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Abstract—This work investigates the data detection prob-
lem in an Intelligent Reflecting Surface (IRS) aided downlink
communication between a multi-antenna access point (AP) and
multiple user equipments (UEs). We utilise a deep learning-
based approach, with a maximum likelihood detection (MLD)-
based loss function, thereby bypassing the resource-consuming
channel training and estimation requirement for detection. The
proposed detection framework first trains a base deep neural
network (DNN) offline with the simulated samples of the channel
coefficients and IRS phase shifts in the IRS-assisted communi-
cations scenario. To deal with the significant challenge of the
channel getting outdated, domain adaptation under the transfer
learning paradigm is leveraged, i.e., the initial layers of the
DNN are frozen, and the remaining layers are retrained on a
smaller number of the received signal samples online to account
for the channel mismatch. Our results show that the proposed
detector achieves BER results close to the lower bound and
outperforms conventional benchmark techniques, with relatively
lower complexity.

Index Terms—Intelligent Reflecting Surface, deep learning,
transfer learning, detection.

I. INTRODUCTION

Recent advances in Intelligent Reflecting Surfaces (IRS)
have drawn significant attention due to their ability to control
the propagation environment, achieve a power gain with low-
cost hardware, and ease of their practical deployment against
walls or ceilings [1], [2]. These surfaces consist of small,
passive reconfigurable elements that reflect the incident signal
towards the user equipments (UEs) with a controllable phase
shift. Since the UEs receives a reflected signal, estimating the
channels and IRS phase shift matrix for data detection at the
UE is a significant research problem.

In order to fully reap the benefits provided by the IRS, an
inherent practical implementation issue is that the proper data
detection critically depends on accurate channel state infor-
mation (CSI). Since the passive IRS elements lack baseband
processing capabilities, they are incapable of transmitting and
receiving pilot signals. Thus, the conventional approach of
pilot-aided channel estimation cannot be applied at the UE in
IRS-aided communication systems [3]–[6]. Assuming perfect
CSI availability, existing work in the literature has focused
on beamforming and IRS phase shift matrix optimization
using semi-definite relaxation (SDR) methods [7], [8]. In
these early works, the problem was formulated to minimise
the total transmit power by jointly optimizing the transmit
beamforming and IRS phase shifts, subject to the signal to-

interference-plus-noise ratio (SINR) and discrete phase-shift
constraints. However, these schemes require the knowledge
of perfect CSI for detection, resulting in massive overhead
for channel training and estimation [4]. Recently, some works
have addressed channel estimation in IRS-aided multi-user
systems [5], [6], [9]. However, the focus is on using the
estimated CSI to design the beamforming and IRS phase shift
matrix in order to maximize the system performance and data
detection at UEs is not addressed.

Recent advances in deep learning (DL) have made it pos-
sible to obtain solutions to the detection problem using data-
driven techniques [10]–[14]. This avoids the need for resource-
consuming channel training and estimation altogether, and is
an attractive solution for IRS-aided communications. In this
regard, the compressed sensing framework in [10] assumes
IRS has active elements, the twin convolutional neural net-
works based approach in [11] has computational complexity
which grows exponentially for large scale systems. Similarly,
the deep reinforcement learning (DRL) based approach in [12]
requires the complete communication framework as a training
ground. Therefore, its application for detection comes at the
cost of requiring a much higher computational complexity at
the training and deployment stage. Compared to DRL, DL
based models provide higher flexibility since they do not
involve the AP and IRS for detection [13]. However, DL
based techniques inherently fail to perform well in a mismatch
scenario, where the actual channels are different from the
channels used to train the model [14]. In this regard, domain
adaptation under the transfer learning paradigm [15], [16] has
tremendous potential to be applied to improve the detection
performance under a mismatch scenario.

The main contributions of this work are:
• We propose a solution to the data detection problem in

an IRS aided downlink communication between a multi-
antenna access point (AP) and multiple UEs using a
deep transfer learning framework. What distinguishes this
work from prior techniques in the literature is that we
use the transfer learning paradigm to quickly update the
deep neural network (DNN) using a smaller number of
the received signal samples. This significantly reduces
the time and computational complexity requirements to
retrain the DNN.

• Our results show that the proposed method achieves
average bit error rate (BER) results close to the lower



Fig. 1: Illustration of IRS-aided multi-user downlink system.

bound and outperforms conventional benchmark tech-
niques, such as weighted minimum mean square error
(WMMSE) and regularised zero-forcing (ZF), in terms
of the average BER.

Notations: The following notations are used in this paper.
Lower and upper case boldface letters are used for vectors and
matrices, respectively. The Hermitian transpose of a matrix
A is AH . The estimated value of a is denoted by â. The
Euclidian norm is denoted by ||·||. Cx×y denotes the space
of x × y complex-valued matrices. tr{·} denotes the trace
operation, diag(·) denotes the diagonal operation, whereas
E(·) denotes expectation operator. <(·) and =(·) denote the
real and imaginary parts of a complex number respectively.
The gradient differential operator is denoted by ∇.

II. SYSTEM MODEL

We consider a multi-input single-output (MISO) downlink
system, comprising of an AP, an IRS, and K UEs, as shown in
Fig. 1. We assume that the direct communication path between
AP and UEs is blocked, and the IRS is deployed to reflect the
AP’s signal towards the UEs. The AP is equipped with M
antenna elements, while all UEs have a single antenna. The
IRS is composed of N passive elements controlled using an
IRS controller.

We consider the quasi-static frequency flat-fading channels
and use maximum-ratio transmission as the optimal beam-
forming strategy at the AP, as in [8]. The beamforming vector
at the kth UE is denoted as vk ∈ CM×1. Thus, the complex
modulated transmitted signal at the AP can be expressed as
x =

∑K
j=1 vjsj , where sj denotes the transmitted data for

user j. Furthermore, sj are independent random variables
drawn from standard symmetric M -ary discrete constellation
set. Additionally, the total transmit power allowed at the AP
follows the constraint E{tr{Vx(Vx)H}} ≤ Pmax, where
V , [v1,v2, · · · ,vk] ∈ CM×K , and Pmax is the maximum
transmit power at the AP [12].

The signal received at the kth UE from the AP-IRS-UE path

is expressed as [12],

yk = (hH2,kΦH1)vksk︸ ︷︷ ︸
desired signal

+
K∑
j 6=k

(hH2,kΦH1)vjsj︸ ︷︷ ︸
co-channel interference

+wk, (1)

where k = 1, 2, . . . ,K, is the UE index. H1 ∈ CN×M
denotes the channel matrix from the AP to IRS, hH2,k ∈
C1×N denotes the channel vector from the IRS to kth UE.
Φ = diag[x1e

jθ1 , . . . , xNe
jθN ] ∈ CN×N is a diagonal matrix

representing the adjustable phase angle induced by the IRS
where xi ∈ [0, 1] and θi ∈ [0, 2π) represent amplitude
reflection factor and the phase shift coefficient for the ith

IRS element. Finally, wk denotes the complex additive white
Gaussian noise (AWGN) with zero mean and variance σ2

k.
In this work, we employ random phase shifting design for

the IRS [17]. This design avoids the system overhead caused
by acquiring global CSI at the AP. It is also more practical than
coherent phase shifting design, where the phase shift of each
reflecting element is matched to the phases of its incoming and
outgoing fading channels, because of the finite resolution of
practical phase shifters [8], [17]–[19]. Our results in Section
IV will show that acceptable BER is achieved with random
discrete phase shifting design.1

In this work, we are interested in the individual detection
of data streams at the UEs, treating co-channel interference
as noise. For a phase shift matrix Φ, the optimal detection
technique for the IRS-aided communication system is the max-
imum likelihood detection (MLD) [20]. This is because MLD
uses an exhaustive search to evaluate all possible combinations
of transmitted signals. The evaluation of received symbols
at the kth UE is determined using the Euclidean minimum-
distance criterion as,

x̂ = arg min
xk

∣∣∣∣yk − (hH2,kΦH1)xk
∣∣∣∣2 , (2)

The UE needs to accurately estimate the channels H1, hH2,k,
and the phase shift matrix Φ, in order to decode the received
symbols correctly.

In this paper, rather than trying to solve the challenging
detection problem using classical pilot based signaling or
computationally exhaustive DRL, we propose a solution in
the context of DL with transfer learning. In our case, the
objective of the DNN is to map the relationship between the
received signal, which is impaired by the AP-IRS and IRS-
UE channels and the phase shift matrix of the IRS, and the
downlink transmitted signal, without any dependence on the
AP.

III. PROPOSED DEEP LEARNING DETECTOR

This section details the proposed DL detector for the IRS
assisted communication scenario in Section I. First, details
of the base training of the DNN are presented. Next, the
transfer learning paradigm is discussed. The proposed detector
is illustrated in Fig. 2.

1Note that phase shifting design to enhance the detection is possible but is
outside the scope of this work.



Fig. 2: The proposed deep transfer learning based detector.

A. Base Training of DNN

A DNN consists of ` fully-connected layers with multiple
neurons in every layer. The output of the network ΩB is
a cascade of the nonlinear transformation of input data IB ,
split into batch size B, through all the previous layers, which
is carried out iteratively. The output of the network can be
expressed as [21],

ΩB = fΘB
(IB) = f (`−1)(f (`−2)(· · · f (1)(IB))) (3)

where ΘB represents the weights and biases of the DNN and
for each layer,

fi = σ(wiIB + bi) (4)

where each layer has at its output an activation function σ(·),
and corresponding weights wi. An additional bias term bi
is also added to balance the sparse weight balancing during
training.

The purpose of DNN is to find the mapping function
between input and output, based on the training data, and
therefore, approximate the next samples based on the universal
approximation theorem [22]. The training process for the DNN
is carried out by a dataset comprising of input-output pairs
{y,Ω}. The input-output vectors contain complex numbers,
which are split into real and imaginary entries, such that
Ω = [<(x),=(x)]T . Based on this, we utilise sequence-to-
sequence regression for training and testing phases, where the
pairs are stacked into categorical arrays of dimension L×1 as
input to the DNN, where L is the number of transmit signal-
to-noise (SNR) ratios at which the signal is transmitted for
training. Based on (2), the loss function for the proposed DL
model is formulated as,

L(Θ) =
1

N

∑
n

‖[Ω̂(n)− Ω(n)‖22 + λ
∑
n

Θ2
n, (5)

where the DNN derives the mapping function obtained from
the received signal over n iterations. This process yields a
generic formulation for the estimation of the channels and
phase shift matrix in the hidden layers of DNN at the nth

iteration. Moreover, Θ is updated at every iteration using the
Adam optimiser as,

Θ`+1 = Θ` −
ηm`√
v` + ε

, (6)

where η is the learning rate with which the optimiser defines
the learning step size, and ε is a smoothing term that prevents
division by zero. Furthermore, m` and v` are estimates of the
mean and uncentered variance of the gradients, respectively,
defined as,

m` = δ1m`−1 + (1− δ1)∇L(Θ`)

v` = δ2v`−1 + (1− δ2)∇[L(Θ`)]
2,

(7)

where δ1 and δ2 are the decay rates of the moving average.
If the gradients in (7) are similar over many iterations, the
moving average helps the gradients to gain momentum in a
specific direction. Conversely, if the gradients are highly noisy
because of sparse training data, then the gradient’s moving
average is smaller, so the parameter updates are also smaller.
This helps in controlling the step size of the optimiser in
order to correctly identify the global optimum solution of the
training set, and prevents the network from looping in a local
solution.

B. Transfer Learning of DNN

Transfer learning, which focuses on transferring the knowl-
edge across domains, is a promising machine learning method-
ology to improve the learning accuracy with fewer labelled
data [23]. Domain adaptation refers to the process of improv-
ing the performance of the learning task by using a DNN
to discover and transfer latent knowledge from the source
domain to target domain. Note that in this paper, the source
domain data and the target domain data arise from the training
sets of offline learning and transfer learning, respectively [16],
[23]. In this regard, the transfer learning approach allows the
designed detector to adapt itself properly to different channel
environments for improving the system performance.

The DNN described in Section II-A is not well suited
on its own to converge towards the solution in (2). This



Algorithm 1 Deep Transfer Learning Based Detection
Initialise: ΘB , ΘT with random weights, the learning rate η,
the batch size B, validation error threshold set to nB for base
training and nT for transfer learning.

1: Base Training:
2: Input: Training patches IB
3: Produce IB with simulated CSI hH2,k, H1 and phase shift

matrix Φ, according to (1).
4: while (nB ≤ L) Split IB into B mini-batches and set

learning rate to η
5: Train the DNN by minimizing the loss function ac-

cording to (5).
6: Update L(Θ) according to (6) and (7).
7: end while
8: Output: Base DNN, ΩB
9:

10: Transfer Learning:
11: Input: Training patches IT , Base DNN
12: Obtain IT with mismatched CSI hH2,k, H1 and phase shift

matrix Φ
13: Freeze the weights ΘB for initial layers of the base DNN,

such that fTLΘ∗
B

(IB)

14: while (nT ≤ L) Split IT into B mini-batches and set
learning rate to η

15: Fine tune the DNN by minimizing the loss function
according to (5), such that fΘT

(IT ) = fFLΘT
(fTLΘ∗

B
(IB))

16: Update L(Θ) according to (6) and (7).
17: end while
18: Output: Transfer learned DNN, ΩT

is because during base training, the DNN is initialised with
random weights and trained over n iterations in offline mode,
until the network converges. However, as new channel samples
are received, the DNN gets outdated, and requires retraining,
which is a resource-consuming task.

In this work, we overcome this inherent limitation of
the DNN by utilising domain adaptation under the transfer
learning paradigm, as illustrated in Fig. 2. Domain adaptation
aims to improve a trained DNN for a learning task by quickly
transferring latent knowledge from new samples to the already
trained DNN. This essentially means that partial layers of
the pre-trained DNN are freezed2. Only the remaining layers
are fine-tuned to adjust the DNN to the current channel
coefficients for performance improvement. Based on this, the
DNN with transfer learning capability can be expressed as
[23],

ΩT = fΘT
(IT ) = fFLΘT

(fTLΘ∗
B

(IB)) (8)

where fΘT
(·) is the expression for the optimised DNN through

transfer learning with updated hyper-parameters ΘT . fFLΘT
(·)

represents the fine-tuning layers of the DNN, and fTLΘB
(·)

represents the layers in the frozen state, with its corresponding

2Layer freezing means that the layer weights of a pre-trained DNN keep
unchanged during training in a subsequent task, i.e., they remain frozen.

TABLE I: Description of hyper-parameters used for the pro-
posed deep transfer learning based detection framework.

Parameter Description Value
η Learning rate for training the DL network 0.01
nB Number of training iterations for base train-

ing
1000

nT Number of training iterations for transfer
learning

100

B Batch size for split training and testing sets 32
ε Smoothing term to prevent division by zero

for Adam
10−8

δ1, δ2 Decay rates of the moving average for Adam δ1 = 0.9,
δ2 = 0.99

IB The number of training samples used for
base training

L× 105

IT The number of training samples used for
retraining of base network in a mismatch
scenario

L× 103

Regula-
risation

Ridge regression, λ, and dropout layer prob-
ability, p, to address over-fitting

λ = 10−4,
p = 0.3

Validation
split

Splitting ratio of training set for validation
of DL network

20%

Validation
patience

Stoppage threshold for linear validation
curve during training

5

trained hyper-parameters Θ∗B . Since the objective is to fine-
tune the already trained network, the complete set of received
signal samples as a training set is not required, and only a
smaller set of samples is needed. The proposed deep transfer
learning based detection algorithm is detailed in Algorithm 1
and the description of the hyper-parameters is given in Table I.

Remark 1: The received signal reflected by the IRS expe-
riences fading through the channels, and an additional phase
shift is added to it by the IRS. Consequently, the received
signal at the UE contains important phase and channel coef-
ficients mapping information. DNNs can learn this mapping
based on the received signal itself, instead of relying explicitly
on pilot signaling for channel and phase angle estimation.
This essentially makes the DNN a decentralised solution, and
does not require any CSI for detection. Other (centralised)
conventional techniques, such as WMMSE [24] and ZF [25],
require full CSI for detection. Since the DNN’s loss function
in (6) is derived from the MLD, the DNN will not outperform
it. Rather, the DNN will at best perform in-par with the MLD
whilst having lower complexity and better performance than
conventional techniques.

IV. RESULTS

In this section, we provide results to demonstrate the per-
formance of the proposed detection framework. We consider a
three-dimensional (3D) coordinate system with the AP and the
IRS in the x-axis and x− z axis, respectively. For simplicity,
the AP is located at (0, 0, 0) m and the IRS is located at
(2, dr, 2) m, where dr > 0 is the distance between them. The
UEs are randomly placed within a distance du from the IRS,
such that 1 ≤ du ≤ 10 m.

Following [26], the Rayleigh fading channels are generated
as follows: H̃1 = LrH1 and h̃H2,k = Luh

H
2,k where H1 and

hH2,k have independent and identically CN (0, 1) elements. The
pathloss for the IRS-UE link is set as Lu =

√
β0(du/d0)−α



(a) BER under matched CSI. (b) BER under mismatched CSI. (c) BER under mismatched CSI - after transfer
learning.

Fig. 3: Average BER results under different CSI conditions.

where α = 3.75 is the pathloss exponent, d0 = 1 m is the
reference distance, du is the distance between IRS and UE,
and β0 = − 20.4 dB is the reference pathloss. Similarly, the
pathloss for the AP-IRS link is set as Lr =

Nd2ar

4πdr
where dar =

0.25 m is the area of one IRS element and dr = 45 m is the
distance between the AP and IRS.

In this work, our goal is not to optimize the performance of
a given IRS-aided communication system by designing a phase
shift matrix. Hence, we consider random reflection pattern for
the IRS, i.e., phase shifts are uniformly distributed within
[0, 2π) and reflection amplitudes are uniformly distributed
within [0, 1] [17]. Unless specified otherwise, the main system
parameters are as follows: M = 8, N = 64, K = 8, Pmax = 30
dB, σ2

k = −80 dBm. We use QPSK as the modulation scheme.
We average all results over 1000 independent realisations.

In the proposed deep transfer learning based framework, the
DNN is composed of four fully-connected dense layers, with
the number of neurons as 500, 250, 100 and 50, respectively.
Every layer is proceeded by a tangent-hyperbolic activation
function to facilitate the modulated data’s real and imaginary
parts. The final layer is facilitated with an additional dropout
layer whereas the training data is shuffled at every iteration to
facilitate the network with over-fitting resistance. During base
training, the network is trained on the training patches IB , and
then deployed for detection. During mismatch, the weights
of the first two layers of the network are frozen, and the
remaining layers are re-trained with the new channel samples
IT . The values of the hyper-parameters used for training, based
on test and trial method, are shown in Table I.

A. Performance metrics

We evaluate the performance of the base DNN with matched
CSI, the base DNN with mismatched CSI, and the base DNN
with mismatched CSI after domain adaptation using transfer
learning using the average BER of the UEs. In the context
of the DNN, the matched CSI means that the channels are
the same as during base training and the mismatched scenario
means that the channels are different from the ones during base
training. The average BER is calculated by taking the mean
of BER of all users. The MLD is used as the optimal lower

bound. Furthermore, we plot the performance of conventional
WMMSE [24] and regularised ZF [25] for benchmarking,
which require full CSI for detection.

B. Comparison with benchmarks showing the advantage of
transfer learning

Fig. 3(a) plots the average BER result under the cases of
matched CSI, Fig. 3(b) under mismatched CSI, and Fig. 3(c)
under mismatched CSI after transfer learning. Fig. 3(a) shows
that under matched CSI, the average BER achieved by the
base DNN is quite close to the optimal MLD and outperforms
both the benchmarks. This is in line with the performance, as
expected in Remark 1.

Since the wireless channels can vary over time, we consider
a harsh mismatched scenario. For this, we increase the IRS-
UE distance to 10 ≤ du ≤ 15 m and set α = 5. Fig. 3(b) show
that under a mismatched CSI scenario, the average BER of the
base DNN degrades significantly. This is because of the DNN’s
inability to correctly capture and classify the changed channel
conditions. To tackle this, we use the domain adaptation ability
of transfer learning as proposed in Algorithm 1. Thus, the final
two layers of the base DNN are retrained with the mismatch
training data, while the rest of the network layers/weights
are kept in a frozen state. This results in the DNN keeping
the initial learned weights intact while updating the latter
according to the new data. Figs. 3(c) show that after domain
adaptation, the average BER of the system is again close to
MLD and the proposed detection algorithm outperforms the
benchmarks in terms of average BER.

C. Convergence and complexity of proposed algorithm

Fig. 4 shows the training performance of the proposed deep
learning detector in terms of root mean square error (RMSE).
The RMSE is defined as the square root of the loss function
in (6). We can see that both the training and validation curves
converge in a small number of iterations (< 30). The proposed
detection scheme also has much lower complexity than other
techniques in the literature, as listed in Table II using the
Big-O notation. This further demonstrates the benefits of the
proposed solution.



Fig. 4: Training of the proposed detection framework.

V. CONCLUSION

This work proposed a solution to the detection problem in an
IRS-aided multi-user downlink MISO wireless communication
system. A deep transfer learning-based detection framework
was proposed to solve this problem, bypassing the need
for resource-consuming channel training and estimation at
the UEs. The results showed that the proposed detector can
efficiently improve the performance in a mismatched scenario,
where the actual channels are different from the channels used
to train the model.

VI. ACKNOWLEDGEMENT

This research was undertaken with the assistance of re-
sources and services from the National Computational Infras-
tructure (NCI), which is supported by the Australian Govern-
ment.

REFERENCES

[1] M. Di Renzo, M. Debbah, D.-T. Phan-Huy et al., “Smart radio environ-
ments empowered by reconfigurable AI meta-surfaces: An idea whose
time has come,” J Wireless Com Network., vol. 2019, no. 1, pp. 1–20,
May. 2019.

[2] S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C.
Liang, “Towards smart wireless communications via intelligent reflecting
surfaces: A contemporary survey,” IEEE Commun. Surveys Tuts., vol. 22,
no. 4, pp. 2283–2314, Jun. 2020.

[3] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent
reflecting surface aided wireless communications: A tutorial,” IEEE
Trans. Commun., Jan. 2021 (accepted, to appear).

[4] B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface assisted
multi-user OFDMA: Channel estimation and training design,” IEEE
Trans. Wireless Commun., vol. 19, no. 12, pp. 8315–8329, Sep. 2020.

[5] Q.-U.-A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah,
and M.-S. Alouini, “Intelligent reflecting surface assisted multi-user
MISO communication: Channel estimation and beamforming design,”
arXiv preprint arXiv:2005.01301, May. 2020.

[6] C. Jia, J. Cheng, H. Gao, and W. Xu, “High-resolution channel esti-
mation for intelligent reflecting surface-assisted MmWave communica-
tions,” in Proc. IEEE PIMRC., Oct. 2020, pp. 1–6.

[7] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[8] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflect-
ing surface with discrete phase shifts,” in Proc. IEEE ICASSP., May.
2019, pp. 7830–7833.

[9] C. Psomas, I. Chrysovergis, and I. Krikidis, “Random rotation-based
low-complexity schemes for intelligent reflecting surfaces,” in Proc.
IEEE PIMRC., Oct. 2020, pp. 1–6.

TABLE II: Complexity comparison with benchmarks.

Technique Complexity
MLD O(2K)

WMMSE in [24] O(K2M +K2M2 +K2M3 +K)
SDR in [7] O(N + 1)6

DRL in [12] O(2K + 2K2 + 2N + 2MK + 2NM + 2KN)
Proposed DL O(2K + 2NM + 2KN)

[10] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling large intelligent
surfaces with compressive sensing and deep learning,” arXiv preprint
arXiv:1904.10136, Apr. 2019.

[11] A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas,
“Deep channel learning for large intelligent surfaces aided mm-wave
massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 9,
pp. 1447–1451, May. 2020.

[12] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface as-
sisted multiuser MISO systems exploiting deep reinforcement learning,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, Jun. 2020.

[13] S. Khan, K. S. Khan, N. Haider, and S. Y. Shin, “Deep-learning-
aided detection for reconfigurable intelligent surfaces,” arXiv preprint
arXiv:1910.09136v2, Oct. 2019.

[14] S. Khan and S. Y. Shin, “Deep learning aided transmit power estimation
in mobile communication system,” IEEE Commun. Lett., vol. 23, no. 8,
pp. 1405–1408, Jun. 2019.

[15] Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer
learning and meta learning based fast downlink beamforming adapta-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1742–1755,
2021.

[16] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109,
no. 1, pp. 43–76, Jul. 2020.

[17] Z. Ding, R. Schober, and H. V. Poor, “On the impact of phase shifting
designs on IRS-NOMA,” IEEE Wireless Commun. Lett., vol. 9, no. 10,
pp. 1596–1600, Apr. 2020.

[18] C. You, B. Zheng, and R. Zhang, “Channel estimation and passive
beamforming for intelligent reflecting surface: Discrete phase shift and
progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2604–2620, Jul. 2020.

[19] Z. Ji, P. L. Yeoh, G. Chen, C. Pan, Y. Zhang, Z. He, H. Yin, and
Y. Li, “Random shifting intelligent reflecting surface for otp encrypted
data transmission,” IEEE Wireless Communications Letters, Feb. 2021
(accepted, to appear).

[20] E. Basar, “Reconfigurable intelligent surface-based index modulation: A
new beyond MIMO paradigm for 6G,” IEEE Trans. Commun., vol. 68,
no. 5, pp. 3187–3196, Feb. 2020.

[21] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Sep. 2017.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[23] C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y. C. Liang, “Deep transfer
learning for signal detection in ambient backscatter communications,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1624–1638, Nov.
2021.

[24] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59,
no. 9, pp. 4331–4340, Apr. 2011.

[25] Z. Wang and W. Chen, “Regularized zero-forcing for multiantenna
broadcast channels with user selection,” IEEE Wireless Commun. Lett.,
vol. 1, no. 2, pp. 129–132, Apr. 2012.
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