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Abstract—In this paper, we study the optimal training and
data transmission strategies for block fading multiple-input
multiple-output (MIMO) systems with feedback. We consider
both the channel gain feedback (CGF) system and the channel
covariance feedback (CCF) system. Using an accurate capacity
lower bound as a figure of merit that takes channel estimation
errors into account, we investigate the optimization problems on
the temporal power allocation to training and data transmission
as well as the training length. For CGF systems without feedback
delay, we prove that the optimal solutions coincide with those
for nonfeedback systems. Moreover, we show that these solutions
stay nearly optimal even in the presence of feedback delay. This
finding is important for practical MIMO training design. For CCF
systems, the optimal training length can be less than the number of
transmit antennas, which is verified through numerical analysis.
Taking this fact into account, we propose a simple yet near optimal
transmission strategy for CCF systems, and derive the optimal
temporal power allocation over pilot and data transmission.

Index Terms—Channel covariance feedback, channel estima-
tion, channel gain feedback, information capacity, multiple-input
multiple-output.

I. INTRODUCTION

T HE study of multiple-input multiple-output (MIMO)
communication systems can be broadly categorized

based on the availability and accuracy of channel state infor-
mation (CSI) at the receiver or the transmitter side. Under the
perfect CSI assumption at the receiver, the MIMO channel
information capacity and data transmission strategies often
have elegantly simple forms and many classical results exist in
the literature [1], [2]. From [2]–[8], we know that the MIMO
information capacity with perfect receiver CSI can be further
increased if some form of CSI is fed back to the transmitter.
The transmitter CSI can be in the form of causal channel gain
feedback (CGF) or channel covariance feedback (CCF).

In practical communication systems with coherent detection,
the state of the MIMO channel needs to be estimated at the
receiver and hence, the receiver CSI is never perfect due to

Manuscript received November 06, 2008; accepted April 16, 2009. First ver-
sion published May 27, 2009; current version published September 16, 2009.
The associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Kainam Thomas Wong. This work was supported under
the Australian Research Council’s Discovery Projects funding scheme (project
no. DP0773898).

The authors are with the College of Engineering and Computer Science,
Australian National University, Canberra, ACT 0200, Australia (e-mail: xi-
angyun.zhou@anu.edu.au; parastoo.sadeghi@anu.edu.au; tharaka.lamahewa@
anu.edu.au; salman.durrani@anu.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2023930

noise and time variations in the fading channel. Pilot-symbol-as-
sisted modulation (PSAM) is a widely used technique to facili-
tate channel estimation at the receiver [9]. As pilot symbols are
not information-bearing signals, an important design aspect of
communication systems is the optimal allocation of resources
(such as power and time) to pilot symbols that results in the best
tradeoff between the quality of channel estimation and rate of
information transfer. Three pilot parameters under a system de-
signer’s control are 1) spatial structure of pilot symbols, 2) tem-
poral power allocation to pilot and data, and 3) the number of
pilot symbols or simply training length.

The optimal pilot design has been studied from an informa-
tion-theoretic viewpoint for nonfeedback multiantenna systems
of practical interest [10]–[12]. For nonfeedback MIMO systems
with independent and identically distributed (i.i.d.) channels, the
authors in [10] formulated an ergodic capacity lower bound and
used it as the performance metric to find optimal solutions for
all the aforementioned pilot design parameters. For CCF sys-
tems with correlated MIMO channels, the optimal solution for
the pilot’s spatial structure was investigated in [13]–[15]. How-
ever, optimal solutions for the temporal pilot power allocation
and training length are generally unknown for both i.i.d. and
correlated MIMO systems with any form of feedback. Some re-
sults were reported in [16] for rank-deficient channel covariance
matrix known at the transmitter, which are based on a relaxed
capacity lower bound. However, this relaxed capacity bound is
generally loose for moderately to highly correlated channels,
which can render the provided solutions suboptimal.

A. Approach and Contributions

In this paper, we are concerned with the optimal design of
pilot parameters for MIMO systems with various forms of
feedback at the transmitter. Our figure of merit is an accurate
lower bound on the ergodic capacity of MIMO systems, which
is an extension of those derived in [17] from i.i.d channels to
correlated channels. We address practical design questions such
as: Are the simple solutions provided in [10] for nonfeedback
MIMO systems also optimal for systems with feedback? In
CGF systems, where feedback delay needs to be considered,
we would like to know whether the optimal pilot design is sig-
nificantly affected by the feedback delay. In CCF systems with
correlated channels, the optimal training length may be shorter
than the number of transmit antennas, which is difficult to solve
analytically. In this case, we would like to know whether a near
optimal, yet simple transmission and power allocation strategy
exists. The main contributions of this paper are summarized as
follows.
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• For delayless CGF systems with i.i.d. channels, we prove
that the solutions to the optimal temporal power alloca-
tion to pilot and data transmission as well as the optimal
training length coincide with the solutions for nonfeedback
systems.

• For delayed CGF systems with i.i.d. channels, our numer-
ical results show that evenly distributing the power over the
entire data transmission (regardless of the delay time) gives
near optimal performance at practical signal-to-noise ratio
(SNR) conditions. As a result, the solutions to the optimal
temporal power allocation to pilot and data transmission, as
well as the optimal training length for the delayless system
stay nearly optimal regardless of the delay time.

• For CCF systems with correlated channels, we propose a
simple transmission scheme, taking into account the fact
that the optimal training length is at most as large as the
number of transmit antennas. This scheme only requires
numerical optimization of and does not require numer-
ical optimization over the spatial or temporal power alloca-
tion over pilot and data transmission. Our numerical results
show that this scheme is very close to optimal. In addition,
optimizing can result in a significant capacity improve-
ment for correlated channels.

• Using the proposed scheme for CCF systems, we find
the solution to the optimal temporal power allocation to
pilot and data transmission, which does not depend on the
channel spatial correlation under a mild condition on block
length or SNR. Therefore, the proposed transmission and
power allocation schemes for CCF systems give near op-
timal performance while having very low computational
complexity.

This paper is organized as follows. The PSAM transmission
scheme, channel estimation method, as well as the capacity
lower bound are presented in Section II. The optimal transmis-
sion and power allocation strategy for nonfeedback systems
are summarized in Section III. The optimal transmission and
power allocation strategy for CGF and CCF systems are studied
in Section IV and Section V, respectively. Finally, the main
contributions of this paper are summarized in Section VI.

The following notations will be used in the paper: Boldface
upper and lower case letters denote matrices and column vec-
tors, respectively. The matrix is the identity ma-
trix. and denotes the complex conjugate and conjugate
transpose operation, respectively. denotes the mathemat-
ical expectation. , and denote the matrix trace,
determinant and rank, respectively.

II. SYSTEM MODEL

We consider a MIMO block-flat-fading channel model with
input-output relationship given by

(1)

where is the received symbol vector, is the
transmitted symbol vector, is the channel gain ma-
trix, and is the noise vector having zero-mean circularly
symmetric complex Gaussian (ZMCSCG) entries with unit vari-
ance. The entries of are also ZMCSCG with unit variance. We
consider spatial correlations among the transmit antennas only.

Fig. 1. An example of a transmission block of � symbols in a system with de-
layed feedback. Temporal power allocations are shown at the top and the length
of each subblock is shown at the bottom.

The spatial correlation is characterized by the covariance matrix
. Therefore, , where has

i.i.d. ZMCSCG entries with unit variance. We assume that
is a positive-definite matrix and denote the eigenvalues of
by . Furthermore, we use the concept of
majorization to characterize the degree of channel spatial corre-
lation [18], [19], which is described in detail in [20].

A. Transmission Scheme

Fig. 1 shows an example of a transmission block of symbol
periods in a PSAM scheme. The channel gains remain constant
over one block and change to independent realizations in the
next block. This is an appropriate channel model for time-divi-
sion multiple access or frequency-hopping systems [10]. During
each transmission block, each transmit antenna sends pilot
symbols, followed by data symbols as shown in
Fig. 1. The receiver performs channel estimation during the pilot
transmission. For CGF systems, the receiver feeds the channel
estimates back to the transmitter once per block to allow adap-
tive data transmission in the form of power control. In practical
scenarios, there is a time delay of symbol periods before the
transmitter receives the feedback information as shown in Fig. 1.
Therefore, the data transmission during the first symbol pe-
riods is not adaptive to the channel, and adaptive transmission
is only available for the remaining symbol periods. We
define as the feedback delay factor. For CCF sys-
tems, less frequent feedback is required as the channel corre-
lation changes much slower than the channel gains. Therefore,
we do not consider feedback delay in CCF systems, i.e., .
Note that for nonfeedback systems, .

The total transmission energy per block is given by as
shown in Fig. 1, where is the average power per transmis-
sion and is the symbol duration. We define the PSAM power
factor as the ratio of the total energy allocated to the data trans-
mission, denoted by . We also denote the power or SNR per
pilot and data transmission by and 1, respectively. There-
fore, we have the following relationships:

(2)

1Ideally for CGF systems, � should be larger for the transmission blocks
over which the channel is strong and smaller for blocks over which the channel
is weak. However, the results in [17] suggest that this temporal data power adap-
tation provides little capacity gain, hence it is not considered in this paper.
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For CGF systems with delay of symbol periods as shown
in Fig. 1, we define the data power division factor as the ratio
of the total data energy allocated to the nonadaptive subblock,
denoted by . Therefore, we have the following relationships:

(3)

where and are the power per transmission during the
nonadaptive and adaptive subblocks.

B. Channel Estimation

In each transmission block, the receiver performs channel es-
timation during the pilot transmission. Assuming the channel
spatial correlation can be accurately measured at the receiver,
the channel gain can be estimated using the linear minimum
mean square error (LMMSE) estimator [21]. We denote the
channel estimate and estimation error as and

, respectively, where and have i.i.d. ZM-

CSCG entries with unit variance. is given as [14]

(4)

where is the matrix combining the received
symbol vectors during pilot transmission and is the
pilot matrix. The covariance matrix of the estimation error is
given by [14]

(5)

From the orthogonality property of LMMSE estimator, we have

(6)

C. Ergodic Capacity Bounds

The exact capacity expression under imperfect receiver CSI
is still unavailable. We consider one lower and one upper bound
on the ergodic capacity for systems using LMMSE channel es-
timation. In the following, we use the bounds derived in [20]
for spatially correlated channels, which is an extension of the
bounds derived in [17] for spatially i.i.d. channels. Denoting the
input covariance matrix by , a lower bound on the
ergodic capacity per channel use is given by

(7)

and an upper bound on the ergodic capacity per channel use is
given by

(8)

The authors in [17] studied the tightness of the bounds for
i.i.d. channels with constant channel estimation errors. They ob-
served that the gap between bounds is small for Gaussian in-
puts. Similarly, we numerically study the tightness of the above

Fig. 2. Capacity bounds in (7) and (8) versus SNR � for different correlation
factor and antenna sizes. � � � and � � � � � (i.e., fixed power
transmission) is used. Dashed lines indicate the upper bound and solid lines
indicate the lower bound.

two bounds for correlated channels with Gaussian inputs and
LMMSE channel estimation. For numerical analysis, we choose
the channel covariance matrix to be in the form of

, where is referred to as the spatial correlation factor
[14]. We investigate the gap between the capacity bounds in (7)
and (8) under different channel correlation conditions and an-
tenna sizes. Examples are shown in Fig. 2 in which the upper
bounds are plotted using dashed lines and the lower bounds are
plotted using the solid lines. In general, we see that the gaps be-
tween the bounds are insignificant for any channel correlations.
Therefore, the capacity lower bound per channel use in (7) is
accurate enough to be used in our analysis assuming Gaussian
inputs.

The average capacity lower bound per transmission block is
therefore given by

(9)

We will use “capacity lower bound” and “capacity” interchange-
ably throughout the rest of this paper. The average capacity
lower bound in (9) will be used as the figure of merit to study
the optimal transmission and resource allocation strategies in
the following sections.

III. NONFEEDBACK SYSTEMS

A. Spatially i.i.d. Channels

The optimal pilot and data transmission scheme and optimal
power allocation for nonfeedback systems with spatially i.i.d.
channels were studied in [2] and [10]. For the sake of com-
pleteness, we briefly review their main results, which will also
be referred to when providing new results for feedback sys-
tems in the next section. The optimal transmission strategy is
to transmit orthogonal pilots and independent data among the
transmit antennas with spatially equal power allocation to each
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antenna during both pilot and data transmission. The optimal
PSAM power factor is given by

for
for
for

(10)

where . With , the op-
timal training length is .

B. Spatially Correlated Channels

For nonfeedback systems with spatially correlated channels,
it is difficult to find the optimal resource allocation and trans-
mission strategies. Intuitively, the amount of training resource
required should reduce as the channels become more corre-
lated. Therefore, one good strategy may be to use the and

for i.i.d. channels so that sufficient training is ensured for all
channel correlation conditions. Similarly, one may design the
pilot and data transmission schemes to ensure a robust system
performance for possibly correlated channels. Here, we define
robustness to be the capability of achieving the best channel esti-
mation and capacity performance for the least-favorable channel
correlation. Note that the least or most favorable channel corre-
lation condition depends on the choice of the training or data
transmission strategy and does not necessarily imply i.i.d. or
fully correlated channels.

Theorem 1: For nonfeedback systems, the transmission of or-
thogonal training sequences among the transmit antennas with
spatially equal power allocation minimizes the channel estima-
tion errors for the least-favorable channel correlation, i.e., using

is a robust training scheme.
Proof: see Appendix I.

Theorem 2: For nonfeedback systems, the transmission of
i.i.d. data sequences among the transmit antennas with spatially
equal power allocation, i.e., , a) maximizes
the capacity for the least-favorable channel correlation at suffi-
ciently low SNR, and b) is the optimal transmission scheme at
sufficiently high SNR.

Proof: see [20].
Remark: From Theorem 1 and Theorem 2, we see that the

optimal transmission strategy for i.i.d. channels is also a robust
choice for correlated channels in nonfeedback systems.

IV. CHANNEL GAIN FEEDBACK SYSTEMS

CGF systems require the receiver to feed the channel esti-
mates back to the transmitter once per transmission block. Once
the transmitter receives the estimated channel gains, it performs
spatial power adaptation accordingly. When noise is present in
the feedback link, the capacity that can be achieved by adap-
tive transmission reduces as the noise increases. The capacity
reduction due to corrupted channel gain estimates was studied
in [22]. It was shown that the capacity reduction can increase
quickly with the noise in the estimated channel gains. There-
fore, a reliable feedback scheme which minimizes the noise in
the estimated channel gains is essential for CGF systems. One
solution is to use low rate feedback transmission with appro-
priate quantization scheme for the feedback information [23].

However, the design of digital feedback is beyond the scope of
this paper. In this section, we assume that the feedback link is
noiseless, which is reasonable for CGF systems with reliable
feedback schemes.

We consider the channels to be spatially i.i.d. For a CGF
system with correlated channels, it is fair to assume that the
transmitter has the knowledge of the spatial channel correla-
tions as well. In other words, a CGF system with correlated
channels is effectively a hybrid CCF-CGF system. Therefore,
we will briefly discuss this case in Section V-E after analyzing
CCF-only systems. With the assumption of i.i.d. channels, the
data transmission utilizes all the channels with equal proba-
bility. Hence, it is reasonable to have at least as many mea-
surements as the number of channels for channel estimation,
which implies that . From [10], we know that the
optimal training for i.i.d. channels consists of orthogonal pi-
lots with equal power allocated to each antenna, i.e.,

.
For a given , the ergodic capacity lower bound per channel

use in (7) can be rewritten as2

(11)

where and .

A. CGF System With no Feedback Delay

Firstly, we study an ideal (delayless) scenario in which the
transmitter receives the estimated channel gains at the start of
the data transmission. The delayless case can be viewed as a
reasonable approximation of the delayed case when .
Furthermore, the results in the delayless case will be used in
Section IV-B for the delayed case. It was shown in [17] that
the capacity is maximized when the matrix has the same

eigenvectors as . Denoting the eigenvalues of by
sorted in descending order, the eigen-

values of are found via the standard water-filling as

(12)

where represents the water level and .
Therefore, (11) can be rewritten as

(13)

(14)

(15)

2Note that the optimal pilot and data resource allocation should be found
based on the ergodic capacity lower bound without having a prior knowledge of
instantaneous channel realizations. Hence, the averaging over many transmis-
sion blocks is needed in (11).
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where denotes the number of nonzero , and (15) is obtained
by substituting from (12) into (14). It should be noted that
in (14) and (15) is the expectation over the largest values in

. Using (15), we now present the result for the optimal PSAM
power factor .

Theorem 3: For delayless CGF systems with i.i.d. channels
and the optimal pilot structure , the
optimal PSAM power factor is given by (10).

Proof: see Appendix II.
For nonfeedback systems, Hassibi et al. showed in [10] that

the optimal training length is equal to when the optimal
PSAM power factor given in (10) is used. In the next theorem
and corollary, we show that for any fixed value of
as well as in delayless CGF systems.

Theorem 4: For delayless CGF systems with i.i.d. channels
and the optimal pilot structure , the
optimal training length equals the number of transmit antennas
for any given value of the PSAM power factor , i.e., .

Proof: see Appendix III.
Remark: In Theorem 4, the value of is required to be fixed.

When is allowed to vary as varies, may or may not
equal . For example, varies according to
when fixed power transmission is used, in
which case does not hold in general.

Corollary 1: For delayless CGF systems with i.i.d. channels
and the optimal pilot structure as
well as the optimal PSAM power factor , the optimal training
length is given by .

Proof: Among all possible values of , there
exists an optimal that maximizes the capacity lower bound
for any given . We denote to be the optimal for

and denote to be the capacity lower

bound at and . From the definition of

we have

. From Theorem 4 we know that when ,

. Combining

the two inequalities and choosing , we have

, that is, the capacity at
is greater than or equal to the capacity at

where the corresponding is used in both cases.
Theorem 3 and Corollary 1 show that the optimal pilot design

for delayless CGF systems coincide with that for nonfeedback
systems in Section III-A. That is to say, one can use the same
design to achieve optimal performance in both nonfeedback and
delayless CGF systems.

B. CGF System With Feedback Delay

For practical systems, a finite duration of symbol periods
is required before feedback comes into effect at the transmitter
as shown in Fig. 1. Therefore, the transmitter has no knowledge
about the channel during the first data subblock of transmis-
sions, which is equivalent to nonfeedback systems. From [2],
we know that the transmitter should allocate equal power to
each transmit antenna during the first data subblock (or the non-
adaptive subblock). After receiving the estimated channel gains,

the transmitter performs spatial power water-filling similar to
Section IV-A during the second data subblock (or the adaptive
subblock) of length . In order to optimize the PSAM
power factor , we apply a two-stage optimization approach.
Firstly, we optimize the data power division factor for any
given and . Then, we optimize the PSAM power factor .

Using (3), the capacity lower bound per channel use in (11)
becomes

(16)

(17)

where the water-filling solution for with water level is given
by

(18)

Lemma 1: The capacity lower bound per channel use in (17)
is concave on .

Proof: From the property of water-filling solution [24], we
know that and in (18) are continuous on . As a
result, in (17) is continuous on . For any fixed ,
one can show that by directly computing the
derivative using (17). This implies that given by

(19)

is a decreasing function of for any given . Furthermore,
it can be shown that is differentiable on , in-
cluding the points where changes its value. To obtain dif-
ferentiability, we let at which changes between
and . At this point, the water level is given by

. With ,
one can show that the left and right derivatives of w.r.t.
equate, that is,
at . Therefore, one can conclude that is differen-
tiable and its derivative is decreasing on , which im-
plies concavity.
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Fig. 3. Optimal data power division factor � versus SNR � for different
values of the delay factor � and antenna sizes. In this example, a block length
of � � ���, training length of � � � � �, and PSAM power factor given
in (10) are used.

With Lemma 1, the optimal data power division factor can
be found numerically. Using the Karush–Kuhn–Tucker (KKT)
conditions [24], the result is given by

if

otherwise
(20)

where was given in (19).
Fig. 3 shows the optimal data power division factor given

by (20) versus SNR for different delay factors . It can be
seen that increases from 0 to at low SNR. For moderate to
high SNR, stays above and converges to as .3 As
we are concerned with practical design solutions, it is desirable
to have a low complexity solution for which still gives near
optimal performance under practical transmission conditions.
From Fig. 3, we see that is usually close to at practical SNR
range, e.g., 0 dB, and as . Therefore,

is a simple solution which provides good system performance.
We will also investigate the optimality of using capacity
results in Section IV-C.

From (3), we see that is actually the simplest solu-
tion which allocates the same amount of power during each data
transmission in both nonadaptive and adaptive subblocks, i.e.,

. In addition, this simple solution does not
require the knowledge of the feedback delay time. Furthermore,
this choice of leads to a simple closed-form solution for the
optimal PSAM power factor , as well as the optimal training
length for delayed CGF system summarized in Corollary 2,
which can be shown by combining the results in Theorem 3,
Corollary 1 and those for the nonfeedback systems summarized
in Section III-A.

Corollary 2: If and , the
optimal PSAM power factor and the optimal training length

coincide with those in the delayless case given in Theorem
3 and Corollary 1.

3� for the �� � �� � � �� system exceeds and converges back to � at
a higher SNR, which is not shown in Fig. 3. This is because the use of spatial
water-filling in data transmission gives a significant improvement in the capacity
when � � � .

Fig. 4. Average capacity lower bound �� versus SNR � for delayless CGF
systems (� � � and � � �) with i.i.d. channels and different antenna sizes.
Note that �� � �� 	��� where � is given in (13). The block length
is � � ���. Both optimal temporal power allocation to pilot and data as well
as fixed power transmission are shown for comparison. For optimal temporal
power allocation, the training length is � � �; while for fixed power trans-
mission, the pilot length is optimized numerically.

C. Numerical Results

Now, we present numerical results to illustrate the capacity
gain from optimizing the PSAM power factor. Fig. 4 shows the
average capacity lower bound versus SNR for delayless
CGF systems (i.e., and ) with i.i.d. channels and
different antenna sizes. The solid lines indicate systems using

and ( in this case). The dashed lines indicate sys-
tems using equal temporal power allocation and found nu-
merically. Comparing the solid and dashed lines, we see that the
capacity gain from optimal temporal power allocation is approx-
imately 9% at 0 dB and 6% at 20 dB for all three systems. This
range of capacity gain (5% to 10%) was also observed in [10]
for nonfeedback systems which can be viewed as an extreme
case of delayed CGF system with . From the results for
the extreme cases, i.e., and , we conclude that the
capacity gain from optimizing the PSAM power factor is around
5% to 10% at practical SNR for delayed CGF systems with i.i.d.
channels.

We now numerically verify the near optimality of .
Fig. 5 shows the average capacity lower bound versus SNR

for delayed CGF systems with i.i.d. channels and different
antenna sizes. In this example, a transmission block of length

consists of a training subblock of symbol
periods, followed by a nonadaptive data subblock of
symbol periods4 and an adaptive data subblock of
symbol periods. Therefore, the delay factor . The
lines indicate the use of , and the markers indicate optimal
data power division found through numerical optimization using

. The values of for 4, 10, and 16 dB are shown
in the figure as well. We see that the capacity difference between
the system using and is negligible. That is to say
the use of temporal equal power transmission over the entire
data block is near optimal for systems with channel estimation

4The delay length � takes into account the channel estimation and other pro-
cessing time at the receiver and transmitter, as well as the time spent on the
transmission of low-rate feedback.
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Fig. 5. Average capacity lower bound �� versus SNR � for delayed
CGF systems with i.i.d. channels and different antenna sizes. Note that
�� � �� ���� where � is given in (16). Within a block length of
� � ���, the training length is � � �, followed by a nonadaptive data trans-
mission subblock of length � � �� and an adaptive data transmission subblock
of length 	
� � in (10) is used. The lines indicate the use of � � � � �����,
and the markers indicate optimal data power division factor found numerically.

errors. We have also confirmed that this trend is valid for a wide
range of block lengths (results are omitted for brevity). These
results validate the near optimality of .

V. CHANNEL COVARIANCE FEEDBACK SYSTEMS

As discussed in the previous section, CGF systems require
frequent use of feedback due to the rapid change in the channel
gains. This requires a significant amount of feedback overhead
in the reverse link (from the receiver to the transmitter), which
may cause a direct reduction in the overall information rate, es-
pecially when both the forward and the reverse links are oper-
ating at the same time, e.g., in cellular systems. Therefore, the
CGF scheme may not be appropriate in fast fading environments
where the block length is small. On the other hand, the statistics
of the channel gains change much slower than the channel gains
themselves. As a result, it is practical for the receiver to accu-
rately measure the channel covariance matrix and feed it back to
the transmitter at a much lower frequency with negligible feed-
back overhead and delay. Note that for completely i.i.d. chan-
nels, there is no need for CCF. In this section, we consider CCF
systems with spatially correlated channels and investigate the
optimal pilot and data transmission strategy, as well as the op-
timal power allocation. We assume that both the transmitter and
the receiver have perfect knowledge of the channel spatial cor-
relations.

A. Proposed Transmission Scheme

Most studies on the optimal pilot design for correlated
channels assume that the training length is at least as large
as the number of transmit antennas, i.e., [13]–[15].
Intuitively, the amount of training resource can be significantly
reduced as the channels become more correlated. As an extreme
case where the channels are fully correlated, only one pilot

transmission is needed to train all the channels. Therefore, we
relax this assumption by considering . It was shown
in [14] that the optimal training strategy is to train along the
eigenvectors of the channel covariance matrix with training
power being water-filled according to the eigenvalues of the
channel covariance matrix, provided that . In the
case where , only eigenchannels can be trained.
Therefore, we propose that only the strongest eigenchannels
are to be trained when .

We perform eigenvalue decomposition on as
, and let the eigenvalues of be sorted in

descending order in . The optimal
training sequence which minimizes the channel estimation
errors (i.e., ) has the property that the eigenvalue
decomposition of is given by [14],
where is a diagonal matrix. We denote the diagonal entries
of by . Let , then
the first entries in are given by

(21)

where is the water level. All the remaining entries in (if
any) are set to zero. It is not difficult to show that this choice
of is optimal. Note that in practice, the transmitter can
ensure that the number of nonzero equals by reducing
when needed.

For data transmission, it was shown that the optimal strategy
is to transmit along the eigenvectors of under the perfect
channel estimation [4]–[6]. With the proposed training se-
quence, it is easy to show from (5) and (6) that the eigenvectors
of and are the same as those of . Therefore, in
the case of channel estimation errors, a reasonable strategy is
to transmit data along the eigenvectors of which coincide
with the eigenvectors of . From (5) and (6), the eigenvalue
decomposition of is given by , and we set

where is a diagonal matrix with entries denoted
by .

To the best of the authors’ knowledge, there is no closed-
form solution to the optimal spatial power allocation even with
perfect channel estimation [4]–[6]. Instead, the optimal can
be found via numerical methods. As we are concerned with
practical design solutions, it is desirable to have a low com-
plexity solution for which still gives near optimal perfor-
mance. Following the proposed training scheme, we propose
a simple strategy which transmits data through the trained
eigenchannels with equal power. That is

otherwise.
(22)

It is easy to see that only the trained eigenchannels should
be used for data transmission, since the capacity is zero for un-
trained eigenchannels. We will investigate the optimality of (22)
in Section V-D.

For the proposed training and data transmission scheme, the
capacity lower bound per channel use in (7) reduces to

(23)

Authorized licensed use limited to: Australian National University. Downloaded on October 3, 2009 at 19:33 from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DESIGN GUIDELINES FOR TRAINING-BASED MIMO SYSTEMS 4021

where the nonzero (diagonal) entries of are given by
, which is derived from (5), (6), and

(21).

B. Optimal Training Resource Allocation

Now, we investigate the optimal training length as well
as the optimal PSAM power factor using the capacity lower
bound given in (23). The results are summarized in the following
theorems.

Theorem 5: For CCF systems in PSAM schemes with the
transmission strategy proposed in Section V-A, the optimal
training length is at most as large as the number of transmit
antennas for any given value of the PSAM power factor , i.e.,

.
Proof: Assuming , we have .

We let be the nonzero eigenvalues of

, where .
in (23) is reduced to ,

where . Note that
and they are independent of for any fixed . Following
the proof of Theorem 4 in Appendix III, one can show that

for any given . Therefore, reaches its
maximum when is maximized, which implies that
under the constraint of . Hence, in general we have

.
Remark: Theorem 5 implies that when for the

proposed transmission strategy is used (with proof similar to
Corollary 1). Hence, we will only consider in the
analysis on . Although the optimal training length needs to
be found numerically, the computational complexity of opti-
mizing is low due to the fact that only takes integer values
ranging from 1 to .

Theorem 6: For CCF systems in PSAM schemes with
the transmission strategy proposed in Section V-A, the
optimal PSAM power factor is given by (10) with

, provided that .
Proof: see Appendix IV.

Remark: It is noted that in the optimal solution in Theorem
6 is essentially the same as the one given in Section III-A when

. The condition of can be easily
satisfied when the block length is not too small or the SNR is
moderate to high (i.e., ), and the spatial correlation
between any trained channels is not close to 1. Therefore, the
result in Theorem 6 applies to many practical scenarios. It is
important to note that the optimal PSAM power factor given
in Theorem 6 does not depend on the channel spatial correlation,
provided the condition above is met. In other words, this unique
design is suitable for a relatively wide range of channel spatial
correlations.

C. A Special Case: Beamforming

From Theorem 5 we know that . When only the
strongest eigenchannel is used, i.e., , this scheme is
called beamforming, which may be the optimal strategy for
highly correlated channels. Furthermore, the use of beam-
forming significantly reduces the complexity of the system as
it allows the use of well-established scalar codec technology

and only requires the knowledge of the strongest eigenchannel
(not the complete channel statistics) [5]. For beamforming
transmission, the capacity lower bound in (23) reduces to

(24)

where is a vector with i.i.d. ZMCSCG and unit
variance entries, is the largest eigenvalue in , and

which can be found by letting in (21).
Theorem 7: For CCF systems in PSAM schemes with beam-

forming, the optimal PSAM power factor is given in (10)
with .

Proof: The proof can be obtained by letting and
in the proof of Theorem 6.

Remark: It can be shown for the beamforming case that
. Therefore, the optimal PSAM power factor

increases as the channel spatial correlation increases, that
is to say, more power should be allocated to data transmission
when the channels become more correlated. When ,
reduces to , hence does not depend on the
channel correlation.

D. Numerical Results

For numerical analysis, we choose the channel covariance
matrix to be in the form of , where is referred
to as the spatial correlation factor [14]. Firstly we validate the
solution to the optimal PSAM power factor given in Theorem 6
and Theorem 7. Fig. 6 shows the optimal PSAM power factor

found numerically versus the channel correlation factor for
CCF 4 4 systems with a block length of and SNR of
10 dB. We see that remains constant before the correlation
factor gets close to 1 for , and this value of is the
same as the analytical value given by Theorem 6. For the beam-
forming case where , we see that does not depend
on the channel correlation, which agrees with our earlier obser-
vation from Theorem 7. Similar to CGF systems, we have also
compared the capacity achieved using and that using fixed
power transmission over pilot and data, and the same trend is
observed (results are omitted for brevity), that is, capacity gain
from optimizing PSAM power factor is around 5% to 10% at
practical SNR.

In our proposed transmission scheme for CCF systems,
spatially equal power allocation is used for data transmission.
Here we illustrate the near optimality of this simple scheme
in Fig. 7, which shows the average capacity lower bound
versus channel correlation factor for CCF 2 2 systems. We
compute the capacity achieved using , and with
spatially equal power allocation for data transmission (solid
line) and optimal power allocation found numerically (dashed
line) for a block length of .5 We also indicate the critical

at which changes from 2 to 1 in Fig. 7. It is clear that
the capacity loss from spatially optimal power allocation to

5We see that the capacity increases with channel spatial correlation in the case
of beamforming, while it is not monotonic for� � �. These observations were
explained in [20] using Schur-convexity of capacity in the channel correlation.

Authorized licensed use limited to: Australian National University. Downloaded on October 3, 2009 at 19:33 from IEEE Xplore.  Restrictions apply. 



4022 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

Fig. 6. Optimal PSAM power factor � versus channel spatial correla-
tion factor � for CCF 4� 4 systems with a block length of � � �� and
��� � 10 dB. All values of � are found numerically.

Fig. 7. Average capacity lower bound �� in (9) versus channel spatial corre-
lation factor � for CCF 2� 2 systems with a block length of � � �� and SNR
of 10 dB. Training length of � � � and � � � are shown. For � � �,
both spatial equal data power allocation (dashed lines) and optimal data power
allocation found numerically (solid lines) are shown.

spatially equal power allocation increases as increases. At the
critical , this capacity loss is less than 1.5%. We also studied
the results for different values of block lengths and the same
trend was found (results are omitted for brevity). These results
imply that our proposed transmission scheme is very close to
optimal provided that the training length is optimized.

Fig. 8 shows the average capacity lower bound versus
the channel correlation factor for CCF 4 4 systems with a
block length of and SNR of 10 dB. The optimal PSAM
power factor shown in Fig. 6 is used in the capacity compu-
tation. We also include for in Fig. 6 with found
numerically. It is clear that for is always smaller
than for , which agrees with Theorem 5. Com-
paring the capacity with different training lengths, we see that

decreases as the channel becomes more correlated. More im-
portantly, the capacity gain from optimizing the training length
according to the channel spatial correlation can be significant.

Fig. 8. Average capacity lower bound �� versus channel spatial correlation
factor � for CCF 4� 4 systems with a block length of � � �� and ��� �
10 dB. Note that �� � 	� ��
� where� is given in (23). The optimal
PSAM power factor � is used in all results.

For example, the capacity at using (which is
optimal for i.i.d. channels) is approximately 6.3 bits per channel
use, while the capacity at using is around 7 bits
per channel use, that is to say, optimizing training length results
in a capacity improvement of 11% at . Moreover, the ca-
pacity improvement increases as channel correlation increases.
The same trends are found for different values of block lengths,
although the capacity improvement by optimizing the training
length reduces as the block length increases (results are omitted
for brevity). Therefore, it is important to numerically optimize
the training length for correlated channels at small to moderate
block lengths.

Furthermore, one can record the range of for each value
of from Fig. 8, and observe the value of in the corre-
sponding range of in Fig. 6. It can be seen that within the
range of where a given is optimal, the value of for
the given is a constant given by Theorem 6 provided that

. That is to say, the condition in Theorem 6 (i.e.,
) can be simplified to provided that

the training length is optimized. To summarize, our numerical
results show that optimizing the training length can significantly
improve the capacity, and the simple transmission scheme pro-
posed in Section V-A gives near optimal performance.

E. Hybrid CCF-CGF Systems

For systems with correlated channels, one can utilize both
CCF and CGF to increase the capacity. We are currently inves-
tigating the optimal transmission and power allocation strategy
for the hybrid CCF-CGF system. For spatially correlated chan-
nels, we expect that the optimal training follows a water-filling
solution according to the channel covariance matrix, and the
optimal data transmission follows a water-filling solution ac-
cording to the estimated channel gains. The two different water-
filling solutions make the problem of optimizing the PSAM
power factor mathematically intractable. However, we expect
that the solution given in Theorem 6 would still be a good choice
for the hybrid system. Furthermore, we expect that the optimal
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TABLE I
SUMMARY OF DESIGN GUIDELINES

training length given in Theorem 5 would still hold for the hy-
brid system.

VI. SUMMARY OF RESULTS

In this paper, we have studied block fading MIMO systems
with feedback in PSAM transmission schemes. Two typical
feedback systems are considered, namely the channel gain
feedback and the channel covariance feedback systems. Using
an accurate capacity lower bound as the figure of merit, we have
provided the solutions for the (near) optimal power allocation
to training and data transmission as well as the optimal training
length. Table I summarizes the design guidelines for both
nonfeedback systems and feedback systems.

APPENDIX I
PROOF OF THEOREM 1

This is a max-min problem where the MSE of the channel
estimates is to be minimized by and to be maximized
by . With the constraint of , we need to
show that is achieved by orthogonal
pilot sequence with equal power allocated among the transmit
antennas, i.e., , assuming .

From (5) we see that

(25)

where are the eigenvalues of .
Since the sum of a convex function of is Schur-convex in
[25], we conclude that (25) is Schur-convex in . Consequently,
we have

(26)

where when

. Note that (26) holds for any
. On the other hand

(27)

where (27) is obtained using the Schur-concavity of

in . The equality in (27) holds
when . From (26) and (27), we conclude that

which can be obtained by choosing .

APPENDIX II
PROOF OF THEOREM 3

To prove Theorem 3, we begin with the following set of re-
sults.

• R1. From the property of water-filling solution [24], is
discrete and nondecreasing on as the number of
nonzero in (12) cannot decrease as the data transmission
power increases.

• R2. With , and

(2), it can be shown that is a
concave function of .

• R3. For any fixed , we see from (15) that is maxi-
mized when reaches its maximum.
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Fig. 9. Sketch example of � versus�. The vertical dashed lines indicates the
values of � at which� changes its value. � , � , � and � indicate the local
optimal values of � which gives local maximal � .

• R4. From the property of water-filling solution [24], we
know that in (12) is continuous on and hence, is
continuous on .

In Fig. 9, we show a sketch plot of versus . This figure
helps to visualize the following proof. Basically, the main ob-
jective here is to show that the optimal is not affected by the
number of active eigenchannels.

From R1, we can divide all values of into a finite number
of regions in which is constant.

From R2, there exist a unique local optimal point of in each
of the aforementioned regions, denoted by and so
on. And these optimal points of occur on the boundaries of
these regions except for at most one of them which is the global
optimal point of , denoted by . (Note that may occur on
the boundary of some region as well.)

From R3, we know that the local optimal point of for
is also the local optimal point for in each of the aforemen-
tioned regions. That is to say, , , etc. maximize in the
corresponding regions where is fixed.

From R4, the continuity of on implies the con-
tinuity of in (13) on . This implies that is
continuous across the boundaries of two different regions of .
For example in Fig. 9, at
and at , etc.

Therefore, we can show that at is larger than at
, , etc. That is to say, the global optimal point of for

is also the global optimal point for . Therefore, the objective
function for optimizing is reduced from to . It is noted
that the objective function is the same as that in nonfeedback
systems given in [10]. Therefore, the solution of coincides
with the solution for nonfeedback systems given in (10).

APPENDIX III
PROOF OF THEOREM 4

We aim to show that (treating as a posi-
tive real-valued variable) for any given . First of all, it can be
shown that is continuous on regardless of the value of

, which implies that there is no discontinuity in . There-
fore, it suffices to show that for any fixed
and .

We let ,
, and . Then the average

capacity lower bound in (9) can be rewritten using (15) as

For any given , we know from (2) that is constant.

Therefore, and are also

constant. Differentiating w.r.t. for any fixed gives

(28)

where

(29)

Substituting (29) into (28), we get

Since , it suffices to show that

(30)

Furthermore, one can show that

for any fixed . Since

is an increasing function of , we only need to show
(30) holds at , that is

where we have used the concavity of . Therefore, we con-
clude that for any given , which implies that

should be kept maximum. Hence, should be kept min-
imum. With the assumption of the optimal training
length is given by .
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APPENDIX IV
PROOF OF THEOREM 6

For any positive definite matrix , is increasing in

[25]. Also, for any positive semi-definite matrix ,
is a positive definite matrix [2]. Since is a
positive semi-definite matrix, the capacity lower bound in (23)
is maximized when the diagonal entries of
are maximized.

The th nonzero diagonal entry of is given
by

(32)

where we have used (21) and let .
Substituting from (2) into (32) with some algebraic manipu-
lation, we get

(33)

Here we consider the case where and omit
the cases and which can be han-
dled similarly. It can be shown that in (33) is con-
cave in . Therefore, the optimal occurs at

, which is the root to
, where and

. It is clear that depends on
through . Therefore, there is no unique which maxi-
mizes all . However, this dependence disappears when

. Under this condition, one can show
that and . And there exists a unique
solution of which maximizes all the diagonal entries of

, given by
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