position of Alice and Bob was
chosen deterministically, while the position of the interfering
nodes were randomly selected, by using a Point Poisson
Process (PPP) distribution. The use of a PPP distribution for
interfering nodes dispersion around a receiver is common in
the literature, when dealing with security of wireless commu-
nications. Alice wants to transmit a confidential message M to
Bob. The legitimate receiver (Bob) tries to recover the message
from the observation vector Z B . The eavesdropper (Eve) can
be located anywhere in the surface S, and tries to recover
the message M by analyzing the observation vector Z E . The
wireless channels from Alice to Bob and to Eve are supposed
to be statistically independent.

B. Channel Model

Let us suppose to have two nodes on the surface S,
a transmitting node i with position (xi , yi ) and a receiving
node j with position (x j , y j ). The channel between node i
and node j is modeled as

Hi, j = hi, j (τ, ψ) · d−b
i, j (1)

where di, j is the Euclidian distance between the nodes, b is
the path loss exponent and hi, j (τ, ψ) models the multipath
fading effect, including angular dispersion

hi, j (τ, ψ) =
L∑

l=1

h(l)i, j δ(τ − τl)δ(ψ − ψ j ) (2)

The parameter τl is the delay of arrival of the l-th path, while
ψl is the angle of arrival of the l-th path, i.e., τ and ψ
are modeling the time and angular dispersion of the multiple
echoes arriving at the receiver, respectively. The variable

h(l)i, j = a(l)i, j e
−β(l)i, j denotes the channel coefficient, where a(l)i, j

is modelled as a stochastic variable with Rayleigh distribution
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Fig. 2. Antenna pattern of the legitimate transmitter (Alice).

whose probability density function (PDF) is

f
a(l)i, j
(a) = 2a

σa
e

−a2
σa

with σa representing the standard deviation of the Rayleigh
distribution, and β

(l)
i, j is modeled as a stochastic random

variable with uniform distribution in (0, 2π). Each link that
connect two nodes on the surface is supposed to have a fading
coefficient which is independent to all others.

C. Received Power

Let us suppose that the node i is transmitting with power Pi .
The power received by the node j is

Pj = Pi |Hi, j |2Gi (θi , φi, j )G j (θ j , φ j,i ) (3)

where Gi (θi , φi, j ) is the antenna pattern gain of the
transmitter, φi, j is the angle between the x-axis and the
segment connecting node i and j , and θi is the angle between
the x-axis and the direction of maximum radiation (main
lobe) of i -node’s antenna. Fig. 2 shows the angles mentioned
above, when node i is the legitimate transmitter, called Alice,
and node j is the legitimate receiver, called Bob.

Defining P̃i, j = Pi Gi (θi , φi, j )G j (θ j , φ j,i ) we can
rewrite (3) as

Pj = P̃i, j |Hi, j |2 (4)

Given the position of node i and j on the surface S, the
angles φi, j and φ j,i are fixed. Then, P̃i, j = P̃i, j (θi , θ j ).
If, in addition, the receiving node j has isotropic antenna
θ j = Const ∀ j , then P̃i, j = P̃i, j (θi ).

According to [18] and [19], the time dispersion of the
multipath at the receiver has an exponential distribution

fτ (τ ) = 1

στ
e−(τ−τ0)/στ

while the angle dispersion of the multipath at the receiver has
a Laplacian distribution

fψ(ψ) = 1√
2σ 2
ψ

e−√
2(ψ−ψ0)/σψ

In order to average out the time and angular dispersion,
the power Pj has to be integrated over all possible times and
angles of arrival

P j = P̃i, j d−2b
i, j

∫

τ

∫

ψ
|hi, j (τ, ψ)|2 fτ (τ ) fψ(ψ)dτdψ (5)

D. Aggregate Interference

Let us suppose that the NI interfering nodes are distributed
on the surface S following a point Poisson process (PPP)
distribution with density λ. The sum of the interference power
at the node j is

I j =
NI∑

k=1

Pk Gk(θk, φk, j )G j (θ j , φ j,k)d
−2b
k, j |hk, j |2

=
∑

k

P̃k, j |Hk, j |2 (6)

where Pk is the power emitted by the k-th interfering node,
dk, j is the Euclidian distance between the k-th interfering
node and node j and hk, j is the channel coefficient associated
to the link (1). If the position of the NI interfering nodes
(xk, yk) with k = 1, · · · , NI is fixed, then P̃k, j = P̃k, j (θk, θ j ).
If, in addition, the receiving node j has isotropic antenna
θ j = Const ∀ j , then P̃k, j = P̃k, j (θk). In this case, the
aggregate interference I j is a random variable with Stable
distribution [16], [17]

I j ∼ S(α, 1, γ j ) (7)

where α = 1/b and

γ j = πλ−1
α E

{(
∑

k

P̃k, j |hk, j |2
)α}

with

α =

⎧
⎪⎨

⎪⎩

1 − α

�(2 − α) cos(πα/2)
if α �= 1

2

π
if α = 1

(8)

where �() denotes the Gamma distribution function and E{}
the expectation operator.

The PDF of I j is

fI j (I ) = 1

2π

∫
ϕI (ω)e

− jωI dω

= 1

π

∫ ∞

0
e−ωαγ j cos

[
tan
(πα

2

)
ωαγ j − ωI

]
dω

(9)

where

ϕI (ω) = exp
{
−|ω|α

[
1 − jSgn(ω) tan

(πα
2

)]
γ j

}

is the characteristic function of the random variable I .
It is important to highlight that depending on the position

of the receiver j on the surface S, not all the NI interferers
could affect the receiver. The distance (path loss) d−2b

k, j could
be close to zero, thus the node k does not contribute to the
aggregate interference at the receiver j .

III. SECRECY PRESSURE AND SECRECY FORCE

We want to define a new metric that allows to measure
the intensity of secrecy over a given surface. Taking analogy
from the atmospheric weather science, we define the concept
of Secrecy Pressure.
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Fig. 3. Scheme of the transmission of the confidential message M from
Alice to Bob.

Let us now associate the previous defined transmitting
node i as Alice and the receiving node j as Bob. Alice is
then located at point (xA, yA) and Bob at (xB, yB) on the
surface S. The position of the eavesdropper Eve is not known,
thus we suppose that its coordinates are generically (x, y).

Suppose that Alice wants to transmit a confidential mes-
sage M to Bob. Bob tries to recover the information M from
the vector Z B received (Fig. 3). Given the model in Sec. II,
the mutual information exchanged in the legitimate link (from
Alice to Bob) is

IB = I(M; Z B) = H(M)− H(M|Z B) (10)

where H() denotes the entropy.
Analogously, the eavesdropper (Eve) tries to recover the

message M from the received vector Z E . Thus, the informa-
tion stolen by Eve is

IE = I(M; Z E ) = H(M)− H(M|Z E ) (11)

The term I(M; Z E ) is called Leakage, and it denotes the
amount of information on the message M that Eve is able
to recover from the received vector Z E .

As known, these two mutual information can be used to
calculate the secrecy capacity [15]

Csec = max
pM

{IB −IE } ≥ max
pM

IB −max
pM

IE = CB −CE (12)

where CB and CE are the capacities of Bob’s and Eve’s
channel, respectively, and pM is the marginal distribution of
the codeword M . The secrecy capacity is at least as large as
the difference between the legitimate channel capacity and the
eavesdroppers channel capacity. The inequality can be strict
as in the case of complex Gaussian wiretap channels [15],
as well as typical wireless fading channels, which are here
considered. It is important to note that both IB and IE depend
on the channel state and position of Bob and Eve respect to
Alice, respectively. This means that changing the position of
Bob or Eve on the surface S, the mutual information changes.

The capacity of the link between the transmitter, called
Alice, positioned in (xA, yA), and the position (xB, yB) of
the legitimate receiver, called Bob, can be written as

CB = 1

2
log

(
1 + PB

N0 + IB

)
(13)

Fig. 4. Secrecy map of surface S with Alice’s antenna orientation and
pattern. Three interfering nodes (I1, I2, I3) are present. The azimuth of Alice
transmission antenna is 6 deg.

where N0 denotes the Gaussian noise density at the receiver,
PB and IB are defined in (4) and (6), respectively.

Since typically we cannot know if an eavesdropper, called
Eve, is present in the surface S or where it is located, we
derive the capacity of a generic point (x, y) of the surface,
i.e.,

CE (x, y) = 1

2
log

(
1 + PE

N0 + IE

)
(14)

where PE and IE are defined as in (4) and (6), respectively

PE = PAG A(θA, φA,E )GE (θE , φE,A)d
−2b
A,E |h A,E |2

IE =
NI∑

k=1

Pk Gk(θk, φk,E )GE (θE , φE,k)d
−2b
k,E |hk,E |2

Thus, supposing that Eve is located in a generic point (x, y)
on the surface S, the secrecy capacity of the link between
Alice and Bob is

Csec(x, y)=max{0,CB −CE (x, y)}=[CB −CE (x, y)]+ (15)

It is important to highlight that the capacities here are intended
as conditioned to the state of the channels h A,B , h A,E , hk,B

and hk,E , as well as the state of the aggregate interference IB

and IE .
What we are proposing here is to define a secrecy capacity

for each elementary point (x, y) of the surface S. Using this
representation, we can elaborate a map of the secrecy of the
surface given the position of the known actors, i.e., legitimate
users and interfering nodes. In other words, given the positions
of Alice, Bob and interfering nodes Ik , for each point (x, y) of
the surface, we calculate the secrecy capacity of the legitimate
link as Eve was located in that point. The result is that we can
draw a map showing the different levels of secrecy of the entire
surface S (Fig. 4).
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The Secrecy Pressure psec is defined as

psec = 1

AS

∫∫

S
Csec(x, y)dxdy = Fsec

AS
(16)

where AS denotes the area of the surface S and the term Fsec

is denoting what we define as Secrecy Force. The secrecy force
depends on the locations of the legitimate users and interfering
nodes, but not on the eavesdroppers. The metric psec is a useful
parameter that indicates how much is secure a surface S, given
the position of legitimate nodes and interfering nodes. Using
this metric, different surfaces and/or nodes configurations can
be thus ordered

p(1)sec < p(2)sec < p(3)sec < · · ·
The index allows a ranking of a given spatial configuration of
legitimate entities and interferes.

Detailing Eq. (16), we can find an interesting property of
the secrecy pressure

psec = 1

AS

∫

x

∫

y

{
0 if CB ≤ CE (x, y)

CB − CE (x, y) if CB > CE (x, y)
dxdy

(17)

Since CB does not depend on (x, y), if the surface goes to
infinity, the secrecy pressure tends to a constant value

lim
S→∞ psec = lim

S→∞

(
1

AS

∫∫

S
[CB − CE (x, y)]+dxdy

)
= CB

(18)

This is because the path loss component d−2b
A,E (x, y) in (3)

vanishes as the generic point (x, y) on the surface S goes
to infinity. In practice, the contributions that decrease the
secrecy pressure mainly comes from the points on the surface
close to the legitimate link. In other words, supposing to
have an infinite surface, the set of points where Eve could be
located that influence the secrecy capacity is limited, due to
the path-loss. A point (x, y) too far away from the legitimate
nodes cannot affect the secrecy capacity, since the legitimate
signal is received with a too low power to observe anything
(CE (x, y) = 0).

From Eq. (15) we can derive another useful representation,
called Secrecy Map. The Csec(x, y) in (15) is indicating
which is the secrecy capacity insisting over the elementary
unit surface dxdy located in a generic point (x, y) of the
surface S (see Fig. 3). This representation can be used to
draw the behaviour of the secrecy capacity over the surface S,
showing zones where the secrecy is low or high, analogously
to the weather forecast (Fig. 4). The map, in fact, is built by
calculating the secrecy capacity of the legitimate link as the
eavesdropper was located in each point of the surface. The blue
zones in Fig. 4 indicate no secrecy, i.e., if the eavesdropper
is set there, the secrecy rate of the legitimate link is zero.
Summarizing, the secrecy map is derived by the following
steps:

1) take a surface with cartesian coordinates;
2) locate the legitimate nodes (Alice and Bob) on the

surface;

3) compute the secrecy capacity of the legitimate link
assuming that Eve is located in a point (x,y) of the
surface;

4) associate that secrecy capacity to the corresponding
point of the surface;

5) repeat 3 and 4 for every point of the surface.

The secrecy capacity associated to a generic point of the
surface could be zero, i.e., any time Eve has a greater channel
capacity compared to Bob.

The secrecy map of the surface S changes with

• the positions of Alice, Bob and interfering nodes Ik

(k = 1, · · · , NI );
• the pattern and the orientation G A(θA) of the legitimate

transmitter antenna;
• the power of the legitimate transmitter PA;
• the power of the transmitters of the interfering nodes Pk ;
• the state h A,B , h A,E , hk,B and hk,E of the channels.

The effect of time and angle dispersion at the receivers can
be averaged out by replacing P j with j = B in (13) and with
j = E in (14).

As listed in the above items, the secrecy capacity in (15)
depends on the instant fading coefficients h A,B , h A,E , hk,B

and hk,E . This means that the secrecy pressure (16) (and the
secrecy map) depends instantly on these processes. In order
to remove the dependance on the instantaneous realizations
of the fading coefficients, two solutions can be run: 1) put
the characteristic function of the fading coefficients into the
secrecy capacity formula and average it out, or more easily,
2) assume that the channels are ergodic. The results shown
in this paper are calculated by supposing ergodic channels.
Ergodic-fading model characterizes a situation in which the
duration of a coherence interval is on the order of the time
required to send a single symbol. The processes h A,B , h A,E ,
hk,B and hk,E are mutually independent and i.i.d.; fading coef-
ficients change at every channel use and a symbol experiences
many fading realizations.

The ergodic secrecy capacity is thus [15]

C̃sec(x, y) = E|h A,B |2,|h A,E |2,|hk,B |2,|hk,E |2
{[CB − CE (x, y)]+}

k = 1, · · · , NI (19)

where the operator E{} stands for the expectation. The ergodic
secrecy pressure is obtained by substituting the ergodic secrecy
capacity in (19) into Eq. (16)

p̃sec = 1

AS

∫∫

S
C̃sec(x, y)dxdy (20)

Since C̃sec(x, y) could be zero in some points of the surface,
computing p̃sec implies to make an integral of an irregular
function.

It is important to point out that the power received by
Eve depends on the position of Eve, since path-loss, fading,
angle-of-departure, angle-of-arrival, as well as the power of
the aggregate interference are position-dependent parameters.
Therefore, in the expression of the capacity of both Bob
and Eve, the parameters are position-dependent. Since we
want a metric which is not dependent on the position of Eve
(its position is not known with 100% probability, typically),
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Fig. 5. Secrecy pressure when the optimization problem is solved respect to
Alice’s antenna orientation.

we first locate Eve in each point (x,y) of the surface S, we
calculate the secrecy capacity of each point (x,y) and then we
integrate over the entire surface S. In this way, we take the
mean over a space of the secrecy capacity, which eliminates
the dependence of the secrecy capacity by specific position
of Eve. The resulting (new) metric is a characteristic of the
surface and not of the link, thus we called it secrecy pressure.

IV. SECRECY OPTIMIZATION

The secrecy pressure can be used as a useful metric to deter-
mine which is the best configuration parameters to optimize
the secrecy of a link. The proposed metric is suitable to find
out different useful results, such as: a) which is the antenna
orientation that assures highest secrecy towards the legitimate
receiver; b) where is the best location where to put additional
interfering node(s) in order to reach higher secrecy for the
legitimate link; c) which is the best configuration of power
emissions from the interfering nodes in order to have highest
secrecy for the legitimate link.

A. Antenna Orientation

Let us suppose for simplicity that the interfering nodes Ik

as well as Bob and Eve have isotropic antennas. Fixed the
surface S, the positions of the legitimate nodes (Alice, Bob)
and of the interfering nodes Ik (k = 1, · · · , NI ), and given the
pattern of the transmitting antenna G A(θA), we can maximize
the secrecy pressure respect to the antenna orientation

arg max
θA

{psec} (21)

Fig. 5 shows the secrecy map over the surface S when
Eve is supposed to be set somewhere in the surface S and
the optimization problem is solved respect to Alice’s antenna
orientation. There exists an optimum azimuth orientation of
Alice’s antenna. Given the positions of the legitimate users
and interfering nodes, the best, from the secrecy capacity point
of view, for Alice is not to point the maximum of the antenna
pattern towards the direction of Bob. An azimuth orientation of
+6 deg optimizes the secrecy capacity, in this case. In general,
with the proposed metric it is possible to derive easily which is
the best antenna orientation for the transmission to a legitimate
receiver in a given perimeter, of which we know only the

Fig. 6. Secrecy map for different positions of Eve (I, II, III and IV quadrant)
when the optimization problem is solved respect to Alice’s antenna orientation.

Fig. 7. Secrecy map over the surface S when the optimization problem is
solved respect to the position of the additional interfering node (flasher).

positions of the interferers (e.g., other access points or base
stations). Fig. 6 shows the secrecy map over the surface S
for different positions of Eve (I, II, III and IV quadrant) when
the optimization problem is solved respect to Alice’s antenna
orientation. As an example, suppose that the legitimate users
do want to minimize the information leakage in a specific
zone of the surface (e.g., the eavesdropper is suspected to be
in the third quadrant), then the optimum antenna orientation
for Alice is +16 deg (green curve in Fig. 6).

B. Interfering Node Positions

Fixed the surface S, the positions of the legitimate nodes
(Alice, Bob) and given the pattern and orientation of the
transmitting antenna G A(θA), we can maximize the secrecy
pressure over the position (xk, yk) of the NI +1-th interfering
node, a friendly jammer called here flasher, in order to
maximize the secrecy pressure of the legitimate link, given
the positions (fixed) of the NI interfering nodes

arg max
(xk,yk), k=NI +1

{psec} (22)

Fig. 7 shows the secrecy map over the surface S when the
optimization problem (22) is solved. As it can be seen, there
are positions where the additional interference node (flasher)
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Fig. 8. Optimization of both position and power of the additional interfering
node (flasher).

can be put which optimize the secrecy pressure metric. Like
forecast weather, the areas with same color bring the same
secrecy capacity, if the additional interfering node (friendly
jammer) is installed in that point of the surface. Another
evident result is that the interfering node cannot be placed
close to Bob (white hole in Fig. 7), since the this would
decrease drastically the capacity of the legitimate link and thus
the secrecy capacity. Fig. 8(a) shows the same secrecy map in
the case that Eve is supposed to be somewhere in a limited
perimeter (the green dotted line) inside the surface S. In this
case the optimum area is modified compared to the previous
scenario.

C. Power Allocation of the Interferers

Fixed the surface S, the positions of the legitimate nodes
(Alice, Bob) and of the interfering nodes2 Ik , and given the
pattern and orientation of the transmitting antenna G A(θA),

2The position of the interfering nodes has been randomly selected by using
a PPP distribution.

we can maximize the secrecy pressure respect to the power
emitted by the interfering nodes

arg max
Pk

{psec} k = 1, · · · , NI (23)

To ease the illustration of this optimization, let us suppose to
put an additional interfering node (the 4th) in the scenario and
to optimize its transmit power. Figs. 8(a) shows the secrecy
map over the surface S when the optimization problem is
solved respect to the position of the additional interfering node
(flasher) and its power. The eavesdropper is supposed to be
located somewhere in a limited perimeter (the green dotted line
in the figure) of the surface. The lighter zone of the secrecy
map denotes the set of points (x,y) where the flasher can be
located to yield the highest secrecy pressure. Fig. 8(b) shows
the secrecy pressure as a function of the power of the flasher.
The curve evidently shows an optimum point, which in that
case is about −9 dB.

It is important to stress that using the proposed metric the
optimum antenna orientation is not trivially in the direction of
the legitimate receiver, as well as the optimum position and
power of the intentional jammer (flasher) are not those that
the common sense would suggest.

D. Joint Optimization

Joint optimization of all the parameters (antenna orientation,
friendly jammer position and interfering power allocation) is
also possible

arg max
(θ;(xk,yk);Pk)

{psec} k = 1, · · · , NI (24)

Graphical results of this optimization are not shown in this
paper due to the lack of space.

E. Varying the Position of Bob

Although the most practical scenario is when Alice and Bob
are fixed and Eve can be everywhere in a limited space, as
previously described, one could also be interested in using the
proposed metric to draw the map of the secrecy pressure when
Bob’s position can vary over the surface S. In this case, the
steps to draw the map are the following

• locate the legitimate receiver (Bob) in a point (x, y) of
the surface S;

• calculate the secrecy pressure metric (20) for Bob located
in that point;

• assign to the point (x, y) the value of the secrecy pres-
sure;

• repeat these points until all the surface S is evaluated.
Fig 9(a) shows the map of the secrecy pressure when Bob’s

position varies over the surface and Eve’s position varies over
the entire surface as well. As expected the secrecy pressure is
higher when Bob is inside the main lobe of Alice, while the
secrecy pressure decreases drastically when Bob is closer to
an interferer.

Fig 9(b) shows the map of the secrecy pressure when
Bob’s position vary over the surface and Eve’s position
varies only in a limited perimeter (the green dashed line).
Compared to Fig 9(a), if Eve is confined into a limited space in
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Fig. 9. Map of the secrecy pressure. The secrecy pressure is calculated as
Bob was in each point (x, y) of the surface S.

the surface S, the zone of maximum secrecy pressure is larger
and located around the main lobe of Alice. Please note that the
secrecy pressure behind Alice, e.g. the point (−4,−2), is low
since there is almost no power from Alice in that direction.

V. GENERAL DEFINITION OF SECRECY PRESSURE

AND PRACTICAL APPLICATIONS

As stated in the previous sections, the new metric is defined
starting from the definition of the well-known secrecy capacity
(Csec). To eliminate the dependence on the position of the
eavesdropper of the secrecy capacity, we have averaged out
the secrecy capacity by integrating the Csec over the 2D-space
of the specific surface S. The resulting metric is called secrecy

pressure and it is the analytical expression of the average over
a space (instead of time). The integral of the Csec function is
not easy to derive, since Csec shows sparsely zeros over the
2D surface, each time that the capacity of Eve is greater of
the capacity of Bob. A closed-form expression of the secrecy
pressure is not easy to obtain, even for simple geometry shape
like circle or square with generic boundaries. For this reason,
we have derived the closed-form expression of the secrecy
outage of a surface (see Sec. VI). Although a closed-form
expression of the secrecy pressure for a known shape is not
shown in the paper, this does not mean that the metric makes
no sense. The metric is defined as the spatial average of the
secrecy capacity calculated for every point of the surface S.
The average of the secrecy capacity over time is called ergodic
secrecy capacity in the literature, but no previous paper, in our
knowledge, presented the spatial average.

This metric shows the secrecy as a characteristic of a
surface and not of a single link. This is useful in many
practical scenarios, like military tactical scenarios. Typically,
military command has a specific perimeter of operation, where
the presence of the enemy is not perfectly known, based
on the information that the intelligence service or technolo-
gies (satellite, etc.) can collect. Most probably, the military
command can delimit the presence of the enemy in some
zones of the operational scenario, associating the presence
of the enemy with a certain probability. By calculating the
secrecy pressure, the military command can: 1) quantify how
much secure is one perimeter from the point of view of the
wireless transmissions; 2) decide the optimum angle for the
transmitting antenna array; 3) decide which is the optimum
position to place a jammer to enhance the security of the
transmission; 4) decide the optimum power of the jammer,
in order not to degrade the reception of the legitimate receiver
while jamming the potential eavesdropper; 5) operate a multi-
parameter optimization; 6) if the position of the eavesdropper
is only partially known, the military command can draw
zones in the operational perimeter giving to each of them a
statistical probability of Eve presence, and then compute the
secrecy of the perimeter; 7) if a mobility model of Eve is
known or partially (statistically) known, again all the above
mentioned parameters (antenna orientation, friendly jammer
position, etc.) can be optimized. Other optimizations can be
further imagined.

As discussed above, in many practical situations we do not
know if an eavesdropper is present and where it is located
exactly. Thus, we define a probability of presence of Eve to
be associated to a generic point (x, y) on the surface S

ϒX,Y (x, y) = Prob {x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy}
=
∫ x+dx

x

∫ y+dy

y
υX,Y (x, y)dxdy (25)

where υX,Y (x, y) is the probability density function (PDF) of
the presence of Eve in (x, y). From now on we call this PDF
υE (x, y).

The secrecy pressure is thus re-defined as follows

psec =
∫∫

S
υE (x, y)Csec(x, y)dxdy (26)
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Fig. 10. Forbidden zone inside the surface S.

where Csec(x, y) = [CB − CE (x, y)]+ and
∫∫
υE (x, y)

dxdy = 1. Eq. (26) represents the more general expression
of the secrecy pressure in (16). For example, if a uniform
distribution of Eve’s presence is supposed for the entire
surface S, the PDF would be υE (x, y) = 1/AS and thus∫∫

S 1/ASdxdy = 1.
In the following sections three practical scenarios are pro-

posed to show the benefits of the new proposed metric.
In particular, the secrecy pressure is computed when

• an eavesdropper is known to be in a sub-region of the
surface S (leakage zone),

• the eavesdropper position is known with a probability
spatial function (Gaussian approximation), and

• when the eavesdropper has not a fixed position (mobility
scenario).

In all these cases, some simplifications are assumed

• the average fading of the channels is supposed to be 1,
i.e.,

∑
l |h(l)i, j |2 = 1;

• the antenna pattern of Bob, Eve and of the interfering
nodes is supposed to be isotropic. Only Alice has a
directive antenna and can modify the antenna orientation;

• the position of Alice and Bob on the surface S is supposed
to be fixed and known: (−4, 0) and (0, 0), respectively;

• the position of the interfering nodes (I1,I2,I3) is supposed
to be fixed and known: (−2, 4), (1,−3) and (3, 3),
respectively.

A. Leakage Zone

In many real situations, e.g., in military scenarios, the
transmitter does not want to leak information in fixed zone,
in a region where it knows that an eavesdropper is surely
present. We name here the leakage zone as forbidden zone,
since the legitimate transmitter surely does not want to leak
any information in that zone. Fig. 10 shows the surface S with
the forbidden zone SF inside. In this example the forbidden
zone is the third quadrant.

To each point of the surface SF we associate a probability
of Eve’s presence such that

∫∫
SF
υE (S)dxdy = 1, while in

the rest of the surface S we set
∫∫

¬SF
υE (S)dxdy = 0, where

¬SF denotes the complementary surface SF ∪ ¬SF = S.
Assume, as an example, to have an equal distribution

of the probability of Eve’s presence in the surface SF .

Fig. 11. Gaussian distribution of Eve’s presence inside the surface S.

Than,

υE (x, y) =
⎧
⎨

⎩

1

xE yE
, if x ∈ [0, xE ] and y ∈ [0, yE ]

0, otherwise
(27)

In this case the secrecy pressure of the surface (26) is

psec =
∫ xE

0

∫ yE

0
υE (x, y)Csec(x, y)dxdy (28)

The secrecy map of the surface can be drawn by using the
following result

υE (x, y)Csec(x, y)

=
⎧
⎨

⎩
0 if Csec(x, y) = 0

CB − 1

xE yE

∫ xE
0

∫ yE
0 CE (x, y)dxdy otherwise

(29)

The optimization of the secrecy pressure respect to the
azimuth of the transmitting antenna of the legitimate node
(Alice) for a forbidden zone is shown in Fig. 5.

B. Gaussian Probability of Eavesdropper Presence

In other situations, it is not known exactly if eavesdroppers
are present or not. Only suspicious. In this case, located a
point on the map, a probability of presence of Eve with
certain distribution can be associated. We suppose here that
a Gaussian spatial distribution of Eve’s presence is associated
to a zone of the surface S. To each point of the surface
S we associate a probability of Eve’s presence υE which
is a random variable with Gaussian distribution centered in
(xE , yE ) (Fig. 11). The circle lines denotes the intensity of
the probability. For example, if the Gaussian random variable
denoting the presence of Eve on the surface has mean 0.8 and
variance 1, we associate a probability of Eve’s presence equal
to 0.8 to the point (xE , yE ).

In this case the secrecy pressure of the surface (26) is

psec =
∫∫

S
υE (x, y)Csec(x, y)dxdy (30)

With υE (x, y) = 1√
2σ 2

E

e
(x−xE )

2+(y−yE )
2

2σE , where σE indicates the

standard deviation of the Gaussian distribution.
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The secrecy map of the surface can be drawn by using the
following result

υE (x, y)Csec(x, y)dxdy

=
{

0 if Csec(x, y) ≤ 0

CB − ∫∫S υE (x, y)CE (x, y)dxdy otherwise

(31)

This scenario is a particular case of the mobility scenario
described in the next section, the results can be appreciated
in Fig. 13(b).

C. Mobility Model for the Eavesdropper

If we know the position of Eve at time tn , we can associate
to the eavesdropper a statistical mobility model and derive the
secrecy pressure over a surface of interest. The mobility model
for Eve depends on its movement capability in the specific
environment. In the absence of prior information on the real
movement of the eavesdropper (i.e., Eve is free to move in all
directions with different speeds), the Gaussian mobility model
represents a fairly general model with a tractable number of
parameters. In the presence of some prior information on the
eavesdroppers movement (e.g., direction or speed is set by the
environment), a mobility model more tight to the real mobility
would provide better performance.

Optimization of the secrecy pressure is shown respect to
the azimuth of the legitimate transmitting antenna as well as
respect to the position of the flasher.

We consider here Gaussian mobility model with conditional
PDF of current position conditioned on the previous position.
For easier notation, let us define the position (x, y) at time tn
of a point on the surface S as a vector pn . Thus, the conditional
PDF of current position is

υm(pn|pn−1) = 1

2π |�m | 1
2

e− 1
2

[
(pn−µn )

T�−1
m (pn−µn )

]
(32)

where µn varies with the mobility model as described in
the following, and the covariance matrix �m accounts for
the uncertainty in the movements in a 2-D plane; thus, it is
expressed by

�m =
[
σm,x ρσm,xσm,y

ρσm,xσm,y σm,y

]
(33)

where σm,x and σm,y is the standard deviation along the x and
y axes, respectively. The parameter ρ takes into account the
possible inter-dependence of the two coordinates. Independent
coordinates have ρ = 0.

The mean µn depends on the position pn−1 and the speed
vn−1 according to

µn = pn−1 + vn−1(tn − tn−1) (34)

where vn−1 is the vector of the speed along x and y axes at
time tn−1.

Fig. 12 shows the secrecy map over the surface S as a
function of the position of the flasher (22) and with mobility
model for the eavesdropper (32). Eve is suspected to move
vertically from its previous position, with a mobility model
given by (32). The interfering nodes I1, I2 and I3 are fixed.

Fig. 12. Secrecy map of the position of the flasher with mobility model for
the eavesdropper.

Solving (22) gives the optimum point where to locate the
additional flasher I4. Best is to put the flasher close to the
point where the eavesdropper is supposed to arrive. This is
somehow trivial.

In order to complicate the scenario we supposed that Eve is
moving from (3,−3) to (3, 3) with a mobility model given
by (32) (see Fig. 13(a)) in six time steps. Alice antenna
azimuth orientation can vary from −30 to +30 deg. The
resulting map of the secrecy pressure is shown in Fig. 13(b).
The map shows which is the optimum transmit antenna
orientation (azimuth) at each time step. As an example, at
time step 6, Eve is stochastically supposed to be in (3, 3)
and thus an orientation between −18 to +8 deg optimizes
the secrecy capacity for the Eve’s mobility scenario. In this
case the secrecy rate achievable is more than 3.20 bps. On the
contrary, at time step 3 the maximum secrecy rate achievable is
1.28 bps with an antenna orientation range of (−26,−20) deg.

VI. SECRECY OUTAGE PROBABILITY

OF A SURFACE (SOPS)

A closed-form of the secrecy pressure is not easy to be
derived. Another interesting metric could be the outage prob-
ability of the secrecy capacity over a surface. A secure outage
occurs when the instantaneous secrecy capacity Csec(x, y) is
less than target secrecy rate Rsec. Thus, the secure outage
probability is defined as

Pout (Rsec)(x, y) = Prob{Csec(x, y) < Rsec} (35)

Note that the outage probability depends on the location (x, y)
of the eavesdropper over the surface. Given the result above,
we define the secrecy outage probability of a surface S (SOPS)
as

Aout(Rsec) =
∫∫

S
Pout (Rsec)(x, y)υE (x, y)dxdy

=
∫∫

S
Prob{Csec(x, y)< RsecυE (x, y)dxdy (36)
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Fig. 13. Eve’s mobility: scenario description and secrecy map over azimuth
of Alice’s antenna.

The secrecy outage probability of a surface depends on
the probability υE (x, y) that Eve is located in the point a
generic point (x, y) of the surface. An interesting behaviour
to study is the existence of the secrecy capacity over a
surface, i.e., when Rsec is set to zero. In this case the SOPS
becomes

Aout(Rsec = 0) =
∫∫

S
Prob{Csec(x, y) = 0}υE (x, y)dxdy

(37)

The term υE (x, y) is the distribution of the presence of Eve
over the surface, which could be uniform or Gaussian or
any other distribution, based on what it is known about the
eavesdroppers. The term Prob{Csec(x, y) = 0} can be derived
as

Prob{Csec(x, y) = 0}=Prob{SN RE (x, y)≥ SN RB } (38)

where

SN RB = PB

N0 + IB
(39)

SN RE (x, y) = PE

N0 + IE
(40)

with PB , PE defined as in (3) and IB , IE as in (6).
Eq. (38) is hard to be calculated analytically, since the term
at numerator PB is Rayleigh distributed, while the term at
the denominator IB is Stable distributed. A closed form can
be reached if we assume that the Gaussian approximation is
valid for the aggregate interference, i.e., IB ∼ N (0, NB ) and
IE ∼ N (0, NE ). In this case Eq. (41) becomes

SN RB = PB

N0 + NB
(41)

SN RE (x, y) = PE

N0 + NE
(42)

and Eq. (38) can be written as [20]

Prob{Csec(x, y) = 0} = Prob{SN RE (x, y) ≥ SN RB }
= SN R E (x, y)

SN R B + SN R E (x, y)
(43)

where

SN Ri = P̃i d
−b
A,i E{|h A,i |2}
N0 + Ni

with i = {B, E} and E{} is the expectation operator.
Thus, the SOPS in this case is

Aout(Rsec = 0)=
∫

x

∫

y

SN R E (x, y)

SN R B + SN R E (x, y)
υE (x, y)dxdy

(44)

In the case of a target secrecy rate greater than zero Rsec > 0,
Eq. (44) is

Aout(Rsec)

=
∫∫

S
Prob{Csec(x, y) < Rsec}υE (x, y)dxdy

=
∫

x

∫

y

⎛

⎜⎝1 −
SN R B · exp

{
− 2Rsec−1

S N R B

}

SN R B + 2Rsec SN R E (x, y)

⎞

⎟⎠υE (x, y)dxdy

(45)

The results of the SOPS are shown in Fig. 14. The curves are
derived by supposing a Gaussian distribution of the presence
of Eve on the surface, i.e.,

υE (x, y) = 1√
2σ 2

E

e
(x−xE )

2+(y−yE )
2

2σE

The other parameters are set as follows: E{|h A,i |2} = 1 with
i = {B, E}, σE ranges from 0.2 to 5.

Fig. 14 shows the SOPS (Aout(Rsec = 0)) as a function of
the standard deviation σE of the distribution of Eve’s presence
on the surface S. Eve is located in three different positions: at
Alice’s, at Bob’s and at the first interferer’s I1. The positions
of Alice, Bob and the interferers I1, I2 and I3 are shown
in Fig. 4.
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Fig. 14. Secrecy outage of the surface S as a function of the standard
deviation σE of the distribution of Eve’s presence over S. Eve’s distribution
is Gaussian and centered in three different positions: at Alice’s, at Bob’s and
at the first interferer’s I1.

Fig. 15. Secrecy pressure outage map of the surface S.

The orange dotted line in Fig. 14 reports the results when
Eve’s distribution is centered on the same position of Alice.
The curve of the SOPS confirms that a higher dispersion of the
probability of Eve’s presence yields a lower surface secrecy
outage. This is logic, since a higher variance of the Gaussian
distribution means higher probability that Eve is located far
away from Alice. The green dashed line in Fig. 14 reports
the results when Eve’s distribution is centered on the same
position of the first interferer I1. The curve of the SOPS, in
this case, are completely different from the previous one, as
expected. The SOPS increases with the variance σE , since
a higher dispersion of the position of Eve means a higher
probability that Eve is located far away from the interference
source, which jams Eve’s receiver.

The blue solid line in Fig. 14 reports the results when
Eve’s distribution is centered on Bob’s position. The SOPS
increases with the variance σE , since a higher dispersion of
the position of Eve means a higher probability that Eve is
located closer to the source of the information (Alice), i.e.,
Eve’s could have a better signal to noise ratio compared
to Bob.

The secrecy pressure outage map of the entire surface is
shown in Fig. 15.

VII. CONCLUSIONS

This paper proposes and studies a new metric for measuring
the secrecy potentials of a surface. This metric is defined
secrecy pressure. Using the metric different environments or
surfaces can be ordered as a function of the secrecy rate
that can be assured. The metric can be used also for solving
optimization problems, e.g., finding which is the best transmit
antenna orientation to maximize the secrecy capacity of the
surface, or finding which is the best position of an addi-
tional interfering node (friendly jammer). Different practical
scenarios are investigated, including mobility option for the
eavesdropper. Another metric, the secrecy outage probability
of a surface (SOPS), is derived. In this case the presence of
Eve is supposed to be uncertain, and modelled as a Gaussian
distribution over the surface. The results of the SOPS are
shown as a function of the dispersion of Eve’s position. The
Gaussian distribution is centered in three specific points: at
Alice’s, at Bob’s and at the first interferer’s.

In addition the first part of the paper includes a general
framework to evaluate the secrecy capacity over a surface. The
framework includes all the parameters affecting the secrecy
capacity, from nodes spatial distribution, to antenna orientation
and pattern, and propagation medium statistics.

This paper offers a new perspective on the role of secrecy
over a surface, considering nodes spatial distribution, wireless
propagation medium, and aggregate network interference.
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