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Abstract—Multirelay networks exploit spatial diversity by trans-
mitting user’s messages through multiple relay paths. Most works
in the literature on cooperative or relay networks assume that all
terminals are fully cooperative and neglect the effect of possibly ex-
isting malicious relay behaviors. In this work, we consider a mul-
tirelay network that consists of both cooperative and malicious re-
lays, and aims to obtain an improved understanding on the optimal
behaviors of these two groups of relays via information-theoretic
mutual information games. By modeling the set of cooperative re-
lays and the set of malicious relays as two players in a zero-sum
game with the maximum achievable rate as the utility, the optimal
transmission strategies of both types of relays are derived by iden-
tifying the Nash equilibrium of the proposed game. Our main con-
tributions are twofold. First, a generalization to previous works
is obtained by allowing malicious relays to either listen or attack
in Phase 1 (source-relay transmission phase). This is in contrast
to previous works that only allow the malicious relays to listen
in Phase 1 and to attack in Phase 2 (relay-destination transmis-
sion phase). The latter is shown to be suboptimal in our problem.
Second, the impact of CSI knowledge at the destination on the op-
timal attack strategy that can be adopted by the malicious relays
is identified. In particular, for the more practical scenario where
the interrelay CSI is unknown at the destination, the constant at-
tack is shown to be optimal as opposed to the commonly considered
Gaussian attack.

Index Terms—Cooperative communications, malicious relay,
jamming, CSI, game theory, mutual information.

I. INTRODUCTION

C OOPERATIVE or relay communications [1]–[5] allow
users in a wireless system to transmit their messages

through the relaying of multiple cooperative partners or relay
stations. The relay paths provide spatial diversity that can be ex-
ploited to enhance communication reliability and throughput.
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In the literature, many relaying strategies [2]–[5], such as
decode-and-forward, amplify-and-forward (AF), selective re-
laying etc., have been proposed to achieve this task. Yet, most
of these strategies are proposed based on the assumption that
all relays in the network are trustworthy and are fully compliant
with the cooperation rules. However, this may not be the case in
practice and the existence of malicious relays may significantly
degrade the system performance, especially if the cooperative
relays are not capable of countering the malicious behaviors.
The goal of this work is to investigate the interaction between
cooperative and malicious relays and examine its impact on the
system performance.
Let us consider a multirelay network that consists of a source,

a destination, and multiple relays, including some that are pos-
sibly malicious. A two-phase AF relay protocol is employed,
where the relays first receive signals from the source in Phase
1 and then forward amplified versions of these signals to the
destination in Phase 2 [6]. Here, malicious relays may utilize
shared network information to intentionally jam the reception
at the receivers or alter the messages that are to be forwarded.
Therefore, the source and the cooperative relays must design
their transmission strategies to reduce the impact of these ma-
licious behaviors. The main objective of this work is to deter-
mine the optimal signaling at the source, the cooperative relays,
and the malicious relays. Following the approaches adopted in
[6]–[11], we use the two-player zero-sum game [12] to model
this fundamental problem. Here, the source and the set of coop-
erative relays are viewed collectively as one player and the set of
malicious relays as the other player. The maximum achievable
rate (i.e., the mutual information between source and destina-
tion) is chosen as the utility measure. The optimal transmission
strategies of different types of relays are derived by identifying
the Nash equilibrium (NE) of the proposed game. The strategies
are optimal in the sense that no single player can do better by
unilaterally altering its own strategy. Compared with [6]–[11],
this work provides a better understanding of the optimal sig-
naling of both players in a more general and practical setting.
Note that the malicious relays considered in this work are those
that purposely disrupt the communication between the source
and the destination. Therefore, they are assumed to be rational
and seek the best strategy to deteriorate the communication per-
formance. This is different from studies on faulty relays [13],
where the relay behaviors may be incidental and are often irra-
tional.
The main contributions of this work can be summarized as

follows. First, this work considers a more general set of attack
strategies where the malicious relays are given the freedom of
choosing to either listen to the source in Phase 1 (so that it can
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utilize this information to transmit interfering signals in Phase
2) or to directly emit jamming signals (that are independent of
the source message) in both phases. This set of attack strate-
gies generalizes that in [7], where malicious relays were only al-
lowed to listen in Phase 1 and attack in Phase 2. Our results show
that the optimal strategy taken by the malicious relays should
be to jam rather than to listen in Phase 1 and, thus, the mali-
cious attacks considered in [7] were indeed suboptimal. Sec-
ondly, the optimal attack strategy taken by the malicious relays
are shown to depend on the CSI knowledge at the destination.
Specifically, when full CSI is available at the destination (as as-
sumed in [6]–[10]), we show that the optimal attack strategy
that can be taken by malicious relays is to emit Gaussian jam-
ming signals in both phases. However, for the more practical
scenario where the interrelay CSI (i.e., CSI of the channel be-
tween the malicious and the cooperative relays) is assumed to
be unknown at the destination, we show that the malicious re-
lays should attack with constant jamming signals in Phase 1 and
with Gaussian jamming signals in Phase 2. This result is dif-
ferent from the common wisdom derived under the assumption
of full CSI at the destination [6]–[10].
Theoretical studies on jammer or malicious relay behaviors

have been considered in [6]–[11], [14], [15]. In [7], an AF relay
network with one single-antenna cooperative relay and one
single-antenna jammer (i.e., malicious relay) is examined. Our
work can be viewed as a generalization of [7] to the case with
multiple relays and more general attacking strategy. In [8] and
our previous work in [9], the interaction between cooperative
and malicious relays is examined for decode-and-forward (DF)
networks. For DF networks, the source codebook is revealed to
the relays and each relay is assumed to be able to successfully
decode the source message. The problem in AF networks,
as considered here, differs considerably since one must now
take into account the forwarding of noise (and possibly also
jamming signals) in Phase 2. The effect of malicious relays
or jammers has also been examined in the context of multiple
access channels in [6], [10], and in the context of secrecy chan-
nels with eavesdroppers in [14]–[17]. Note that, in contrast to
the malicious relays (or jammers) considered in our work, the
relays and jammers considered in [16] and [17] are friendly and
work cooperatively to prevent eavesdropping by unauthorized
receivers. More recently, the zero-sum game approach has
also been applied to study jamming attacks in parallel slow
fading channels in [11] and has also been applied to the study
of multimedia security problems in [18]. These works have
different considerations and, thus, are less relevant to ours.
In the literature, several works on malicious relays have also
been conducted using nongame-theoretic approaches, e.g., in
[19]–[22]. However, in these works, cooperative relay strate-
gies were derived to counter only limited types of malicious
attacks and, thus, may not be effective if the malicious relays
decide to alter their attack strategy. Our work considers more
general sets of cooperative and malicious relay strategies and
the proposed solutions are optimal in the sense that no player
can gain by unilaterally altering its own strategy.
The rest of this paper is organized as follows. In Section II,

we describe the system model for AF networks with malicious
relays. In Section III, we show how our problem can be formu-
lated into a zero-sum game and derive the optimal transmission

Fig. 1. Cooperative network model with malicious relays. (a) Malicious relays
listen in Phase 1 and attack in Phase 2. (b)Malicious relays attack in both Phases
1 and 2.

strategies for the cases with and without interrelay CSI at the
destination in Section IVSections and Section V, respectively.
Computer simulations are given in Section VI and the paper is
concluded in Section VII.
Notations: denotes the distribution of a complex

Gaussian random variable with zero mean and covariance ma-
trix . denotes the distribution of an exponential
random variable with mean . stands for the statistical
expectation of a random variable, and stands for the mu-
tual information between two random variables (vectors). A di-
agonal matrix with elements on its diagonal is de-
noted by . Function .

II. SYSTEM MODEL

Consider an AF multirelay network with a source, a destina-
tion, and relays (amongwhich are cooperative and
are malicious), as shown in Fig. 1. The cooperative relays are
denoted by and the malicious relays are denoted
by . Each node is equipped with a single an-
tenna and are assumed to be half-duplex. The relays are subject
to individual power constraints given by , where
is the power constraint at relay . A two-phase AF transmis-
sion protocol is considered where the (cooperative) relays first
receive signals from the source in Phase 1 and forward ampli-
fied versions of the received signal to the destination in Phase 2.
The malicious relays, on the other hand, may choose to either
listen to the source in Phase 1 and utilize this information to
emit interfering signals in Phase 2 (as shown in Fig. 1(a)) or
emit jamming signals in both phases (as shown in Fig. 1(b)).
Our scenario is based on the setting where the cooperative relay
selection process has been done and all relays, which agree to be
cooperative, can be trusted by the source. In this case, the source
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and the cooperative relays have a common objective to increase
the system throughput. The malicious relays, on the other hand,
are adversaries that aim to disrupt the communication between
the source and the destination. This setting is consistent with
the line of works given in [6]–[10] as well as related works on
physical-layer security given in [23], [24].
Let be the signal received by relay in Phase 1. The

signal received by the cooperative relays are denoted by the
vector and that by the malicious relays
are denoted by . These signals depend
on the transmission strategy that the malicious relays choose to
employ. If the malicious relays choose to listen in Phase 1, the
received signals can be expressed as

(1)

(2)

where with variance is the signal
transmitted by the source and and

are the Gaussian noise vectors at the
cooperative and the malicious relays, respectively. Here,

is the channel vector from the source
to the cooperative relays and is
that from the source to the malicious relays, where is the
channel between the source and relay . On the other hand,
if the malicious relays decide to attack in Phase 1, the signals
received at the cooperative relays become

(3)

where is the channel matrix be-
tween the cooperative and the malicious relays with

being the channel from to ,
and is the vector of jamming signals
emitted by the malicious relays in Phase 1. In this case, we set

since, under the half-duplex constraint, the malicious
relays cannot receive when it is transmitting.
In Phase 2, the cooperative and the malicious relays will si-

multaneously transmit signals and
, respectively, to the destination, where is

the signal transmitted by cooperative relay and is the
signal transmitted by malicious relay in Phase 2. The re-
ceived signal at the destination is

(4)

where is the channel vector
from the cooperative relays to the destination,

is the channel vector from the mali-
cious relays to the destination, and is the
Gaussian noise at the destination. Here, is the channel
between relay and the destination.
By employing the AF relaying strategy [25], [26], the signal

transmitted by the cooperative relays can be expressed as

(5)

where with being the ampli-
fying gain at relay . To satisfy the power constraints at

each relay, the amplifying gain at cooperative relay , for
, must be chosen such that

(6)

with satisfying the constraint . Here, is referred
to as the normalized amplifying gain. In this case, the AF matrix
can be expressed as

(7)

where and
. On the other

hand, the signals transmitted by the malicious relays, i.e.,
and , can be chosen arbitrarily. However, if the malicious
relays choose to listen in Phase 1 instead of attacking, the
signal may in general depend on the realization of
. The signals transmitted by malicious relay (i.e., for

) in Phases 1 and 2 must satisfy the power
constraints and ,
respectively, where and are the fractions of power
that relay allocates to its transmission in Phases 1 and 2,
respectively.
All channels are assumed to be fast Rayleigh faded with the

entries of each vector (or matrix) , , , and
being independent and identically distributed (i.i.d.) circu-

larly-symmetric complex Gaussian random variables with zero
mean and variances , , , , and , respectively.
The optimal transmission strategies are derived under two sce-
narios: the scenario where full CSI (including the interrelay
channel matrix ) is available at the destination and the
more practical scenario where only the source-to-relay and the
relay-to-destination channels, i.e., , , , and , are
known at the destination. Note that in practice, the transmitter-
side CSI is usually obtained using feedback from the destina-
tion. When the wireless channel undergoes fast fading, it is very
difficult or sometimes impossible for the transmitters (i.e., the
source for the source-relay link, or the relay for the relay-desti-
nation link, etc.) to obtain accurate CSI due to the delay in the
CSI feedback. Thus for both scenarios considered in this paper
(destination knows or not), the source and all relays are
assumed to know only the distributions of the channels.

III. GAME-THEORETIC FORMULATION

In this section, the interaction between cooperative and mali-
cious relays is modeled as a two-player zero-sum game, where
the goal of the two players are opposite of one another.
Specifically, let us consider a two-player game

(8)

where and are the action sets (or the strategy spaces) for
Players 1 and 2, and and are their corresponding utility
functions. Here, and are functions of the so-called action
profile , where and . The coopera-
tive relays and the source are together viewed as Player 1 and the
malicious relays are together viewed as Player 2. In this game,
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both players are aware of each others’ action sets and choose ac-
tions simultaneously from their respective sets. The destination
utilizes all CSI available to decode the source’s message. The
goal of Player 1 is to maximize the mutual information between
the signal transmitted by the source and that received at the des-
tination whereas that of Player 2 is opposite.1 Specifically, when
full CSI is available at the destination, the utility functions
and in (8) are given by

(9)

where . When only the
source-to-relay and the relay-to-destination channels are
known at the destination, the utility functions are given by

(10)

where . With the above choice of
utility functions, becomes a zero-sum game [12] in both
cases since .
Each element in the action set of Player 1, i.e., , is a pair

, where is a probability density function (PDF) of the
source signal with and is a diagonal matrix of
normalized amplifying gains with , for .
On the other hand, the action set of Player 2, i.e., themalicious

relays, is the union of two action subsets and , i.e.,
.

The subset consists of actions where the malicious re-
lays attack by emitting independent jamming signals in both
phases. Since the malicious relays do not listen to the source
in this case, the jamming signals emitted by the malicious re-
lays in both phases will be independent of the source signal .
When malicious relay allocates fraction of power to the
transmission in Phase 1 (and to Phase 2), the action taken
by Player 2 can be represented by a pair of PDFs
that satisfies the power constraints

(11)
The subset of actions that satisfies the above power con-

straints are denoted by , where .
The action subset is then defined as the union of over
all possible power allocations , i.e., .
Moreover, the subset consists of actions where the mali-

cious relays first listen to the source in Phase 1 and then emits
jamming signals only in Phase 2. In this case, the signal trans-
mitted by each malicious relay in Phase 2 may possibly de-
pend on its local received signal, i.e., for relay . Therefore,
each action in can be described by a PDF , where the

Markov relation holds for all
and

(12)

1The mutual information between the signal transmitted by the source and
that received at the destination is the maximum code rate the source can transmit
to ensure successful decoding at the destination. This is a common measure of
performance in communication systems and, thus, is adopted as the utility of
Player 1 (i.e., the source and the cooperative relays). Player 2 (i.e., the mali-
cious relays) is the adversary that aims to disrupt the communication between
the source and the destination and, thus, its utility is opposite, namely, minus
the utility of Player 1. Our game formulation falls into the class of mutual in-
formation games as studied in [7]–[10], [27] and references within.

for . Please note that, in [7], the malicious
relays are assumed to always listen in Phase 1 and, thus, only
the action subset was considered for Player 2.
Definition 1 ([12]): The action profile is a

Nash Equilibrium (NE) if , for any
, and , for any .

An action profile is a pair of transmission
strategies employed by the two players. Definition 1 implies
that, by employing strategies corresponding to the NE , no
player can increase his/her utility by unilaterally changing
his/her own strategy. In fact, the optimality of the NE solution
is even stronger in the case of zero-sum games, as given in [12]
and stated below.
Theorem 1 ([12]): An action profile is the NE

of a zero-sum game if and only if

The above theorem indicates that the NE of a zero-sum game
achieves the max–min solution for both players [12]. Hence,
the strategies obtained from the NE are optimal in the sense that
they are able to maximize the worst case utility of both players.
In general, the NE of a game may not be unique. However, since
all NEs achieve the max–min utility for both players, that is,
for any two NEs and , we have

(cf. [12, Proposition 22.2b]), all NEs
are equally optimal. In the following sections, the NEs (and,
thus, the optimal transmission strategies) are derived for cases
with and without interrelay CSI.
Remark 1: In this work, the players are assumed to know

only the utility functions and the action sets (i.e., the sets of pos-
sible actions). The specific actions taken by the players and the
channel state information (CSI) are both unknown. Specifically,
as in [7]–[10], the utility function is chosen as the mutual infor-
mation between the source and destination, which is related to
the achievable transmission rate between the source and the des-
tination, and is a common objective adopted in many communi-
cation systems. Also as in [7]–[10], our action sets are defined
as the set of all possible PDFs of transmit signals that satisfy
the individual power constraints. These action sets include all
possible transmission schemes (or codebooks) [27, p. 184, eq.
(7.1)] and, thus, no specific information must be obtained by
the players (other than their power constraints) in order to infer
knowledge of these action sets. If the power constraints are not
completely known, each player can assume larger action sets
for the other player by considering upper bounds on their power
constraints.

IV. OPTIMAL TRANSMISSION STRATEGIES FOR THE CASE WITH
FULL CSI AT THE DESTINATION

In this section, we derive the optimal transmission strategies
for the case where full CSI is available at the destination. Since
Player 2’s action set is the union of two action subsets
and , the optimal transmission strategy for malicious relays
is first derived within each action subset and then compared
among each other to determine the globally optimal strategy.
The following lemmas are first proved and are utilized to find
the NE in Theorem 2.
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Lemma 1: Let be an random
vector with independent zero-mean Gaussian entries and let

(13)

be an objective function with and being nonnegative con-
stants, and be a positive semidefinite Hermitian matrix.
(a) If the diagonal entries of are subject to the constraints

, for , then the objective function
is minimized by choosing to be the diagonal

matrix .
(b) If the diagonal entries are subject to the constraints

, for , the objective
function is further minimized by choosing

.
The proof of Lemma 1 is given in Appendix A. In the

following lemma, we first determine the optimal strategy for
Player 2 among the action subset (which includes strate-
gies where malicious relays attack in both phases with power
allocation ) when Player 1 employs the strategy with

and arbitrary choice of .
Lemma 2: Suppose that the instantaneous CSI

is available at the destination
and that Player 1 employs the strategy , where

and is an arbitrary amplifying matrix. The op-
timal strategy for Player 2 among the action subset is given
by , where with

and

with .

Proof: First, we prove the optimality of choosing both
and to be Gaussian. Recall from (10) that the utility func-
tion of Player 2 is .
By substituting (3) and (5) into (4), the received signal at the
destination can be written as

(14)
where . Recall that
and , where

. Given
the strategy of Player 1, only the second term
in the utility of Player 2 is affected by the choice of Player
2’s action. To maximize this term, notice that

, where
is the variance of given . The two inequalities

hold with equality by choosing and by
having both and be Gaussian when conditioned on
[27], [28]. From (14), we can see that the latter condition

is satisfied by choosing both and to be independent
zero-mean Gaussian random vector with covariance matrices
given by and , respectively.
In this case, the utility of Player 2 is given by

where . Let us first compute the op-
timal covariance matrix of the signal in Phase 2, i.e., , for
any given covariance matrix in Phase 1, i.e., . To do this,
we first examine the conditional expectation over given
, , and , i.e.,

(15)

where and

. Notice that and
can be viewed as constants when given , ,
and . Therefore, by Lemma 1(b), the optimal choice
of under the power constraints in (11) is given by

. Since
does not depend on , , and , it is also the

solution that maximizes the overall utility function of Player 2.
Now, given , we can find the optimal value

of . First, suppose that the diagonal entries of are
fixed and are given by , for
. Notice that, when conditioned on , , and , the

expectation over can be written as

(16)

where and

. Notice that and can be viewed
as constants when given , , , , and the diag-
onal elements of (since depends only on the trace
of . Moreover, in this case, each entry in the vector

is equal to a linear combination of the random

variables in the corresponding row of . Therefore, the
entries will again be independent zero-mean Gaussian random
variables. By Lemma 1(a), the optimal choice of will
then be diagonal with the -th diagonal entry being , i.e.,

. By substituting this choice of
into the utility function of Player 2, we have

(17)

where , , ,

, , and

, for . Notice that,
given and , the terms and , for ,
are independent zero-mean complex Gaussian random
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variables with variances

and
for

. Therefore, the conditional expectation
inside (17) can be computed as in (18), shown at the bottom of
the page, where and , for , are i.i.d.
random variables with distribution . Note that, for any
realization of and , the conditional expectation
decreases monotonically with each . Hence, under the power
constraints , for , the optimal
choice of that minimizes the conditional expectation
above (and, thus, maximizes the utility function in (17)) is
given by .

The above lemma shows that, given and
arbitrary amplifying matrix , the optimal strategy for Player
2 among the set is to emit Gaussian jamming signals in
both phases. This is true for any choice of power allocation .
In the following, we further show that the strategy for Player
1 in the form given above is indeed optimal when Player 2 em-
ploys the strategy given in Lemma 2. Note that, in the following
Lemma, the phase of the cooperative relay’s transmission
signal can be chosen arbitrarily. The intuition behind this result
is that since the cooperative relays do not have knowledge of
the channel realizations, they cannot adjust the phases of their
signals to make them coherently received at the destination.
Lemma 3: Suppose that is known at the destination and

that Player 2 employs the strategy , where

with

and with

. The optimal strategy
for Player 1 is given by , where

and with , for
, chosen arbitrarily.

Proof: First, we prove the optimality of choosing
when Player 2 employs the strategy

. Recall from (10) that the utility function

of Player 1 is , where is
given as in (14).

Here,

is indepen-
dent of the distribution of since and are independent
of . Therefore, the utility of Player 1 is maximized by
maximizing the term . The optimal choice in this case
is , where is the maximum source power,
since all the other terms in (14) are Gaussian when given
and since is monotonically increasing with respect to
the variance of .
Given and , the

utility of Player 1 can be written as

(19)

where , ,

and . Following sim-

ilar arguments as in the proof of Lemma 2, the conditional ex-
pectation inside (19) can be written as the second equation at the
bottom of the page, where and , for ,
are i.i.d. random variables with distribution and

. Notice that, for any re-

alization of and , the conditional expectation in-

(18)
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creases monotonically with , for all . Hence,
under the power constraints , for , the
amplifying matrix given in the lemma statement maximizes
the conditional mean inside (19). The choice of their phases,
i.e., , are arbitrary. Since does not depend on
and , it also maximizes the utility of Player 1 (which fur-
ther takes the average over and ).
Now, we focus on the action subset , where the malicious

relays listen to the source in Phase 1 and emits jamming signals
only in Phase 2. In the following, we determine the optimal
transmission strategy for Player 2 among when Player 1
employs the strategy , where and
is chosen arbitrarily.
Lemma 4: Suppose that the instantaneous CSI is avail-

able at the destination and that Player 1 employs the strategy
, where and is an arbitrary ampli-

fying matrix. The optimal strategy for Player 2 among the action
subset is given by with covariance
matrix .

Proof: From (4),(5) and(1), we can see that the received
signal at the destination in Phase 2 can be written as

(20)

where with and
. Since the malicious re-

lays do not emit signals in Phase 1, the received signal power at
cooperative relay is equal to .
Let us first assume that the malicious relays have perfect

knowledge of the source symbol . In this case, the action subset
for Player 2 now contains all PDFs such that the Markov

relation holds for all

and , for all . Notice that
this set, which we denote by , includes the original action
set as a subset. In the following, we first find the optimal
strategy for Player 2 among actions in and then conclude
our proof by showing this strategy also belongs to the original
action subset .
Following arguments similar to that in the proof of Lemma

3, it can be shown that the utility function of Player 2, i.e.,
, is maximized by choosing to be Gaussian.

In this case, the utility of Player 2 is given by

(21)

where is the variance of with ,

i.e., . Notice that, to maximize
the utility in (21), it is sufficient to choose

(22)

where and is a
Gaussian jamming vector independent of . In fact, for

any choice of Gaussian attack , there exists of the form
in (22) that achieves the same utility. In particular, by taking

and , we have

and . Since and

depend only on the values of and , the

linear attack is able to achieve the same utility as .
With given as in (22), the received signal in(20) becomes

(23)

In this case, the utility of Player 2 is

where .
Let us first consider the conditional expectation inside the

utility above. Suppose that is given and let

. In this case, we have

where follows by the fact that

and follows from [8,
Lemma 1] and [29], which states that

(24)

for that is a complex Gaussian random variable and
and that are real constants. Given , , and ,

the latter result is applied by setting

and , and by identifying

that is a complex Gaussian random variable. Fur-
thermore, follows from the fact that

Note that the lower bound is achieved by setting .
In this case, and . Finally, by
Lemma 1(b), the conditional expectation is further minimized
under the power constraints in (12) by taking equal to

. Since the optimal choices of
and do not depend on , , and , they also

are the solutions that maximize the overall utility function.
Notice that, with , the signals

and are independent and, thus, also satisfy the Markov
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relation for all . Hence, this
choice of action also belongs to the original action subset
and, thus, is the solution to the original problem.
Note that the optimal jamming signal given in Lemma 4 does

not depend on the signal received in Phase 1. This indicates that
no advantage can be gained by having malicious relays listen to
the source in Phase 1. Similar results were observed in [7] and
[8] under different system setups. Indeed, without knowledge of
other relays’ channels, it is difficult for the malicious relays to
coordinate a destructive attack based on their received signals.
The strategy given in Lemma 4 is a special case of that given
in Lemma 3 with , and, therefore, can also be viewed
as a strategy in the action subset (or, more specifically, in
the subset ). Therefore, the best strategy chosen from
is the best overall strategy. The NE of the proposed game can
then be found as given in the following theorem.
Theorem 2: When the instantaneous CSI is available

at the destination, a Nash equilibrium of the zero-sum game
is given by for Player 1 and for

Player 2, where is the optimal power allocation between
Phases 1 and 2 at the malicious relays, ,

with

chosen arbitrarily, with

, and

with .

The optimal power allocation is in (25) at the bottom of the
page, where is
with .

Proof: Suppose that Player 1 employs the strategy
. To show that is optimal for Player 2

in this case, we need to show that no other strategies in ,
in for some other , and in can achieve a higher
utility for Player 2. Specifically, by Lemma 2, we know that the
strategy achieves the maximum utility among all

strategies in . That is, Player 2 cannot gain by opting for
another strategy in . If Player 2 searches among subset

, for some , then the optimal strategy is given
by . In this case, the utility of Player 2 is equal

to in (25), which is smaller than that achieved by .
Moreover, since the optimal strategy for Player 2 in also
belongs to , a strategy in will not be able to achieve
a higher utility either. Hence, Player 2 cannot gain by altering
its strategy from .

On the other hand, given that Player 2 employs the strategy
, then we know by Lemma 3 that the optimal

strategy for Player 1 is given by . Therefore, Player 1
also will not be able to gain by unilaterally altering its strategy.
Hence, for Player 1 and for Player 2

together form a Nash equilibrium for the zero-sum game .

This theorem indicates that the optimal strategy for Player 1
is to employ Gaussian signalling at the source and to have the
cooperative relays amplify-and-forward with maximum power;
and the optimal strategy for Player 2 is to emit Gaussian jam-
ming signals in both phases.

V. OPTIMAL TRANSMISSION STRATEGIES FOR THE CASE
WITHOUT INTERRELAY CSI AT THE DESTINATION

In this section, we consider the more practical case where the
interrelay CSI is not known at the destination. Note that
knowledge of at the destination matters because it affects
the utility that can be achieved (cf. equation(9) and (10)). In par-
ticular, knowledge of affects the distribution of the equiv-

alent noise term in (14) (depending on whether
the distribution is conditioned on or not) when the destina-
tion decodes the source message and, thus, affects the mutual in-
formation. The optimal transmission strategies are first derived
within each of the action subsets and and then com-
pared to obtain the overall best strategy. The following lemmas
are first proved and are then used to find the NE in Theorem 3.
Lemma 5: Suppose that the instantaneous CSI

is available at the destination
and that Player 1 employs the strategy , where

and is an arbitrary amplifying ma-
trix. The optimal strategy for Player 2 among the ac-
tion subset is given by , where is

the density of a constant random vector
with being an arbitrary unitary matrix and

, and

with .

That is, the malicious relays transmit constant jamming signals
in Phase 1 and Gaussian jamming signals in Phase 2.

Proof: First, we prove the optimality of choosing to
be a constant random vector and to be Gaussian distributed.
Recall that the received signal is

(25)
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where , and the utility function of Player 2 is
. Following the argu-

ments given in Lemma 2, the term (and, thus, the
utility of Player 2) is maximized by allowing to be Gaussian
when conditioned on . This is achieved by choosing
to be a constant vector and to be a Gaussian vector with
distribution , which is independent of . No-

tice that, in this case, is Gaussian with distribution
.

With the choice of distributions for and , the utility
of Player 2 becomes

where and . For any

given , we can see from Lemma 1(b) that the conditional ex-
pectation inside the utility expression above is minimized under
the power constraints in (11) by choosing

(26)

Since does not depend on the realization of and , it

is also the solution that maximizes the utility function of Player
2.
Moreover, given , we can write the utility func-

tion as shown in (27) at the bottom of the page,

where , . Notice

that, given , the term is equivalently a
zero-mean complex Gaussian random variable with variance

Therefore, the conditional expectation inside (27) can be
computed as in (28), shown at the bottom of the page,

with . From the above, we can see that
the conditional expectation is minimized (and, thus, the
utility is maximized) by choosing such that is
maximized for each . Under the power constraints given
in (11), the solution is given by , where

and is an arbitrary
unitary matrix.
The above lemma shows that, given and ar-

bitrary , the optimal strategy for Player 2 among the set
is to emit a constant jamming signal in Phase 1 and a Gaussian
jamming signal in Phase 2. This differs from the previous case
where Gaussian jamming signals are used in both phases. In the
following lemma, we show that the choice of and in the
premise of Lemma 5 is indeed optimal when Gaussian jamming
signals are employed by the malicious relays. The proof is sim-
ilar to that of Lemma 6 and, therefore, is omitted.
Lemma 6: Suppose that the instantaneous CSI is

available at the destination and that Player 2 employs the
strategy , where is the density of a constant

random vector with being an arbitrary uni-
tary matrix and ,

and with

. The optimal strategy
for Player 1 is given by , where
and with , for

, chosen arbitrarily.
Next, we also need to determine the optimal transmission

strategy among the action subset . Notice that, when the ma-
licious relays listen in Phase 1, the interrelay CSI has no
affect on the utility of both players. Therefore, Lemma 4 holds
regardless of whether is available at the destination. This
implies that the optimal strategy for Player 2 among the set ,
as described Lemma 4, is a special case of that in Lemma 5 with

, for . Hence, the best strategy chosen
among the set should be the best strategy overall. The NE
of the case with full CSI can then be established as follows.
Theorem 3: When the instantaneous CSI is available

at the destination, a Nash equilibrium of the zero-sum game

(27)

(28)
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is given by for Player 1 and for

Player 2, where is the optimal power allocation between
Phases 1 and 2 at the malicious relays, ,

with

chosen arbitrarily, is the density of a constant random

vector with being an arbitrary unitary
matrix and ,

and with

. The optimal power al-
location is given by (29), shown at the bottom of the page,
where with

.
Following arguments given in the proof of Theorem 2, the

above theorem can be proved similarly from Lemmas 5 and 6,
which state that the strategies described are optimal for each
player when the other player is fixed. That is, no player can gain
by unilaterally altering its own strategy and, thus, is the NE of
the system. Interestingly, we can see, from the NEs stated in
Theorems 2 and 3, that the strategy adopted by each cooperative
relay depends only on its own power constraint. Therefore, the
result is not affected if knowledge of the local channel statistics
and power constraints are kept private at each relay.

VI. COMPUTER SIMULATIONS

In this section, we provide computer simulations to verify our
theoretical claims. In Figs. 2–5, we set the power constraints of
all terminals to be , i.e., , and de-
fine the signal-to-noise (SNR) as . The power constraints
of the remaining figures are specified separately.
The channel vectors (or matrices) and
are assumed to have entries that are i.i.d. Gaussian with

unit variance (unless mentioned otherwise) and all noise vari-
ances are set to unity. Each simulation result is obtained by av-
eraging over 100000 channel realizations.
In Fig. 2, the utility of Player 1 (i.e., ) achieved

under the proposed NE strategy is shown for the case with “Full
CSI” and the case with “Unknown ” at the destination (i.e.,
the utility obtained with the strategies given in Theorems 2 and
3, respectively). The results are compared with the case where
Player 2 can only select from the action subset (i.e., the
malicious relays are required to listen in Phase 1). The latter
scheme can be viewed as an extension of the results in [7] to the
multirelay scenario, with additional optimization of the source
distribution. We set the number of cooperative relays as
and the number of malicious relays as . The optimal
power allocation at the malicious relays is obtained by line
search. We can see that, by allowing Player 2 to select among
the action set (instead of just ), Player 2 is able to more

Fig. 2. With , , and equal power constraint at all
terminals, the utility of Player 1, i.e., , versus SNR is shown for the
case with Full CSI, the case with Unknown , and the case where Player 2
can select only from the action subset .

Fig. 3. With , , and equal power constraints
at all terminals, the utility of Player 1 versus different values of is shown
for the case with Full CSI, the case with Unknown , and the case where
Player 2 can select only from the action subset .

successfully decrease the utility of Player 1. Here, we see that
the case with Full CSI and the case with Unknown achieve
similar utilities. However, this is not always the case as we show
in later examples. In Fig. 3, the utility of Player 1 with respect
to the interrelay channel variance , i.e., the variance of each
entry of , is shown for the different schemes mentioned
above. We can see that the impact of malicious behaviors on the
utility of Player 1 increases as the interrelay channel variance

increases.
In Fig. 4, the utility of Player 1 with respect to SNR is com-

pared for cases with and , respectively. We
can see that, for the case with , Player 1 achieves a
higher utility when Full CSI is available at the destination, but

(29)
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Fig. 4. For and , the utility of Player 1 versus SNR is shown for
the case with Full CSI and the case with Unknown . Here, the number of
malicious relays is set as and equal power constraints are assumed
at all terminals.

Fig. 5. For , , and equal power constraints at all
terminals, the utility of Player 1 versus the number of cooperative relays, i.e.,
, is shown for the case with Full CSI, the case with Unknown , and the

case with no malicious relays.

vice versa for the case with . This is because Player 2
is allowed to adapt its strategy according to the available CSI at
the destination. In particular, Player 2 can utilize destination’s
knowledge of to work against Player 1 and more effec-
tively disrupt the reception at the destination. This phenomenon
is actually more pronounced as increases since more replicas
of the jamming signals are forwarded to the destination in this
case. This may seem counter-intuitive, but is actually reason-
able since the destination does not adapt its decoding strategy
in favor of any player. If the destination is indeed allowed to
adapt its decoding strategy (e.g., in favor of Player 1), it can
sometimes gain by decoding without the additional CSI ,
even if it is available. Indeed, parallel to our results, the results
in [11] show that lack of CSI feedback from the destination to
the transmitters may not always be bad when a jammer exists in
the system.
In Fig. 5, the utility of Player 1 versus the number of coopera-

tive relays is shown for the case with Full CSI, the case with
Unknown , and the case with no malicious relays. In the
first two cases, the number of malicious relays, , is fixed
as 2 whereas the number of cooperative relays, , is varied
from 1 to 15. Notice that it is indeed the case in most practical
scenarios that the number ofmalicious relays, , is smaller

Fig. 6. For , and for , the utility of Player 1 with
respect to the cooperative and malicious relay power ratio , where is
the power constraint at each cooperative relay and is the power constraint
at each malicious relay as well as the source.

than the number of cooperative relays, . Notice that the ad-
vantages of increasing saturates rapidly since, for large ,
the jamming signals emitted by the malicious relays become the
dominate source of noise and, thus, the effective receive SNR
no longer increases with .
In Fig. 6, the utility of Player 1 is shown versus increasing

power constraints at the cooperative relays. Suppose that the
power constraints of the cooperative relays are given uniformly
by and that of the source and the malicious relays are given
by . We can see, for the case with and 4 and with

, that the utility of Player 1 increases as in-
creases, but the advantage saturates rapidly since the power of
the jamming signal is amplified proportionally as increases
and, thus, becomes the dominant source of noise.
In Figs. 7 and 8, the utility of Player 1 versus SNR is shown

for heterogeneous power constraints at the relays. This is shown
for the case with Full CSI in Fig. 7 and for the case with Un-
known in Fig. 8. Three cases are considered: (i)
and , (ii) and , and

(iii) and . We set
and . In case (i), the power of co-
operative relay is negligible compared to that of . In this
case, diversity is lost and, thus, Player 1 is not able to achieve
as high a utility as the case with equal power constraints. Simi-
larly, in case (iii), the power of malicious relay is negligible
compared to that of and, thus, Player 2 is not able to achieve
as high a utility as the case with equal power constraints (i.e.,
the utility of Player 1 is therefore higher).

VII. CONCLUSION

In this work, we aim to provide an improved understanding
of the interaction between cooperative and malicious relays in
an AF multirelay network compared with previous works. The
problem was formulated as a zero-sum game and the optimal
transmission strategies for the source, the cooperative relays,
and the malicious relays were found by identifying the NE
of the game. In the two-phase transmission protocol under
consideration, malicious relays can either listen in Phase 1 and
attack in Phase 2 or simply attack in both phases. When full
CSI is available at the destination, we showed that the optimal
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Fig. 7. For and the case with Full CSI at the destination, the
utility of Player 1 versus SNR, i.e., , is shown for different relay power
constraints. Three cases are considered: (i) and ;
(ii) and ; and (iii) and . In all
cases, we have .

Fig. 8. For and the case with unknown at the
destination, the utility of Player 1 versus SNR, i.e., , is shown for dif-
ferent relay power constraints. Three cases are considered: (i)
and ; (ii) and ; and (iii) and

. In all cases, we have .

strategy for malicious relays is to emit Gaussian jamming
signals in both phases. However, if the interrelay channel
is not known at the destination, the malicious relays should
instead attack with a constant jamming signal in Phase 1 and
a Gaussian jamming signal in Phase 2. In both cases, the
source should employ Gaussian signaling and all terminals
should transmit with full power. The theoretical claims were
verified through numerical simulations. Note that based on the
fundamental results obtained in our work, one can extend the
study of cooperative networks with malicious relays to more
complicated game formulation.

APPENDIX
PROOF OF LEMMA 1

(a) The following proof is given by mathematical induction.
(i) Let us first consider the case with , where in

(13) can be written as (30), shown at the bottom of the page. No-
tice that, since and are independent zero-mean Gaussian,
the expectation in (30) would not change by replacing with

. Therefore, with and , the expec-
tation in (30) can be written as

In this case, the expectation is minimized by choosing
. Hence, (13) is minimized by choosing

, for the case with .
(ii) Suppose that the statement holds for , where

. We need to show that it also holds for .
Specifically, for , the objective function can
be written as

(31)

where and
and is a matrix with

, for . Then, by the fact
that has the same distribution as , the expectation
in (31) becomes

(30)
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Here, the expectation is minimized by choosing
, for . In this case, (31) becomes

(32)

Since and is positive definite, it
follows from the inductive hypothesis that (32) is minimized
by choosing . This concludes the proof
of (a).
(b) From (a), we know that is minimized by choosing
to be a diagonal matrix. In this case, the objective function be-

comes . Hence, given that

, for , the objective can be further min-
imized by choosing , for all , since .
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