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Abstract—We formulate a capacity lower bound for the dual-
hop wireless relay channel which employs an amplify-and-
forward (AF) protocol at the relay node. In AF relaying, even
when the fading channel in both hops is complex Gaussian
distributed, the overall dual-hop channel is non-Gaussian. We
highlight that there is a fundamental difference between Gaussian
and non-Gaussian channels in terms of deriving their capacity
lower bound. Specifically for non-Gaussian channels, the channel
estimation error variance depends on the received pilot signal
and is, in general, different from the average error variance.
Whereas for Gaussian distributed channels, which have been
predominantly studied in the literature, the channel estimation
error variance conditioned on the observed pilot signal coincides
with the average error variance. We provide an example using the
AF dual-hop channel to exhibit the numerical difference between
the true capacity lower bound and that obtained by using the
average instead of the conditional error variance.

Index Terms—Amplify-and-forward relaying, dual-hop chan-
nel, channel estimation, capacity lower bound, Non-Gaussian
channels, pilot-symbol-assisted modulation.

I. INTRODUCTION

T he use of relayed transmission increases the communica-
tion range and reduces the need for high power levels at

the transmitter [1]. Studies on cooperative transmission also
show that the use of relays provides spatial diversity gains in
wireless communication systems [2]. A summary of relaying
strategies was provided in [3], among which the amplify-
and-forward (AF) and decode-and-forward (DF) schemes have
been extensively studied in the past few years, especially in
resource-constrained scenarios [4]. However, early studies on
relayed transmissions have assumed that perfect channel state
information (CSI) is available, at least at the destination node.

Recently, the design of channel estimation methods for
AF relaying systems has drawn considerable attention. For
example, [5]–[7] studied the bit and symbol error performance
of the dual-hop (source-relay-destination) relayed channel, as
well as cooperative transmission, under various imperfect CSI
conditions. With AF relaying, the overall dual-hop channel
𝑔 = 𝑔1𝑔2 contributes to a non-Gaussian channel, even when
the individual channels (the source-relay channel 𝑔1 and the
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relay-destination channel 𝑔2) are assumed to be complex
Gaussian distributed. In the absence of perfect CSI at the
destination node about 𝑔1 and 𝑔2 individually, the dual-hop
channel 𝑔 can be estimated using pilot symbols that are
periodically sent by the source, amplified by the relay and
hence, travel the whole source-relay-destination link. The
imperfect CSI at the destination will undoubtedly impact the
achievable information rates in the system.

Since the acclaimed work [8] for lower bounding the
capacity of direct-link (non-relayed) wireless channels with
imperfect CSI, there has been considerable activity in ex-
tending and employing such bounds for system design and
performance evaluation (e.g., [9], [10]). With the growing
interest in relayed wireless transmission, it is interesting to
determine what information rates are achievable using AF
relaying with channel estimation errors. In this context, the
main contributions of this correspondence are summarized as
follows:

∙ We provide a step-by-step derivation of a capacity lower
bound for the AF dual-hop relay channel, which explicitly
takes into account the non-Gaussianity of the channel and
its estimate and the fact that in general, the channel es-
timation minimum mean-square error (MMSE) variance
does depend on the received pilot signal.

∙ As a result of this derivation, we are able to draw a
clear and general distinction between lower bounding the
capacity of Gaussian channels with that of non-Gaussian
channels. In the former case, the average and conditional
channel estimation MMSE variances coincide. This is not
necessarily true for non-Gaussian channels. As a result,
extra conditioning and averaging on the received pilot
signal is required in the latter. Such conditioning and
averaging has not been explicitly made in the literature
before.

The results obtained in this paper will serve as a basis
for bounding the information capacity of other non-Gaussian
channels with channel estimation errors.

II. SYSTEM MODEL

We consider a dual-hop wireless communication system
where a source node (SN) communicates with a destination
node (DN) via a relay node (RN). Each node is equipped
with a single transmit and receive antenna. The relay node
uses amplify-and-forward (AF) protocol [11]. At the DN, the
cascade channel SN → RN → DN is estimated using the pilot
symbol transmission in the first time slot of each transmission
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block.1 We assume that RN does not estimate the channel and
only amplifies and forwards the received signal to the DN.

In the pilot transmission mode, the signal received at
the DN can be written as

𝑦𝑝 = 𝐴𝑝𝑔1𝑔2𝑝+𝐴𝑝𝑔2𝑛1 + 𝑛2 (1)

= 𝐴𝑝𝑔𝑝+𝐴𝑝𝑔2𝑛1 + 𝑛2,

where 𝑝 is the pilot symbol transmitted from the SN with
the power 𝑃𝑃,𝑆 = ∣𝑝∣2, 𝑔1 and 𝑔2 are the SN → RN
and RN → DN channel gains which are modeled as zero-
mean complex Gaussian random variables with variance 𝜎2

1

and 𝜎2
2 , respectively, 𝑛1 and 𝑛2 are the zero mean complex

additive white Gaussian noise (AWGN) random processes at
the RN and the DN each with variance 𝜎2

𝑛, 𝐴𝑝 is the gain
of the RN during the pilot transmission and 𝑔 = 𝑔1𝑔2 is
the cascade gain of the dual-hop channel. Throughout the
paper we assume that 𝑔1, 𝑔2, 𝑛1 and 𝑛2 are independent
of each other. It is noted that the cascade channel 𝑔 is non-
Gaussian [12] and its statistical properties are quite different
from a single-hop complex Gaussian channel.

In the data transmission mode, the received signal at
the DN can be written as

𝑦 = 𝐴𝑑𝑔𝑥+𝐴𝑑𝑔2𝑛1 + 𝑛2, (2)

where 𝑥 is the transmitted data symbol from the SN with an
average power of 𝑃𝐷,𝑆 = 𝐸{∣𝑥∣2} and 𝐴𝑑 is the gain of
the RN during the data transmission. In this paper, we assume
that the RN employs fixed gain amplification and the gains
for the two transmission modes are given by

𝐴𝑝 =

√
𝑃𝑃,𝑅

𝑃𝑃,𝑆𝜎2
1 + 𝜎2

𝑛

and 𝐴𝑑 =

√
𝑃𝐷,𝑅

𝑃𝐷,𝑆𝜎2
1 + 𝜎2

𝑛

, (3)

where 𝑃𝑃,𝑅 and 𝑃𝐷,𝑅 are the average power transmitted by
the RN during pilot and data transmission, respectively. It is
noted that with the fixed gain implementation, the relay gain
does not depend on the instantaneous channel state of the
SN → RN link, but on its variance 𝜎2

1 . At the DN, the cascade
channel 𝑔 is estimated using the received pilot signal 𝑦𝑝 and
the known pilot symbol 𝑝. The estimate of 𝑔 is denoted by
𝑔 = 𝑓(𝑦𝑝, 𝑝) with the estimation error given by 𝑔 = 𝑔 − 𝑔.
The proper type of estimation for obtaining a valid capacity
lower bound will be discussed in the next section.

III. A CAPACITY LOWER BOUND

The exact capacity expressions for direct link (non-relayed)
communication systems with channel estimation errors are
not available. In the case of direct link Gaussian channels,
a commonly-used lower bound on the capacity was given
in [10] for multiple-antenna systems which uses pilot symbols
for channel estimation. We wish to further investigate how to
apply these bounding techniques to non-Gaussian channels,
e.g., the cascade channel in dual-hop communications. In the

1For simplicity, we assume that there is no direct link between the SN and
the DN and the channel in each link follows an independent block fading
model in which the realization of the fading channel is constant during a
transmission block of 𝐿 symbols and changes to an independent value in the
next transmission block. However, the derivation can be modified easily to
include other cases as well.

following, we provide a step-by-step derivation of the lower
bound under the system model explained in Section II.

The average mutual information between the channel input
and its output conditioned on the received pilot signal 𝑦𝑝 for
a given transmitted pilot symbol 𝑝 is written as

𝐼(𝑌 ;𝑋 ∣𝑌𝑝) = ℎ(𝑋 ∣𝑌𝑝)− ℎ(𝑋 ∣𝑌, 𝑌𝑝), (4)

where ℎ(⋅) denotes the differential entropy. Here we assume
that the input data symbols are drawn from a zero-mean
complex Gaussian distribution with variance 𝑃𝐷,𝑆 indepen-
dent of the received pilot signal.2 Therefore, ℎ(𝑋 ∣𝑌𝑝) =
ln(2𝜋𝑒𝑃𝐷,𝑆). Using a similar approach to that in [8], we
obtain an upper bound on ℎ(𝑋 ∣𝑌, 𝑌𝑝) as

ℎ(𝑋 ∣𝑌, 𝑌𝑝) = ℎ(𝑋 − 𝛼𝑌 ∣𝑌, 𝑌𝑝)

≤ ℎ(𝑋 − 𝛼𝑌 ∣𝑌𝑝) (5)

≤ 𝐸∣𝑌𝑝

{
ln(2𝜋𝑒Var{𝑋 − 𝛼𝑌 ∣𝑌𝑝}

}
, (6)

where Var{⋅} denotes variance of a random variable, ex-
pectation 𝐸∣𝑌𝑝

{⋅} is over all realizations of 𝑦𝑝 and 𝛼 can
be any constant or a function of 𝑦𝑝. Eq. (5) is obtained
using the fact that conditioning reduces the entropy, and
(6) is obtained from the fact that among all distributions
with a given variance, Gaussian distribution maximizes the
differential entropy function. Note that (6) also holds when
we minimize the RHS over 𝛼.

The conditional variance in (6) can be written explicitly as
a function of 𝑦𝑝

Var{𝑋 − 𝛼𝑌 ∣𝑌𝑝 = 𝑦𝑝} = 𝐸{∣𝑋 − 𝛼𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝}
− ∣𝐸{𝑋 − 𝛼𝑌 ∣𝑌𝑝 = 𝑦𝑝}∣2

= 𝐸{∣𝑋 ∣2∣𝑌𝑝 = 𝑦𝑝}
− 𝛼∗𝐸{𝑋𝑌 ∗∣𝑌𝑝 = 𝑦𝑝}
− 𝛼𝐸{𝑋∗𝑌 ∣𝑌𝑝 = 𝑦𝑝} (7)

+ ∣𝛼∣2𝐸{∣𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝}.
From (7) we observe that in order to compute a valid

capacity lower bound, one needs to compute𝐸{∣𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝}
which is the power of the received signal during data trans-
mission conditioned on the received pilot signal 𝑦𝑝. Expanding
𝐸{∣𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝} and using the short form 𝐺 = 𝐺1𝐺2 yields

𝐸{∣𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝} =𝐴2
𝑑𝑃𝐷,𝑆𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝}

+𝐴2
𝑑𝜎

2
𝑛𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝}+ 𝜎2

𝑛.

This shows that computation of 𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝} and
𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝} is an essential part of the lower bounding
technique. Furthermore, for a given relay gain 𝐴𝑑 and received
pilot signal 𝑦𝑝, one can optimize 𝛼 to minimize the conditional
variance in (7) (and hence obtain the tightest lower bound) as
follows

𝛼★ =
𝐸{𝑋𝑌 ∗∣𝑌𝑝 = 𝑦𝑝}
𝐸{∣𝑌 ∣2∣𝑌𝑝 = 𝑦𝑝} (8)

=
𝐴𝑑𝑃𝐷,𝑆𝐸{𝐺∣𝑌𝑝=𝑦𝑝}

𝐴2
𝑑𝑃𝐷,𝑆𝐸{∣𝐺∣2∣𝑌𝑝=𝑦𝑝}+𝐴2

𝑑𝜎
2
𝑛𝐸{∣𝐺2∣2∣𝑌𝑝=𝑦𝑝}+𝜎2

𝑛

.

2The optimal input distribution is generally unknown. However, Gaussian
input distribution will prove to be convenient for deriving the capacity lower
bound.



LAMAHEWA et al.: ON LOWER BOUNDING THE INFORMATION CAPACITY OF AMPLIFY AND FORWARD WIRELESS RELAY CHANNELS . . . 2077

𝐼(𝑌 ;𝑋 ∣𝑌𝑝) ≥ 𝐸∣𝑌𝑝

{
ln

(
𝑃𝐷,𝑆

Var{𝑋 − 𝛼𝑌 ∣𝑌𝑝}
)}

= 𝐸∣𝑌𝑝

{
ln

(
1 +

𝐴2
𝑑𝑃𝐷,𝑆 ∣𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}∣2

𝐴2
𝑑𝑃𝐷,𝑆Var{�̃�∣𝑌𝑝 = 𝑦𝑝}+𝐴2

𝑑𝜎
2
𝑛𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝}+ 𝜎2

𝑛

)}

=

∫
ℂ

ln

(
1 +

𝐴2
𝑑𝑃𝐷,𝑆 ∣𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}∣2

𝐴2
𝑑𝑃𝐷,𝑆Var{�̃�∣𝑌𝑝 = 𝑦𝑝}+𝐴2

𝑑𝜎
2
𝑛𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝}+ 𝜎2

𝑛

)
𝑓𝑌𝑝(𝑦𝑝)𝑑𝑦𝑝, (10)

According to (8) in order to obtain the tightest capacity
lower bound, one should perform MMSE estimation of the
channel during pilot mode, which is 𝑔 = 𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}, and
not any other estimation method. The corresponding channel
estimation error variance conditioned on the received pilot
signal is given by

Var{�̃�∣𝑌𝑝 = 𝑦𝑝} =𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝} − ∣𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}∣2
=𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝} − ∣𝑔∣2.

In the next subsection, we will see that the fundamental dif-
ference between lower bounding Gaussian and non-Gaussian
channels arises from the requirement for MMSE channel
estimation. For Gaussian channels, MMSE becomes identical
to linear MMSE (LMMSE) and the channel estimation error
variance becomes independent of the actual realization of 𝑦𝑝.
This is generally not the case for non-Gaussian channels.

By substituting (8) in (7), we obtain

Var{𝑋 − 𝛼𝑌 ∣𝑌𝑝 = 𝑦𝑝} ≥Var{𝑋 − 𝛼★𝑌 ∣𝑌𝑝 = 𝑦𝑝}
=𝑃𝐷,𝑆 − 𝛼★𝐸{𝑋∗𝑌 ∣𝑌𝑝 = 𝑦𝑝}
=𝑃𝐷,𝑆 − 𝛼★𝐴𝑑𝑃𝐷,𝑆𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}

=𝑃𝐷,𝑆 − 𝐴2
𝑑𝑃

2
𝐷,𝑆 ∣𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}∣2

Γ𝑦𝑝

,

(9)

where

Γ𝑦𝑝 =𝐴2
𝑑𝑃𝐷,𝑆𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝}

+𝐴2
𝑑𝜎

2
𝑛𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝}+ 𝜎2

𝑛.

Finally, substituting (9) in (6) and then the result in (4), we
have the capacity lower bound (10) at the top of the page,
where Var{�̃�∣𝑌𝑝 = 𝑦𝑝} = 𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝} − ∣𝐸{𝐺∣𝑌𝑝 =
𝑦𝑝}∣2 is the variance of the channel estimation error condi-
tioned on pilot transmission and 𝑓𝑌𝑝(𝑦𝑝) is the probability
distribution function of 𝑦𝑝.

Recently, the authors in [13] have derived capacity lower
bounds of AF relay channels with channel estimation errors.
One key distinction between our work and [13] is that in [13]
it is assumed that the destination knows estimates of the SN →
RN channel 𝑔1 and the RN → DN channel 𝑔2 individually,
where the former is somehow forwarded reliably from the
relay to the destination. Since each individual component of
channel is assumed to be Gaussian and is estimated separately,
the authors do not consider deriving the capacity lower bound
for the overall non-Gaussian channel 𝑔 = 𝑔1𝑔2. We, however,
assume that no estimate about 𝑔1 is available at the destination
and the relay does not send its own pilot for separately

estimating 𝑔2 either, both of which would require transmit
time and power. To the best of the authors’ knowledge, this
is the first proved capacity lower bound for dual-hop non-
Gaussian channels with imperfect channel state information.
Our derived capacity lower bound requires computation of the
following terms and can only be numerically evaluated.

𝑓(𝑦𝑝) =

∫
ℂ

𝑓(𝑦𝑝∣𝑔2)𝑓(𝑔2)d𝑔2

𝐸{∣𝐺2∣2∣𝑌𝑝 = 𝑦𝑝} =
1

𝑓(𝑦𝑝)

∫
ℂ

∣𝑔2∣2𝑓(𝑦𝑝∣𝑔2)𝑓(𝑔2)d𝑔2

𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝} =
1

𝑓(𝑦𝑝)

×
∫
ℂ

∫
ℂ

𝑔1𝑔2𝑓(𝑦𝑝∣𝑔1, 𝑔2)𝑓(𝑔1)𝑓(𝑔2)d𝑔1d𝑔2

𝐸{∣𝐺∣2∣𝑌𝑝 = 𝑦𝑝} =
1

𝑓(𝑦𝑝)

×
∫
ℂ

∫
ℂ

∣𝑔1∣2∣𝑔2∣2𝑓(𝑦𝑝∣𝑔1, 𝑔2)𝑓(𝑔1)𝑓(𝑔2)d𝑔1d𝑔2,

where we have used the short form 𝑓(𝑥) for the probabil-
ity distribution function 𝑓𝑋(𝑥) of the random variable 𝑋 .
𝑓(𝑦𝑝∣𝑔2), 𝑓(𝑔1), 𝑓(𝑔2) and 𝑓(𝑦𝑝∣𝑔1, 𝑔2) are all probability
density functions of the complex Gaussian random variables
defined in (1) with known means and variances.

A. Capacity lower bound: single-hop non-Gaussian channel

For a traditional single-hop wireless fading channel, we can
write the observation equation as 𝑦 = 𝑔𝑥 + 𝑛, where the
channel 𝑔 is randomly distributed (not necessarily Gaussian)
with variance 𝜎2

1 and 𝑛 is AWGN with variance 𝜎2
𝑛. An exam-

ple of single-hop wireless channel with non-Gaussian gain 𝑔
can be found in two-way training systems [14]. Removing the
unnecessary terms due to 𝑔2 from (10), we obtain the average
capacity lower bound for this wireless channel as

𝐶𝐿𝐵 =

∫
ℂ

ln

(
1 +

𝑃𝐷,𝑆 ∣𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝}∣2
𝑃𝐷,𝑆Var{�̃�∣𝑌𝑝 = 𝑦𝑝}+ 𝜎2

𝑛

)
𝑓(𝑦𝑝)𝑑𝑦𝑝.

(11)

One can show that for the special case of a Gaussian channel
with pilot observation signal 𝑦𝑝 = 𝑔𝑝+𝑛, the optimal MMSE
estimate 𝑔 = 𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝} reduces to 𝑔 = 𝐾𝑝𝑦𝑝 which
is the LMMSE estimate with the LMMSE factor 𝐾𝑝. Hence,
there is a linear one-to-one correspondence between 𝑔 and 𝑦𝑝.
Moreover, the error variance conditioned on the received pilot
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signal Var{�̃�∣𝑌𝑝 = 𝑦𝑝} can be written as

𝐸{∣𝐺−𝐾𝑝𝑦𝑝∣2∣𝑌𝑝 = 𝑦𝑝} =
𝜎2
𝑛𝜎

2
1

𝜎2
1 ∣𝑝∣2 + 𝜎2

𝑛

≜ 𝜎2
�̃�
,

which becomes statistically independent3 of any realization of
𝑦𝑝. Therefore, the error variance 𝐸{∣𝐺 − 𝐾𝑝𝑦𝑝∣2} averaged
over all realizations of the received pilot signal equals the
error variance for a given 𝑦𝑝. The capacity lower bound for
the Gaussian channel reduces to

𝐶𝐿𝐵 =

∫
ℂ

ln

(
1 +

𝑃𝐷,𝑆 ∣𝑔∣2
𝑃𝐷,𝑆𝜎2

�̃�
+ 𝜎2

𝑛

)
𝑓�̂�(𝑔)𝑑𝑔. (12)

Remark: We comment on an earlier derivation of the capac-
ity lower bound for single-hop multiple-antenna channels [10].
In [10], it is stated that the derived capacity lower bound
(equation (15) in [10]) does not require the channel to be
Gaussian. Based on this, one might be led to think that one
can apply the derived bounds in [10] to the AF channels in
a straightforward manner. However, three important factors
are not made explicit in the formulation of [10], which make
that formulation effectively suitable for Gaussian channels
only. The first is that the dependence of the channel esti-
mate 𝑔 on the received pilot signal through MMSE estimate
𝑔 = 𝐸{𝐺∣𝑌𝑝 = 𝑦𝑝} is not explicit in (15) in [10] (here
we have slightly adapted notations in [10] to match those
in this paper). Second, 𝜎2

�̃�
appears in the lower bound as

the MMSE error variance. Again, the dependence of 𝜎2
�̃�

on
the received pilot signal 𝑦𝑝 in the form of Var{�̃�∣𝑌𝑝 = 𝑦𝑝}
is not explicit. Hence, one might be led to use the average
error variance 𝐸∣𝑌𝑝

{Var{�̃�∣𝑌𝑝 = 𝑦𝑝}} instead of the true
conditional variance Var{�̃�∣𝑌𝑝 = 𝑦𝑝}. Finally, the expectation
for obtaining the ergodic capacity lower bound does not
specify the random variable for expectation and seems to be
on the only random variable present in the formulation, which
is 𝑔.

In short, the lower bound in (12) is only applicable to
Gaussian channels. For non-Gaussian channels, however, one
needs to explicitly deal with the formulation given in (11) with
the expectation being over the distribution of the received pilot
signal 𝑦𝑝 and modify it accordingly for multi-hop or other
types of more complicated channels, as seen by the AF relay
channel example in (10).

IV. NUMERICAL RESULTS

As an example, we consider the single-input single-output
(SISO) dual-hop wireless communications setup described in
Section II. Here we assume 𝑔𝑖, 𝑖 = 1, 2, is zero mean complex
Gaussian distributed with unit variance. For simplicity, we
further assume that equal power is allocated to both pilot and
data symbols (i.e., 𝑃𝐷,𝑆 = 𝑃𝑃,𝑆 = 𝑃 ). Amplification gains
𝐴𝑝 and 𝐴𝑑 are calculated using (3) assuming noise variance
𝜎2
𝑛 = 1.
Fig. 1 depicts the correct capacity lower bound in (10)

and that obtained by using the average error variance as if
the channel was Gaussian, versus the SNR budget 𝑃 for the

3In the Gaussian case, the MMSE variance depends on the received signal
𝑦𝑝 through its power or the second moment (𝜎2

1 ∣𝑝∣2 + 𝜎2
𝑛), but not through

the actual realization of 𝑦𝑝.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

SNR budget, P, dB

C
ap

ac
ity

 lo
w

er
 b

ou
nd

, C
LB

, n
at

s/
ch

 u
se

 

 

C
LB

 based on conditional error variance (10)

C
LB

 based on average error variance

Fig. 1. Comparison of the proved capacity lower bound (10) for a dual-hop
channel based on the conditional channel estimation error variance and that
obtained based on average channel estimation error variance.

dual-hop channel described above. From Fig. (1), it can be
clearly observed that the formulation based on the average
error variance overestimates the one obtained using the correct
capacity lower bound, which considers the conditional error
variance. The gap is more noticeable at low to moderate SNR.
This numerical example highlights that although the use of
average error variance can greatly simplify dealing with the
lower bound, the obtained results should be treated with care.

V. CONCLUSION

A lower bound on the capacity of dual-hop wireless relay
channels with AF relaying was derived by taking into account
the channel estimation errors at the destination node. Through
a step-by-step derivation, we highlighted the impact of non-
Gaussian distribution of the AF channel on the capacity lower
bound and contrasted that with the case of widely-studied
Gaussian channels. In particular, we showed that the MMSE
channel estimation error variance conditioned on the observed
pilot signal should be explicitly used in the capacity lower
bound formulation of non-Gaussian channels. Using a numer-
ical example, we showed that ignoring this dependence and
using the average MMSE channel estimation error variance
(as if the channel was Gaussian) can result in overestimation
of the capacity lower bound.
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