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Abstract—In this work, we propose a covert communication
scheme where the transmitter attempts to hide its transmission to
a full-duplex receiver, from a warden that is to detect this covert
transmission using a radiometer. Specifically, we first derive the
detection error rate at the warden, based on which the optimal
detection threshold for its radiometer is analytically determined
and its expected detection error rate over wireless fading channels
is achieved in a closed-form expression. Our analysis indicates
that the artificial noise deliberately produced by the receiver
with a random transmit power, although causes self-interference,
offers the capability of achieving a positive effective covert rate
for any transmit power (can be infinity) subject to any given
covertness requirement on the expected detection error rate. This
work is the first study on the use of the full-duplex receiver with
controlled artificial noise for achieving covert communications
and invites further investigation in this regard.

I. INTRODUCTION

The Internet of Things (IoT) offers promising solutions
to the materialization of concepts envisioning everything s-
mart [1], and with this vision coming to reality in the recent
years, the dependency of users on wireless devices is also
rapidly increasing. Due to the broadcast nature of wireless
channels, the security and privacy of wireless communications
has been an ever-increasing concern, which now is the biggest
barrier to the wide-spread adoption of IoT technologies [2].
Traditional security techniques offer protection against eaves-
dropping through encryption, guaranteeing the integrity of
messages over the air. However, it has been shown in the recent
years that even the most robust encryption techniques can be
defeated by a determined adversary. Physical-layer security,
on the other hand, exploits the dynamic characteristics of
the wireless medium to minimize the information obtained
by eavesdroppers [3]. However, it does not provide protection
against the detection of a transmission in the first place, which
can offer an even stronger level of security, as the transmission
of encrypted transmission can spark suspicion in the first place
and invite further probing by skeptical eavesdroppers.

On the contrary, apart from protecting the content of com-
munication, covert communication (also termed low proba-
bility of detection communication) aims to enable a wireless
transmission between two users while guaranteeing a negli-
gible detection probability of this transmission at a warden.
Such communications are also highly desirable by government
and military organizations, who are interested in keeping
their activities hidden over the air. Covert communication has

recently drawn significant research interests and is emerging
as a cutting-edge technique in the context of wireless com-
munication security [4, 5]. The fundamental limits of covert
communication have been studied under various channels,
such as additive white Gaussian noise (AWGN) channel [6],
binary symmetric channel (BSC) [7], and discrete memoryless
channel (DMC) [8]. A positive rate has been proved to be
achievable when the warden has uncertainty on his receiver
noise power [9, 10], the warden does not know when the covert
communication happens [11], or an uniformed jammer comes
in to help [12]. Most recently, [13] examined the impact of
noise uncertainty on covert communication by considering
two practical uncertainty models. In addition, the effect of
imperfect channel state information and finite blocklength on
covert communication has been investigated in [14] and [15],
respectively, while covert communication in one-way relay
networks over Rayleigh fading channels is examined in [16].

In this work, we explore the possibilities and condition-
s of covert communications in quasi-static wireless fading
channels, exploiting the presence of an artificial noise (AN)
generated by a full-duplex receiver [17, 18]. Using a full-
duplex receiver offers a two-fold benefit relative to generating
AN by a separate and independent jammer. Firstly, it enables
a higher degree of control over the transmitted AN signals
(e.g., its power), thus causing further deliberate confusion
at the warden. Secondly, the cutting-edge self-interference
cancellation techniques (e.g., [17, 18]) can be adopted to
provide higher data rates for covert communications with the
full-duplex receiver. Although the use of AN and jamming
signals generated by the full-duplex receiver has been widely
used in the literature (e.g., [19, 20]) for enhancing physical-
layer security, to the best of our knowledge, this use has never
been studied in the context of covert communications and thus
motivates our first study in this regard.

The contributions of this work are summarized as follows.
• We propose the use of a full-duplex receiver (Bob) to

achieve covert communications in wireless fading chan-
nels, where the desired level of covertness is achieved by
controlling the random transmit power of AN (from zero
to a maximum value) at Bob to deliberately confuse the
warden (Willie).

• For the radiometer detector, we derive the exact ex-
pression for the detection error rate for given channel
realizations from the transmitter (Alice) and Bob to



Fig. 1. Covert communications with a full-duplex receiver.

Willie, based on which the optimal detection threshold is
analytically determined. Surprisingly, our analysis shows
that for some of these channel realizations guaranteeing
a non-zero detection error rate requires the maximum
transmit power of AN at Bob to approach infinity.

• Due to the unknown wireless channels from Alice and
Bob to Willie, we analytically characterize the expected
detection error rate at Willie from the perspective of
Alice and derive the optimal maximum transmit power
of AN at Bob in order to maximize the effective covert
rate for a given covertness requirement on this expected
detection error rate. Interestingly, our analysis indicates
that a positive effective covert rate can always be achieved
for any Alice’s transmit power of covert signals subject to
any covertness requirement, while an upper bound on this
effective covert rate exists that is achieved by increasing
Alice’s transmit power to infinity.

II. SYSTEM MODEL

A. Communication Scenario and Assumptions

As shown in Fig. 1, we consider a wireless communica-
tion scenario, where Bob (i.e., the receiver) operates in full-
duplex mode and Alice (i.e., the transmitter) wants to transmit
covertly to Bob with the aid of AN generated by Bob, while
Willie (i.e., the warden) tries to detect this covert transmission.
The channels from Alice-to-Bob, Alice-to-Willie, and Bob-to-
Willie, are denoted by hab, haw, and hbw, respectively, while
the self-interference channel of Bob is denoted by hbb. We
assume that the wireless channels are subject to independent
quasi-static Rayleigh fading, where the channel coefficient
remains constant over one communication slot of n channel
uses and changes independently from slot to slot. The mean
value of |hj |2 over different slots is denoted by λj , where the
subscript j can be ab, bb, aw, bw. Alice and Willie are assumed
to have a single antenna, while besides the single receiving
antenna, Bob uses an additional antenna for transmission of
AN in order to deliberately confuse Willie. We assume that
Bob knows hab, while Willie knows haw and hbw. If Alice
transmits, the signal received at Bob is given by

yb[i] =
√
Pahabxa[i] +

√
φPbhbbvb[i] + nb[i], (1)

where xa is the signal transmitted by Alice satisfying
E[xa[i]x

†
a[i]] = 1, i = 1, 2, . . . , n is the index of each

channel use, vb is the AN signal transmitted by Bob satisfying
E[vb[i]v

†
b[i]] = 1, and nb[i] is the AWGN at Bob with σ2

b as
its variance, i.e., nb[i] ∼ CN (0, σ2

b ). Since the AN signal is
known to Bob, the residual noise can be rebuilt and eliminated
by self-interference cancellation. In this work, we assume that
the self-interference cannot be totally cancelled and we denote
the self-interference cancellation coefficient by φ. Thus, φ = 0
refers to the ideal case, while 0 < φ ≤ 1 corresponds to
different self-interference cancellation levels [21]. We denote
the transmit powers of Alice and Bob by Pa and Pb, respec-
tively, where Pa is fixed and publicly known by Willie and
Bob. In contrast, Pb changes from slot to slot and follows
a continuous uniform distribution over the interval [0, Pmax

b ]
with probability density function (pdf) given by

fPb
(x) =

{
1

Pmax
b

if 0 ≤ x ≤ Pmax
b ,

0, otherwise.
(2)

Since Willie possesses knowledge of haw and hbw in the slot
under consideration, for a constant transmit power at Bob, it
is straightforward for him to flag a covert transmission when
an additional power from Alice is received. The purpose of
introducing randomness in Bob’s transmit power is to create
uncertainty in Willie’s received power, such that Willie is
unsure whether an increase in the received power is due to Al-
ice’s transmission or simply a variation in the transmit power
of the Bob’s AN signal. Note that we consider the uniform
distribution as an initial example and other distributions will
be explored in future work.

B. Detection Metrics At Willie

We focus on one communication slot, where Willie has
to decide whether Alice transmitted to Bob, or not. Thus
Willie faces a binary hypothesis testing problem, where the
null hypothesis H0 states that Alice did not transmit, while
the alternative hypothesis H1 states that Alice did transmit to
Bob. Under these hypotheses, the signal received at Willie is
given by

yw[i]=

{ √
Pbhbwvb[i] + nw[i], H0,√
Pahawxa[i] +

√
Pbhbwvb[i] + nw[i], H1,

(3)

where nw[i] is the AWGN at Willie with a variance of σ2
w.

We note that the value of Pb in the given slot is unknown to
Willie, while the value of Pa is publicly known. The ultimate
goal for Willie is to detect whether yw comes from H0 or
H1. By application of Neyman-Pearson criterion, the optimal
decision rule for Willie to minimize his detection error using
the Likelihood Ratio test is given by [14]

Tw

D1

≷
D0

τ, (4)

where Tw = 1/n
∑n

i=1 |yw[i]|2 is the average power received
at Willie in the slot, τ is a predetermined threshold and D1

and D0 are the decisions in favor of H1 and H0 respectively.



In this work, we consider an infinite number of channel uses
i.e., n → ∞, thus

Tw =

{
Pb|hbw|2 + σ2

w, H0,

Pa|haw|2 + Pb|hbw|2 + σ2
w, H1.

(5)

Willie has to make a decision regarding Alice’s action at
the end of this communication slot. We define the false alarm
rate (or Type I error) as the probability that Willie makes
a decision in favour of H1 while H0 is true and denote it
by α = P(D1|H0). Similarly, the miss detection rate (or
Type II error) is defined as the probability of Willie making
a decision in favour of H0, while H1 is true, and it is
denoted by β = P(D0|H1). Under the assumption of equal
a priori probabilities of hypotheses H0 and H1, the detection
performance of Willie is measured by its detection error rate,
which is defined as

ξ , α+ β. (6)

III. DETECTION PERFORMANCE AT WILLIE

We first analyze Willie’s detection performance in terms
of false alarm and miss detection rates. Next, the optimal
detection threshold at Willie, minimizing the detection error
rate is considered.

A. False Alarm and Miss Detection Rates

Lemma 1. The false alarm and miss detection rates at Willie
are given by

α =


1, τ < σ2

w,

1− τ−σ2
w

Pmax
b |hbw|2 , σ2

w ≤ τ ≤ ρ1,

0, τ > ρ1,

(7)

β =


0, τ < ρ2,

τ−ρ2

Pmax
b |hbw|2 , ρ2 ≤ τ ≤ ρ3,

1, τ > ρ3,

(8)

where

ρ1 , Pmax
b |hbw|2 + σ2

w,

ρ2 , Pa|haw|2 + σ2
w,

ρ3 , Pmax
b |hbw|2 + Pa|haw|2 + σ2

w.

Proof: From (5), the false alarm rate is given by

α = P
[
Pb|hbw|2 + σ2

w > τ
]

=


1, τ < σ2

w,

P
[
Pb >

τ−σ2
w

|hbw|2

]
, σ2

w ≤ τ ≤ ρ1,

0, τ > ρ1.

(9)

Similarly, the miss detection rate is given by

β = P
[
Pa|haw|2 + Pb|hbw|2 + σ2

w < τ
]

=


0, τ < ρ2,

P
[
Pb <

τ−ρ2

|hbw|2

]
, ρ2 ≤ τ ≤ ρ3,

1, τ > ρ3.

(10)

where we have used the uniform pdf of Pb, given by fPb
(x)

in (2).

B. Optimal Detection Threshold

In this section, we derive the optimal value of the detection
threshold τ that minimizes the detection error rate ξ at Willie.

Theorem 1. Under the assumption of a radiometer at Willie,
the optimal threshold for his detector’s threshold is

τ∗=

{
[ρ1, ρ2], ρ1 < ρ2,

[ρ2, ρ1], ρ1 ≥ ρ2,
(11)

and the corresponding detection error rate is given by

ξ∗=


0, ρ1 < ρ2,

1− Pa|haw|2

Pmax
b |hbw|2

, ρ1 ≥ ρ2,
(12)

where ρ1 and ρ2 are as defined earlier in Lemma 1.

Proof: We first note that ρ3 ≥ max(ρ1, ρ2). When ρ1 <
ρ2, following (7) and (8), the detection error rate at Willie is

ξ =



1, τ ≤ σ2
w,

1− τ−σ2
w

Pmax
b |hbw|2 , σ2

w < τ ≤ ρ1,

0, ρ1 < τ ≤ ρ2,
τ−ρ2

Pmax
b |hbw|2 , ρ2 ≤ τ < ρ3,

1, τ ≥ ρ3.

(13)

Thus Willie can simply set τ ∈ [ρ1, ρ2] to ensure ξ = 0
when Pa|haw|2 > Pmax

b |hbw|2, and hence can detect the
covert transmission with probability one. When ρ1 ≥ ρ2, the
detection error rate at Willie is

ξ =



1, τ ≤ σ2
w,

1− τ−σ2
w

Pmax
b |hbw|2 , σ2

w < τ ≤ ρ2,

1− Pa|haw|2
Pmax

b |hbw|2 , ρ2 < τ ≤ ρ1,
τ−ρ2

Pmax
b |hbw|2 , ρ1 ≤ τ < ρ3,

1, τ ≥ ρ3.

(14)

We first note that ξ = 1 is the worst case scenario for Willie
and thus Willie does not set τ ≤ σ2

w or τ > ρ3. We also
note that ξ in (14) is a continuous decreasing function of
τ when σ2

w < τ ≤ ρ2. Thus, Willie will set ρ2 as the
threshold to minimize ξ in this case. For ρ1 ≤ τ < ρ3,
ξ is an increasing function of τ . Thus Willie will set ρ1
as the threshold to minimize ξ if ρ1 ≤ τ < ρ3. When
ρ2 ≤ τ < ρ1, the value of ξ is constant with the minimum
value 1− (Pa|haw|2)/(Pmax

b |hbw|2).

Remark 1. We note here that although the noise variance
at Willie i.e., σ2

w appears in the calculation of radiometer’s
optimal threshold, it does not affect the detection error rate,
ξ∗, at Willie. On the other hand, the transmit power limit at
Bob directly affects ξ∗, since as Pmax

b → ∞, ξ∗ → 1.

IV. PERFORMANCE OF COVERT COMMUNICATION

In this section, we first analyze the transmission outage
probability at Bob. Next, we consider optimizing the effective
covert rate achieved in the system subject to a certain covert
constraint.



A. Transmission Outage Probability from Alice to Bob

Following (1), the signal-to-interference-plus-noise ratio (S-
INR) at Bob is given by

γb =
Pa|hab|2

ϕPb|hbb|2 + σ2
b

. (15)

We assume here that the transmission rate from Alice to Bob
is predetermined, and is denoted by R. Due to the randomness
in |hab|2, |hbb|2, and Pb, the transmission outage probability
from Alice to Bob still incurs when C < R, where C is the
channel capacity from Alice to Bob.

Lemma 2. The transmission outage probability from Alice to
Bob is given by

δ = 1− λabe
−µσ2

b
λab

ln(µϕλbbP
max
b + λab)− ln(λab)

µϕλbbPmax
b

, (16)

where µ = (2Rab − 1)/Pa.

Proof: Based on the definition of the transmission outage
probability, we have

δ = P
{

Pa|hab|2

ϕPb|hbb|2 + σ2
b

< 2R − 1

}
=

∫ Pmax
b

0

∫ +∞

0

∫ µ(ϕPb|hbb|2+σ2
b )

0

fPb
(x)f|hbb|2(y)×

f|hab|2(z)dxdydz, (17)

and solving this integral gives the desired result.

B. Expected Detection Error Rate

Since Alice and Bob do not know the instantaneous re-
alization of haw or hbw, we consider the expected value
of ξ∗ over all realizations of haw and hbw as the measure
of covertness from Alice and Bob’s perspective. We denote
the expected detection error rate at Willie as ξ∗. Then, the
covertness requirement can be written as ξ∗ ≥ 1 − ϵ, where
ϵ ∈ [0, 1] specifies a predetermined covert constraint.

Theorem 2. Under the optimal threshold setting, the expected
detection error rate at Willie is given by

ξ∗(t) = −t2 + t ln t+ 1, (18)

where

t , (Paλaw)/(Paλaw + Pmax
b λbw). (19)

Proof: From (12), the expected ξ∗ is given by

ξ∗ = P[ρ1 < ρ2]× 0 + P[ρ1 ≥ ρ2]× E[ξ∗|ρ1 ≥ ρ2]

= P[ρ1 ≥ ρ2]× E[ξ∗|ρ1 ≥ ρ2]. (20)

We next derive P[ρ1 ≥ ρ2] and E[ξ∗|ρ1 ≥ ρ2], which are
given by

P[ρ1 ≥ ρ2] = P
{
|haw|2 ≤ Pmax

b |hbw|2

Pa

}
=

∫ +∞

0

∫ Pmax
b
Pa

y

0

f|hbw|2(x)f|haw|2(y)dxdy

=
Pmax
b λbw

Paλaw + Pmax
b λbw

, (21)

and

E[ξ∗|ρ1 ≥ ρ2] = 1− Pa

Pmax
b

E
[
|haw|2

|hbw|2
∣∣∣ρ1 ≥ ρ2

]

= 1− Pa

Pmax
b

∫ +∞

0

∫ Pmax
b
Pa

y

0

x

y
f|haw|2(x)f|hbw|2(y)dxdy

= 1− Paλaw

Pmax
b λbw

{
ln

(
1 +

Pmax
b λbw

Paλaw

)

− Pmax
b λbw

Paλaw + Pmax
b λbw

}
, (22)

and substituting them into (20) completes the proof.

C. Optimal AN Power and Covert Rate

The problem of maximizing the effective covert rate achiev-
able in the considered system subject to a certain covert
constraint is given by

(P1) max
Pmax

b

Rc

s. t. ξ∗ ≥ 1− ϵ,
(23)

where Rc , R(1− δ).

Theorem 3. For any given transmit power Pa at Alice, and
a covertness constraint, ϵ, the optimal choice for Pmax

b to
maximize the effective covert rate is given by

Pmax∗
b = Paλaw(1− tϵ)/(tϵλbw), (24)

and the maximum effective covert rate is given by

R
∗
c = Rλabe

− (2R−1)σ2
b

Paλab

ln
(
(2R − 1)ϕλbb

λaw(1−tϵ)
λbwλabtϵ

+ 1
)

(2R − 1)ϕλbb
λaw(1−tϵ)

λbwtϵ

,

(25)

where tϵ is the solution of ξ∗(t) = 1− ϵ for t, and ξ∗(t) is as
defined in (18).

Proof: We first determine the monotonicity of ξ∗(t) with
respect to t. The first derivative is given as

∂ξ∗(t)

∂t
= −2t+ ln t+ 1. (26)

To determine the monotonicity of κ(t) , −2t + ln t + 1, we
again consider the first derivative as

∂κ(t)

∂t
= −2 +

1

t
. (27)



Noting that t ∈ [0, 1), we conclude that κ(t) is a monotonically
increasing function with t for 0 ≤ t < 1/2, while it is a
monotonically decreasing function with t for 1/2 ≤ t < 1.
Since the maximum value of κ(t) is κ(1/2) = − ln 2 for
t ∈ [0, 1), we conclude that ∂ξ∗(t)/∂t < 0 for t ∈ [0, 1),
thus ξ∗(t) monotonically decreases with t. This leads to the
conclusion that ξ∗ monotonically increases with Pmax

b . Next,
we will prove that the effective covert rate, Rc, monotonically
decreases with Pmax

b . Setting µϕλbbP
max
b = x, from (16), we

have δ = 1− λab exp[−(µσ2
b )/λab]ν(x), where

ν(x) =
ln(x+ λab)− ln(λab)

x
. (28)

In order to determine the monotonicity of ν(x) with respect
to x, we consider the first derivative as

∂ν(x)

∂x
=

x
x+λab

− ln(x+ λab) + ln(λab)

x2
, (29)

where we note that whether ∂ν(x)/∂x > 0 or ∂ν(x)/∂x < 0
depends on g(x) , x/(x+ λab)− ln(x+ λab) + ln(λab). We
thus consider the first derivative of g(x) as

∂g(x)

∂x
= − x

(x+ λab)2
. (30)

Noting that x ≥ 0 and ∂g(x)/∂x ≤ 0, it can be seen that g(x)
monotonically decreases with x. Thus g(x) ≤ g(0) = 0 and
∂ν(x)/∂x ≤ 0, which means that ν(x) is a monotonically de-
creasing function with Pmax

b , which leads to δ monotonically
increasing with Pmax

b . As such, Rc monotonically decreases
with Pmax

b . Since ξ∗ monotonically increases with Pmax
b , we

can obtain the optimal value of Pmax
b using the constraint in

(23). Then, using (16) and (24), we can obtain the maximum
effective covert rate R

∗
c .

Corollary 1. When the transmit power at Alice increases, the
maximum effective covert rate approaches a fixed value given
by

lim
Pa→∞

R
∗
c = Rλab

ln
(
(2R − 1)ϕλbb

λaw(1−tϵ)
λbwλabtϵ

+ 1
)

(2R − 1)ϕλbb
λaw(1−tϵ)

λbwtϵ

, (31)

Proof: Following (25), exp{−(2R−1)σ2
b/(Paλab)} → 1

as Pa → ∞.
We note that having a higher transmit power at Alice ben-

efits Bob, but also increases Willie’s probability of detecting
the covert transmission. Thus to maintain the same level of
covertness, Bob has to increase the AN power as well. Here,
Corollary 1 implies that having higher transmit power at Alice
has diminishing returns as the increase in self-interference due
to AN’s power cancels out the benefit of higher transmit power
at Alice.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to study the
performance of covert communication. For simplicity, we set
λab = λbb = λaw = λbw = 1. As mentioned earlier,
the value of σ2

w does not affect the detection error rate at
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Fig. 2. Transmission outage probability δ vs. Pmax
b , where Pa = 0 dB and

ϕ = 0.01.
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Fig. 3. Expected detection error rate at Willie, ξ∗ vs. Pmax
b .

Willie, and hence the performance of the proposed covert
communication scheme. We first examine the transmission
outage probability at Bob and the detection performance at
Willie. Next, the impact of different system parameters on
the achievable effective covert rate subject to a specific covert
constraint is investigated.

In Fig. 2, we illustrate the transmission outage probability δ
versus Pmax

b with different values of σ2
b and R. In this figure,

we first observe that transmission outage probability δ is a
monotonically increasing function of Pmax

b . This is due to the
fact that the term ϕPb|hbb|2, representing the self-interference,
always presents a barrier for effective communication from
Alice to Bob. It is also observed that δ increases with Bob’s
receiver noise variance σ2

b and the predetermined rate R.
Fig. 3 shows ξ∗, the expected detection error rate at Willie,

versus Pmax
b for different values of Pa. In this figure, we
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Fig. 4. Maximum effective covert rate R
∗
c vs. Alice’s transmit power Pa,

where R = 1, σ2
b = 0 dB, and ϕ = 0.01.

first observe that the expected detection error rate, ξ∗, is
a monotonically increasing function of Pmax

b , as the power
used to transmit the AN hinders the detection process at
Willie to detect any covert transmission from Alice. It is also
validated by the observation that when Pmax

b is increased
sufficiently, ξ∗ → 1 and the covert transmission becomes
harder to detect. We also observe that ξ∗ is a monotonically
decreasing function of Pa, since a higher transmit power used
by Alice increases the probability of being detected by Willie.
This can also be noted from the observation that when Pmax

b

is sufficiently small, ξ∗ → 0, and Willie can easily detect
the covert transmission. These observations are also consistent
with our earlier comments in Remark 1.

Fig. 4 depicts the maximum achievable effective covert
rate R

∗
c versus Pa for different values of ϵ. We first observe

that R
∗
c is a monotonically increasing function of Pa and ϵ.

This observation is consistent with our understanding of the
presented system, since increasing Pa increases the received
SNR at Bob, while an increase in ϵ relaxes the covertness
constraint. We also observe that R

∗
c approaches a fixed value

when Pa is sufficiently large, which validates the correctness
of our Corollary 1.

VI. CONCLUSION

In this work, we analytically examined how a full-duplex
receiver can aid in receiving information covertly from a
transmitter by generating AN with a random transmit power.
By controlling the transmit power range of the AN, a positive
effective covert rate can always be achieved for any covertness
requirement on the expected detection error at the warden.
This work presented the first study on the possibilities and
conditions of achieving covert communications by exploiting
a full-duplex receiver with AN. It is expected that future work
will devise improved covert transmission schemes, leading to a
better tradeoff between covertness and achievable covert rates.
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