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Abstract—Information-theoretic security constraints reduce
the connectivity of wireless networks in the presence of eaves-
droppers, which motivates better modeling of such networks and
the development of techniques that are robust to eavesdropping.
In this letter, we are concerned with the existence of secure con-
nections from a typical transmitter to the legitimate receiver(s)
over fading channels, where the legitimate nodes and eaves-
droppers are all randomly located. We consider non-colluding
and colluding eavesdroppers, and derive the network secure
connectivity for both eavesdropper strategies. We mathematically
show how nodes with multiple transmit antenna elements can
improve secure connectivity by forming a directional antenna
or using eigen-beamforming. Compared with single antenna
transmission, a large connectivity improvement can be achieved
by both multi-antenna transmission techniques even with a small
number of antennas.

Index Terms—Network connectivity, physical-layer security,
colluding eavesdroppers, directional antenna, beamforming.

I. INTRODUCTION

SECURITY is a pervasive concern in wireless networks
due to the broadcast nature of the wireless medium.

Recently, information-theoretic security as a physical-layer
approach has been widely investigated as a means to provide
secure communication. Many studies on information-theoretic
security focus on a point-to-point link with single or multiple
antennas, e.g., [1–6]. However, few results have been obtained
on information-theoretic security in large-scale wireless net-
works.

Unlike point-to-point communications, security in wireless
networks strongly depends on the spatial distribution of both
the legitimate nodes and the eavesdroppers. Initial works
on network information-theoretic security mainly considered
random networks where the legitimate nodes and the eaves-
droppers are randomly distributed, and studied the secrecy
rate behavior and connectivity properties [7–13]. In particular,
the scaling laws of the secrecy rate in static and mobile ad
hoc networks were studied in [7] and [8], respectively. A
probabilistic characterization of the maximum secrecy rate
was given in [9] for the worst-case colluding eavesdroppers.
From a network connectivity viewpoint, the node degree under
security constraints was studied with and without knowledge
of the eavesdroppers’ locations in [10–13].
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In this letter, we study secure connectivity of wireless
random networks with multi-antenna transmission in Rayleigh
fading channels. From a theoretical point of view, we aim to
statistically characterize the existence of secure connections
between a typical node of interest and other legitimate nodes.
Two types of eavesdroppers are considered, namely non-
colluding eavesdroppers and colluding eavesdroppers. From
the viewpoint of secure transmission design, we consider two
antenna array techniques for improving secure connectivity
by forming a directional antenna or using eigen-beamforming,
and quantify the connectivity improvement over single antenna
transmission.

II. SYSTEM MODEL

The legitimate nodes are distributed on a two-dimensional
plane according to a Poisson point process (PPP) Φ𝑙 with
density 𝜆𝑙. The eavesdroppers are distributed according to
another independent PPP Φ𝑒 with density 𝜆𝑒. We define the
ratio of densities of Φ𝑙 and Φ𝑒 as 𝜂 = 𝜆𝑙/𝜆𝑒. A typical
node 𝑜 located at the origin wants to transmit confidential
messages to one or multiple nodes in Φ𝑙 in the presence
of the eavesdroppers in Φ𝑒. From the viewpoint of secure
transmission design, we consider that the typical node 𝑜 uses
𝑀 antennas (𝑀 ≥ 1) for transmission, while all the legitimate
receivers and eavesdroppers use a single antenna each for
reception. We focus on this single-ended multi-antenna trans-
mission scheme since it provides much simpler results and
analysis, compared to the case where multi-antenna reception
is also used at the receivers and eavesdroppers. We consider
both non-colluding and colluding eavesdroppers. In the non-
colluding case, the eavesdroppers individually overhear the
communication without centralized processing. In the collud-
ing eavesdroppers case, all eavesdroppers are able to jointly
process their received message at a central data processing
unit. Note that the authors in [12] also studied eavesdropper
collusion and focused on single antenna transmission over
path loss channels, while we consider two multi-antenna
transmission techniques over Rayleigh fading channels.

A. Signal Model

Considering the typical node 𝑜 at the origin as the trans-
mitter, the received signal power at a legitimate receiver 𝑙 is
given by

𝒫𝑟𝑙 = 𝒫𝑡𝑙ℎ𝑙𝑑
−𝛼
𝑙 , (1)

where 𝒫𝑡𝑙 is the transmit power for 𝑙, 𝑑𝑙 is the distance
between 𝑜 and 𝑙, 𝛼 is the path loss exponent, and ℎ𝑙 is the
fading effect of the wireless channel from 𝑜 to 𝑙. We consider
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Rayleigh fading channels and hence, ℎ𝑙 follows an exponential
distribution.

The total received signal power available for eavesdropping
depends on whether the eavesdroppers collude. For non-
colluding eavesdroppers, the received signal power at eaves-
dropper 𝑒 is given by

𝒫𝑟𝑒 = 𝒫𝑡𝑒ℎ𝑒𝑑
−𝛼
𝑒 , (2)

where 𝒫𝑡𝑒 is the transmit power for 𝑒. For colluding eaves-
droppers, the combined received signal power at the eaves-
droppers after centralized processing is given by

𝒫𝑟𝑒 =
∑
𝑒∈Φ𝑒

𝒫𝑡𝑒ℎ𝑒𝑑
−𝛼
𝑒 . (3)

B. Secure Connection

Physical-layer security is commonly characterized by
achievable secrecy rates. For transmission from the typical
node 𝑜 to a legitimate receiver 𝑙 in the presence of eaves-
dropper(s) 𝑒, a supremum of the secrecy rates is given by the
difference in the maximum data rate of the channel between
𝑜 and 𝑙 and that between 𝑜 and 𝑒 [6, 14]. From a connectivity
point of view, a secure connection from the transmitter 𝑜
to a legitimate receiver 𝑙 is possible if the secrecy rate is
positive [11], i.e.,

log2

(
1 +

𝒫𝑟𝑙

𝜎2
𝑙

)
− log2

(
1 +

𝒫𝑟𝑒

𝜎2
𝑒

)
> 0, (4)

where 𝜎2
𝑙 and 𝜎2

𝑒 are the noise variance at 𝑙 and 𝑒, respectively.
We can rewrite (4) as

𝒫𝑟𝑙

𝒫𝑟𝑒
> 𝛽, (5)

where 𝛽 = 𝜎2
𝑙 /𝜎

2
𝑒 . Note that if the secrecy rate is required to

be above some positive value 𝑅 instead of zero, the expression
in (5) is still valid in the high signal-to-noise ratio (SNR)
regime, i.e., 𝒫𝑟𝑙

𝜎2
𝑙

≫ 1 and 𝒫𝑟𝑒

𝜎2
𝑒

≫ 1, in which case we have

𝛽 ≈ 2𝑅𝜎2
𝑙 /𝜎

2
𝑒 .

C. Secure Connectivity Metrics

We focus on local connectivity of the network, which
is concerned with the connectivity from the viewpoint of
the typical node. The following metrics will be used in the
analysis.

∙ 𝑃c(𝑑𝑙): Probability of a secure connection from 𝑜 to 𝑙
with distance 𝑑𝑙.

∙ 𝑃n: Probability of a secure connection from 𝑜 to the
nearest node in Φ𝑙.

∙ 𝑁avg: The average number of secure connections from 𝑜
to the nodes in Φ𝑙.

These metrics are concerned with statistical measures on the
existence of secure connection, which are based on an outage
formulation. The transmitter only requires the channel state
information (CSI) of the legitimate receiver and doe not need
the CSI of the eavesdroppers to realize a certain secrecy outage
probability or probability of secure connection [14]. This is in
contrast to the case of achieving a target secrecy rate, where
the CSI of both the legitimate receiver and the eavesdroppers

is necessary. Note that 𝑁avg is concerned with the secure
connection to multiple nodes in Φ𝑙, where transmission can
be either in the form of message broadcasting or time-division
multiplexing (TDM).

The metric 𝑃c(𝑑𝑙) describes the probability of the event in
(5) happening with a given distance 𝑑𝑙. It can be seen that 𝑃n

is related to 𝑃c(𝑑𝑙) as

𝑃n =

∫ ∞

0

𝑃c(𝑑𝑙)𝑓(𝑑𝑙) d𝑑𝑙, (6)

where 𝑓(𝑑𝑙) is the distribution of the distance of the node
in Φ𝑙 that is closest to the origin, given by 𝑓(𝑑𝑙) =
2𝜆𝑙𝜋𝑑𝑙 exp(−𝜆𝑙𝜋𝑑

2
𝑙 ) in [15]. Also, 𝑁avg is given by

𝑁avg = 𝐸Φ𝑙,Φ𝑒

{∑
𝑙∈Φ𝑙

1(𝑙,Φ𝑒)
}

= 𝐸Φ𝑙

{∑
𝑙∈Φ𝑙

𝑃c(𝑑𝑙)
}

= 2𝜋𝜆𝑙

∫ ∞

0

𝑃c(𝑑𝑙)𝑑𝑙 d𝑑𝑙, (7)

where 1(𝑙,Φ𝑒) is an indicator function of secure connection
from 𝑜 to 𝑙 in the presence of Φ𝑒, and (7) is obtained using
Campbell’s theorem [16] and by changing to polar coordinates.

III. DIRECTIONAL ANTENNA TRANSMISSION

By introducing different phase shifts in each antenna ele-
ment, the antenna array can concentrate its transmit power into
the direction of the intended receiver. We consider a simplified
model for directional antennas, which is widely used for
performance analysis [17]. The antenna beam pattern has a
main-lobe of gain 𝑀 and angle of spread 2𝜋𝜔, and a side-lobe
of gain 𝜈𝑀 and angle of spread 2𝜋(1−𝜔), where 𝜈 is the side-
lobe attenuation factor. The values of 𝜔 and 𝜈 are determined
by preserving the first- and second-order moments of the beam
pattern of a practical antenna array, such as uniform circular
array (UCA) and uniform linear array (ULA) [17]. Our study
on the use of a directional antenna aims to show how the
number of antenna elements and the type of antenna array
affect the secure connectivity, which is different from the case
of independently sectorized transmissions considered in [12].

With this antenna beam model, the eavesdroppers can be
classified as in the main-lobe or side-lobe direction. Let us
denote the set of main-lobe eavesdroppers as Φ𝑒1 and the set
of side-lobe eavesdroppers as Φ𝑒2. Clearly, Φ𝑒1 and Φ𝑒2 are
independent PPPs. The received signal power at 𝑙 is given
by 𝒫𝑟𝑙 = 𝒫𝑀ℎ𝑙𝑑

−𝛼
𝑙 , where 𝒫 is the transmit power of

a single antenna. The received signal power at the main-
lobe eavesdroppers is given by 𝒫𝑟𝑒 = 𝒫𝑀ℎ𝑒𝑑

−𝛼
𝑒 , while the

received signal power at the side-lobe eavesdroppers is given
by 𝒫𝑟𝑒 = 𝒫𝜈𝑀ℎ𝑒𝑑

−𝛼
𝑒 .

A. Non-colluding Eavesdroppers

In the case of non-colluding eavesdroppers, a secure con-
nection is possible if the requirement in (5) is met for every
single eavesdropper in Φ𝑒.
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Lemma 1: In the case of non-colluding eavesdroppers, the
probability of secure connection at distance 𝑑𝑙 with directional
antenna transmission is given by

𝑃c(𝑑𝑙)=𝐸ℎ{exp[−𝜆𝑒𝜋𝑑
2
𝑙 𝛽

𝛿Γ(1+𝛿)ℎ−𝛿(𝜔+𝜈𝛿−𝜔𝜈𝛿)]}, (8)

where ℎ has an exponential distribution with rate parameter
equal to 1, and 𝛿 = 2/𝛼.

Proof: For non-colluding eavesdroppers, 𝑃c(𝑑𝑙) is given by

𝑃c(𝑑𝑙) = 𝐸ℎ𝑙,Φ𝑒1,Φ𝑒2

{ ∏
𝑒𝑖∈Φ𝑒1

𝑃
( ℎ𝑙 𝑑

−𝛼
𝑙

ℎ𝑒𝑖𝑑
−𝛼
𝑒𝑖

> 𝛽
∣∣∣ 𝑒𝑖, ℎ𝑙

)
∏

𝑒𝑗∈Φ𝑒2

𝑃
( ℎ𝑙 𝑑

−𝛼
𝑙

𝜈ℎ𝑒𝑗𝑑
−𝛼
𝑒𝑗

> 𝛽
∣∣∣ 𝑒𝑗 , ℎ𝑙

)}
.

For a PPP Φ, the generating functional is given by [16]

𝐸Φ

{∏
𝑧∈Φ

𝑓(𝑧)
}
= exp

[
−
∫
ℝ2

(
1− 𝑓(𝑧)

)
𝜆(𝑧)d𝑧

]
,

where 𝜆(𝑧) is the density function of the PPP. Applying the
generating functional for Φ𝑒1 and Φ𝑒2, and changing to polar
coordinates, we have

𝑃c(𝑑𝑙) = 𝐸ℎ𝑙

{
exp
[
−2𝜋𝜔𝜆𝑒

∫ ∞

0

𝑃
(
ℎ𝑒≥ ℎ𝑙𝑞

𝛼

𝛽𝑑𝛼𝑙

∣∣∣ℎ𝑙

)
𝑞d𝑞

−2𝜋(1−𝜔)𝜆𝑒

∫ ∞

0

𝑃
(
ℎ𝑒≥ ℎ𝑙𝑞

𝛼

𝜈𝛽𝑑𝛼𝑙

∣∣∣ℎ𝑙

)
𝑞d𝑞
]}

,

Using 𝑡 = ℎ𝑙𝑞
𝛼

𝛽𝑑𝛼
𝑙

in the first integral and 𝑡 = ℎ𝑙𝑞
𝛼

𝜈𝛽𝑑𝛼
𝑙

in the second
integral, we have

𝑃c(𝑑𝑙) = 𝐸ℎ𝑙

{
exp

[
−𝜆𝑒𝜋𝑑

2
𝑙 𝛽

𝛿ℎ−𝛿
𝑙 (𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)

× 𝛿

∫ ∞

0

𝑃 (ℎ𝑒 ≥ 𝑡∣ℎ𝑙)𝑡
𝛿−1d𝑡

]}
,

= 𝐸ℎ𝑙

{
exp
[
−𝜆𝑒𝜋𝑑

2
𝑙 𝛽

𝛿ℎ−𝛿
𝑙 (𝜔+𝜈𝛿−𝜔𝜈𝛿)𝐸{ℎ𝛿

𝑒}
]}

,

where 𝐸{ℎ𝛿
𝑒} = Γ(1 + 𝛿) as ℎ𝑒 is exponentially distributed.

■
Using (6) and (7), we obtain the following results.

Corollary 1: In the case of non-colluding eavesdroppers,
the probability of secure connection to the nearest legitimate
node with directional antenna transmission is given by

𝑃n = 𝐸ℎ

{ 1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)ℎ−𝛿(𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)

}
, (9)

where ℎ has an exponential distribution with rate parameter
equal to 1.

Corollary 2: In the case of non-colluding eavesdroppers,
the average number of secure connections to the legitimate
nodes with directional antenna transmission is given by

𝑁avg =
𝜂

𝛽𝛿(𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)
. (10)

In the special case of single antenna transmission, we have
𝜔 = 1 and 𝜈 = 1, and hence

𝑃n = 𝐸ℎ

{ 1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)ℎ−𝛿

}
, (11)

𝑁avg =
𝜂

𝛽𝛿
. (12)

We see that the use of a directional antenna improves the
connectivity by the factor (𝜔+𝜈𝛿−𝜔𝜈𝛿)−1. Hence, this factor
allows the designer to carry out a quick assessment on the
secure connectivity implications of different antenna arrays.

B. Colluding Eavesdroppers

The colluding eavesdroppers case represents a worst case
scenario from the secure communication viewpoint, while it
gives the best possible performance from the eavesdropper
design viewpoint.

Lemma 2: In the presence of colluding eavesdroppers, the
probability of secure connection at distance 𝑑𝑙 with directional
antenna transmission is given by

𝑃c(𝑑𝑙) = exp[−𝜆𝑒𝜋𝑑
2
𝑙 𝛽

𝛿Γ(1+𝛿)Γ(1−𝛿)(𝜔+𝜈𝛿−𝜔𝜈𝛿)]. (13)

Proof: With colluding eavesdroppers, 𝑃c(𝑑𝑙) is given by

𝑃c(𝑑𝑙) = 𝑃
( ℎ𝑙𝑑

−𝛼
𝑙∑

𝑒𝑖∈Φ𝑒1
ℎ𝑒𝑖𝑑

−𝛼
𝑒𝑖 +

∑
𝑒𝑗∈Φ𝑒2

𝜈ℎ𝑒𝑗𝑑
−𝛼
𝑒𝑗

>𝛽
)
. (14)

We let 𝐼1 =
∑

𝑒𝑖∈Φ𝑒1
ℎ𝑒𝑖𝑑

−𝛼
𝑒𝑖 and 𝐼2 =

∑
𝑒𝑗∈Φ𝑒2

𝜈ℎ𝑒𝑗𝑑
−𝛼
𝑒𝑗 ,

which are two shot noise processes. Following the derivation
of the Laplace transform of shot noise process in [18, 19], we
obtain

ℒ𝐼1(𝜁) = exp[−𝜔𝜆𝑒𝜋𝜁
𝛿Γ(1 + 𝛿)Γ(1 − 𝛿)],

ℒ𝐼2(𝜁) = exp[−(1− 𝜔)𝜈𝛿𝜆𝑒𝜋𝜁
𝛿Γ(1 + 𝛿)Γ(1− 𝛿)].

Since Φ𝑒1 and Φ𝑒2 are independent PPPs, 𝐼1 and 𝐼2 are in-
dependent shot noise processes. Hence, the Laplace transform
of 𝐼1 + 𝐼2 equals the product of the Laplace transforms of 𝐼1
and 𝐼2.

We rewrite (14) as

𝑃c(𝑑𝑙) = 𝑃
(
ℎ𝑙 > 𝛽𝑑𝛼𝑙 (𝐼1 + 𝐼2)

)
=

∫ ∞

0

𝑃 (ℎ𝑙 > 𝛽𝑑𝛼𝑙 𝑦)𝑓𝐼1+𝐼2(𝑦)d𝑦

=

∫ ∞

0

exp[−𝛽𝑑𝛼𝑙 𝑦]𝑓𝐼1+𝐼2(𝑦)d𝑦,

which is the Laplace transform of 𝐼1 + 𝐼2 evaluated at 𝛽𝑑𝛼𝑙 .
And (13) is readily obtained. ■

Using (6) and (7), we obtain the following results.

Corollary 3: In the presence of colluding eavesdroppers,
the probability of secure connection to the nearest legitimate
node with directional antenna transmission is given by

𝑃n =
1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)Γ(1− 𝛿)(𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)
. (15)

Corollary 4: In the presence of colluding eavesdroppers,
the average number of secure connections to the legitimate
nodes with directional antenna transmission is given by

𝑁avg =
𝜂

𝛽𝛿Γ(1 + 𝛿)Γ(1− 𝛿)(𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)
. (16)

In the special case of single antenna transmission, we have
𝜔 = 1 and 𝜈 = 1, and hence

𝑃n =
1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)Γ(1− 𝛿)
, (17)

𝑁avg =
𝜂

𝛽𝛿Γ(1 + 𝛿)Γ(1 − 𝛿)
. (18)
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Note that 𝑁avg in (18) stays the same for non-fading path loss
channels, which was derived in [12]. Again we see that the
factor (𝜔 + 𝜈𝛿 − 𝜔𝜈𝛿)−1 characterizes the connectivity im-
provement from using a directional antenna for transmission.

IV. EIGEN-BEAMFORMING

Knowing the CSI of the intended receiver, the transmitter
can use eigen-beamforming to maximize the signal strength
to the intended receiver. This is done by transmitting linearly
weighted copies of the same information signal on each
antenna, where the weights are designed to maximize the
SNR at the receiver. For simplicity, we assume that the
channels are spatially uncorrelated. With eigen-beamforming,
the signal power at the legitimate receiver has a Gamma
distribution, while the signal power at the eavesdroppers is
still exponentially distributed. In the following, we present
results for both non-colluding and colluding eavesdroppers.

A. Non-colluding Eavesdroppers

Lemma 3: In the presence of non-colluding eavesdroppers,
the probability of secure connection at distance 𝑑𝑙 with eigen-
beamforming is given by

𝑃c(𝑑𝑙) = 𝐸ℎ{exp[−𝜆𝑒𝜋𝑑
2
𝑙 𝛽

𝛿Γ(1 + 𝛿)ℎ−𝛿]}, (19)

where ℎ has a Gamma distribution with parameters (𝑀, 1).

Proof: The signal model with eigen-beamforming is the
same as that with single antenna transmission, except that
ℎ𝑙 now has a Gamma distribution with parameters (𝑀, 1).
Therefore, 𝑃c(𝑑𝑙) is given by the same expression as in (8)
with 𝜔 = 1, 𝜈 = 1 and ℎ follows a Gamma distribution. ■

Using (6) and (7), we obtain the following results.

Corollary 5: In the presence of non-colluding eavesdrop-
pers, the probability of secure connection to the nearest
legitimate node with eigen-beamforming is given by

𝑃n = 𝐸ℎ

{ 1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)ℎ−𝛿

}
, (20)

where ℎ has a Gamma distribution with parameters (𝑀, 1).

Corollary 6: In the presence of non-colluding eavesdrop-
pers, the average number of secure connections to the legiti-
mate nodes with eigen-beamforming is given by

𝑁avg =
𝜂

𝛽𝛿

Γ(𝑀 + 𝛿)

Γ(1 + 𝛿)Γ(𝑀)
. (21)

Comparing 𝑁avg with single antenna transmission and
eigen-beamforming in (12) and (21), respectively, the im-
provement from beamforming is characterized by the factor

Γ(𝑀+𝛿)
Γ(1+𝛿)Γ(𝑀) . For example, with 𝑀 = 2 and 𝛼 = 4, this
factor equals 1.5. This implies that eigen-beamforming can
significantly improve secure connectivity even with a small
number of transmit antennas.

B. Colluding Eavesdroppers

Lemma 4: In the presence of colluding eavesdroppers, the
probability of secure connection at distance 𝑑𝑙 with eigen-
beamforming is given by

𝑃c(𝑑𝑙) = exp[−𝜋𝜆𝑒𝛽
𝛿𝑑2𝑙 Γ(1+𝛿)Γ(1−𝛿)]

×
(
1+

𝑀−1∑
𝑘=1

𝑘∑
𝑝=1

1

𝑘!
[−𝛿𝜋𝜆𝑒𝛽

𝛿𝑑2𝑙 Γ(1+𝛿)Γ(1−𝛿)]𝑝Υ𝑘,𝑝

)
,

(22)

where Υ𝑘,𝑝 is a constant defined as

Υ𝑘,𝑝 =
∑

𝜖𝑗∈comb(𝑘−1
𝑘−𝑝)

∏
𝑛𝑖𝑗∈𝜖𝑗

(
𝛿(𝑛𝑖𝑗 − 𝑖+ 1)− 𝑛𝑖𝑗

)
,

𝑖 = 1, 2, ..., ∣𝜖𝑗∣, 𝑗 = 1, 2, ...,

(
𝑘−1

𝑘−𝑝

)
,

where comb
(
𝑥
𝑦

)
is the set of all subsets of the natural numbers

{1, 2, ..., x} of cardinality 𝑦 with distinct elements. Note that
Υ𝑘,𝑘 = (−1)𝑘.

Proof: For colluding eavesdroppers, we have

𝑃c(𝑑𝑙) = 𝑃

(
ℎ𝑙𝑑

−𝛼
𝑙∑

𝑒∈Φ𝑒
ℎ𝑒𝑑

−𝛼
𝑒

> 𝛽

)
, (23)

where the complementary cumulative distribution function
(CCDF) of the Gamma distributed random variable ℎ𝑙 with
parameter (𝑀, 1) is given by

𝐹 𝑐
ℎ𝑙
(𝑧) =

𝑀−1∑
𝑘=0

𝑧𝑘

𝑘!
exp[−𝑧].

Using Theorem 1 in [20], (23) can be expressed as

𝑃c(𝑑𝑙) =
𝑀−1∑
𝑘=0

1

𝑘!
(−𝜁)𝑘

d𝑘

d𝜁𝑘
ℒ𝐼(𝜁), (24)

where 𝜁 = 𝛽𝑑𝛼𝑙 and 𝐼 =
∑

𝑒∈Φ𝑒
ℎ𝑒𝑑

−𝛼
𝑒 . The Laplace

transform of 𝐼 is given as

ℒ𝐼(𝜁) = exp[−𝜆𝑒𝜋𝜁
𝛿Γ(1 + 𝛿)Γ(1 − 𝛿)].

Following [20], the derivative of ℒ𝐼(𝜁) can be computed as

d𝑘

d𝜁𝑘
ℒ𝐼(𝜁) =

exp[−𝜋𝜆𝑒Γ(1 + 𝛿)Γ(1− 𝛿)𝜁𝛿]

(−𝜁)𝑘

×
𝑘∑

𝑝=1

(
−𝛿𝜋𝜆𝑒Γ(1+𝛿)Γ(1−𝛿)𝜁𝛿

)𝑝
Υ𝑘,𝑝. (25)

Substituting (25) into (24), we obtain the result in (22). ■
Using (6) and (7), we obtain our final results.

Corollary 7: In the presence of colluding eavesdroppers,
the probability of secure connection to the nearest legitimate
node with eigen-beamforming is given by

𝑃n =
1

1 + 𝜂−1𝛽𝛿Γ(1 + 𝛿)Γ(1− 𝛿)

×
(
1+

𝑀−1∑
𝑘=1

𝑘∑
𝑝=1

𝑝!

𝑘!

[
− 𝛿𝛽𝛿Γ(1+𝛿)Γ(1−𝛿)

𝜂+𝛽𝛿Γ(1+𝛿)Γ(1−𝛿)

]𝑝
Υ𝑘,𝑝

)
.

(26)
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Fig. 1. 𝑃n vs. ratio of densities with single antenna transmission in the
presence of either non-colluding or colluding eavesdroppers. The path loss
exponent of 𝛼 = 4 is used and 𝛽 = 1 is chosen.

Corollary 8: In the presence of colluding eavesdroppers,
the average number of secure connections to the legitimate
nodes with eigen-beamforming is given by

𝑁avg =
𝜂

𝛽𝛿Γ(1+𝛿)Γ(1−𝛿)

(
1+

𝑀−1∑
𝑘=1

𝑘∑
𝑝=1

𝑝!

𝑘!
[−𝛿]𝑝Υ𝑘,𝑝

)
. (27)

Comparing 𝑁avg with single antenna transmission and
beamforming in (18) and (27), respectively, the improve-
ment from beamforming is characterized by the factor
(1+

∑𝑀−1
𝑘=1

∑𝑘
𝑝=1

𝑝!
𝑘! [−𝛿]𝑝Υ𝑘,𝑝). Indeed, one can numerically

check that this factor is exactly the same as Γ(𝑀+𝛿)
Γ(1+𝛿)Γ(𝑀) .

V. NUMERICAL RESULTS

In this section, we present numerical results to investigate
the impact of eavesdropper collusion on secure connectivity
as well as the connectivity improvement from multi-antenna
transmissions.

Fig. 1 compares 𝑃n for both non-colluding eavesdroppers
and colluding eavesdroppers with single antenna transmission.
We see that the effect of collusion is significant at low con-
nectivity. For example, the required eavesdropper density with
colluding eavesdroppers is 65% of the required eavesdropper
density with non-colluding eavesdroppers for a target 𝑃n =
0.1. Therefore, for the eavesdropper design targeting a low
level of connectivity, having colluding eavesdroppers signifi-
cantly reduces the required number of eavesdroppers. We have
observed the same trend for multi-antenna transmission and
hence the result is omitted for brevity. Furthermore, comparing
𝑁avg in (12) and (18), we see that 𝑁avg in the colluding case
is a factor of Γ(1 + 𝛿)Γ(1 − 𝛿) smaller than that in the non-
colluding case. For example, this factor equals 1.57 for path
loss exponent of 𝛼 = 4.

Fig. 2 shows the improvement in 𝑃n from multi-antenna
transmissions in the presence of non-colluding eavesdroppers.
For directional antennas, the parameters of the simplified
antenna beam model, 𝜔 and 𝜈, are determined by preserving
the first- and second-order moments of the beam pattern of
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eigen−beamforming, M = 8
directional antenna, M = 8
eigen−beamforming, M = 2
directional antenna, M = 2
single antenna case, M = 1

Fig. 2. 𝑃n vs. ratio of densities in the presence of non-colluding eavesdrop-
pers. The path loss exponent of 𝛼 = 4 is used and 𝛽 = 1 is chosen. For
directional antennas, the parameters of the simplified antenna beam model, 𝜔
and 𝜈, are determined by preserving the first- and second-order moments of
the beam pattern of a UCA. 𝜔 = 1 and 𝜈 = 1 for 𝑀 = 1. 𝜔 ≈ 0.39 and
𝜈 ≈ 0.26 for 𝑀 = 2. 𝜔 ≈ 0.06 and 𝜈 ≈ 0.10 for 𝑀 = 8.

a UCA. We see that the use of multiple transmit antennas
significantly improves the connectivity even with 𝑀 = 2.
For example, when the design of secure network targets a
high connectivity level of 𝑃n = 0.9, the use of a directional
antenna and eigen-beamforming with 𝑀 = 2 require 26% and
45% fewer legitimate nodes, respectively, compared to single
antenna transmission. When 𝑀 increases to 8, the reductions
in the number of required nodes are 64% and 77%.

VI. CONCLUSION

This letter studied the local connectivity of wireless net-
works with physical-layer security constraints in fading chan-
nels. We demonstrated a significant connectivity improvement
from multi-antenna transmission even with only two antennas.
Furthermore, we quantified the connectivity degradation from
eavesdropper collusion and showed that it is significant in
the low connectivity regime. Future work could extend these
results from local to global connectivity.
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