
Age of Information Analysis of Multi-user Mobile
Edge Computing Systems

Zhifeng Tang∗, Zhuo Sun†, Nan Yang∗, and Xiangyun Zhou∗
∗School of Engineering, Australian National University, Canberra, ACT 2600, Australia.

†School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China.
Email: zhifeng.tang@anu.edu.au, zsun@nwpu.edu.cn, nan.yang@anu.edu.au, xiangyun.zhou@anu.edu.au

Abstract—In this paper, we analyze the age of information
(AoI) performance of a multi-user mobile edge computing (MEC)
system where a base station (BS) generates and transmits
computation-intensive packets to user equipments (UEs). In this
MEC system, we consider two computing schemes, namely, the
local computing scheme and the edge computing scheme. In the
local computing scheme, each packet is transmitted to the UE
and then computed by the local server at the UE. In the edge
computing scheme, each packet is computed by the edge server at
the BS and then transmitted to the UE. Considering exponentially
distributed transmission time and computation time and adopting
the first come first serve queuing policy, we derive the closed-
form expressions for the average AoI of these two computing
schemes. Simulation results corroborate our analysis and examine
the impact of system parameters on the average AoI.

Index Terms—Age of information, mobile edge computing, first
come first serve.

I. INTRODUCTION

In recent years, real-time applications, such as intelligent
transport systems and factory automation, have attracted a
wide range of interests. In these applications, timely status
updates are significantly critical for accurate monitoring and
control [1, 2]. In order to fully characterize the freshness of
delivered status information, the concept of age of informa-
tion (AoI) was introduced as a new performance metric [3].
Specifically, AoI is defined as the elapsed time since the last
successfully received status was generated by the transmitter,
which is a time metric that captures both the latency and the
freshness of a transmitted status. In real-time applications, data
processing usually consumes a significant amount of time,
due to the limited computing capacity of the local server.
This seriously degrades the AoI performance. To tackle this
problem, mobile edge computing (MEC) was introduced by
the European Telecommunications Standard Institute (ETSI)
[4]. In MEC systems, the server deployed at the network edge,
called the edge server, is exploited to offload data processing
from the local server [5, 6]. Owing to the powerful computing
capacity of the edge server, the MEC system can significantly
reduce the computation time [7–9].

The AoI has been widely evaluated as an effective perfor-
mance metric of MEC system, starting from the point-to-point
system. In [10], a status sampling policy was designed to
minimize the average AoI of the MEC system. By considering
power allocation between transmission and computation, [11]
proposed a scheduling policy to minimize the average AoI of

the MEC system. Based on the AoI, [12] introduced the age of
task (AoT) and designed an offloading policy to improve the
AoT performance of the MEC system. In addition, [13] inves-
tigated the effect of different computing schemes on the AoI
performance and found that partially offloading tasks to the
edge server has the better AoI performance than other schemes
in the MEC system. Building upon these efforts on the MEC
system with a single user, increasing research efforts have
been devoted to investigating the AoI performance of multi-
user MEC systems. [14] designed the edge resource allocation
to minimize the average AoI of a multi-user MEC system.
[15] proposed a deep reinforcement learning based scheduling
policy to minimize the average AoI of an unmanned aerial
vehicles (UAV) assisted multi-user MEC system. Although the
aforementioned studies have designed the scheduling policy to
minimize the average AoI and analyzed the AoI performance
of different MEC systems, the impact of different computing
schemes on the AoI performance of a multi-user MEC system
has not been investigated.

In this paper, we study the AoI performance of a multi-user
MEC system. In this system, the base station (BS) transmits
computation-intensive packets to multiple user equipments
(UEs). The packet can be computed by either the local server
at each UE, referred to as the local computing scheme, or
the edge server at the BS, referred to as the edge computing
scheme. We derive the closed-form expressions for the average
AoI in these two computing schemes. Using simulations, we
demonstrate the accuracy of our analysis results. We then
characterize the impacts of various design parameters on the
average AoI in two computing schemes.

II. SYSTEM MODEL AND AVERAGE AOI

In this paper, we consider a downlink system as depicted
in Fig. 1, where the BS transmits time-sensitive packets to N
UEs. We denote the nth UE by Un, where n = 1, 2, · · · , N .
In this system, the BS generates the packet of Un according
to a Poisson process1 with rate λn. To ensure the freshness
of packets, we consider an MEC system, where each packet
can be computed by either the local server at UE or the
edge server at the BS. Depending on which server computes
the packets, we introduce two computing schemes, i.e., the

1We assume that the packet generation processes among UEs are indepen-
dent but not identical.

(a) Local computing scheme

(b) Edge computing scheme

Fig. 1. Illustration of our considered MEC system where the BS transmits
time-sensitive packets to N UEs.

local computing scheme and the edge computing scheme. In
the local computing scheme, the BS directly transmits the
generated packet to the UE for the local computing as shown in
Fig. 1(a). In the edge computing scheme, the edge server at the
BS computes the packet and then transmits the computational
result of the packet to the UE as depicted in Fig. 1(b). In
the MEC system, we assume that the packets in the queues
are served with the first come first serve (FCFS) queuing
policy. We then assume that both the computation time and the
transmission time of a packet follow exponential distributions
[16], where µn is the computation rate of the local server at
Un, µB is the computation rate of the edge server at the BS,
and µD is the the transmission rate of the BS.

Our target is to analyze the average AoI of the considered
MEC system. To meet this target, without loss of generality,
we arbitrarily select one UE, Un, and analyze its average AoI,
∆n, which gives the average AoI of the system. Fig. 2 plots a
sample variation of AoI for Un, ∆n(t), as a function of t. We
assume that the observation begins at t = 0, where the AoI is
∆n(0). From Fig. 2, we express the AoI of Un at time t as

∆n(t) = t− un(t), (1)

where un(t) is the generation time of the last received com-
puted packet of Un at time t. Then the time-average AoI of
Un over the observation time interval (0, τ) can be calculated
as

∆n =
1

τ

∫ τ

0

∆n(t)dt. (2)

We denote Pn,j as the jth packet generated after time t = 0
of Un, j = 1, 2, · · · . We then denote Yj as the time interval
between the generation time of Pn,j−1 and the generation
time of Pn,j and denote Tj as the time interval between the
generation time of Pn,j and the time that Un obtains the
computational result of Pn,j . Therefore, we have

Yj = tj − tj−1 (3)

and

Tj = t′j − tj , (4)

Fig. 2. The AoI variation of the selected UE, Un.

where tj is the generation time of Pn,j and t′j is the time
that Un obtains the computational result of Pn,j . We note that
Y1 = t1 is obtained by setting t0 = 0. Considering that Un
obtains the computational result of the mth packet at the end
of this observation time interval, i.e., τ = t′m, we calculate the
average AoI as

∆n=

m∑
j=1

Qj+
T 2
m

2

τ
=

2Q1+T 2
m

2τ
+
m−1

τ
×

 1

m−1

m∑
j=2

Qj

 ,

(5)

where Qj is the area shown in Fig. 2. From Fig. 2, we see that
Q1 is a polygon and Qj is an isosceles trapezoid for j ≥ 2,
which can be derived from two isosceles triangles, i.e.,

Qj =
1

2
(Yj + Tj)

2 − 1

2
T 2
j =

Y 2
j

2
+ YjTj . (6)

We note from (5) that, when τ →∞, the impact of Q1 and T 2
m

on the average AoI is negligible, i.e., limτ→∞
2Q1+T

2
m

2τ = 0.
Moreover, due to the fact that τ = Y1+

∑m
j=2 Yj+Tm, we can

obtain limτ→∞
τ

m−1 = E[Yj], where E[·] is the expectation.
Therefore, by integrating (6) into (5) and taking τ to infinity,
we obtain the average AoI of Un as

∆n=

lim
m→∞

1
m−1

m∑
j=2

Qj

E[Yj]
=

E[Qj]

E[Yj]
=

E[Y 2
j]+2E[YjTj]

2E[Yj]
. (7)

As the BS generates the packet of Un according to a Poisson
process with rate λn, we obtain E[Y 2

j] = 2/λ2n and E[Yj] =
1/λn and thus

∆n =
1

λn
+ λnE[YjTj]. (8)

Finally, by averaging ∆n over all UEs, we obtain the average
AoI of the MEC system as

∆ =
1

N

N∑
n=1

∆n. (9)

It is worthwhile to note that, when the arrival rate of the
packet is higher than the serving rate in any queue, the average
AoI of Un goes to infinity, since Tj goes to infinity in (8).
Thus, in order to ensure system stability, we assume that the
arrival rate of the packet is lower than the serving rate in each
queue.

III. CLOSED-FORM EXPRESSION FOR AVERAGE AOI

In this section, we derive the closed-form expressions for
the average AoI in the local computing scheme and the edge
computing scheme, respectively.

A. Local Computing Scheme

We first derive the closed-form expression for the average
AoI in the local computing scheme, given in Theorem 1.

Theorem 1: In the local computing scheme, the closed-form
expression for the average AoI of Un is given by

∆n,l=
1

λn
+

1

µD
+

1

µn
+

λ−n
µD(µD−λ−n)

+
λ2nλ−n

µD(µD−λ−n)3

+
λ2n

(µD − λ)(µD − λ−n)2
+

λ2n(µD + µn − λn)

µD(µn − λn)(µD + µn − λ)2

+
λ2n(µD − λ)(µD + µn − λ−n)

µ2
n(µD − λ−n)(µn − λn)(µD + µn − λ)

, (10)

where λ =
∑N
n=1 λn and λ−n = λ− λn.

Proof: In this scheme, we denote Xj,D and Xj,U as
the queuing delay of Pn,j in the transmission queue and the
queuing delay of Pn,j in the computation queue of the local
server at Un, respectively. They are given by

Xj,D = tj,D − tj (11)

and

Xj,U = t′j − tj,D, (12)

respectively, where tj,D is the time that Un receives Pn,j . Note
that the queuing delay of Pn,j in each queue is the summation
of the waiting time and the serving time of Pn,j in the queue.
Thus, we rewrite Xj,D and Xj,U as

Xj,D = Wj,D + Sj,D (13)

and

Xj,U = Wj,U + Sj,U , (14)

respectively, where Wj,D and Sj,D are the waiting time and
the transmission time of Pn,j in the transmission queue,
respectively, and Wj,U and Sj,U are the waiting time and the
computation time of Pn,j in the computation queue of Un’s
local server, respectively. Based on the fact that Sj,D and Sj,U
are independent of Yj , we calculate the average AoI of Un in
the local computing scheme, ∆n,l, as

∆n,l =
1

λn
+ λnE[Yj(Sj,D +Wj,D + Sj,U +Wj,U)]

=
1

λn
+

1

µD
+

1

µn
+λn(E[YjWj,D]+E[YjWj,U)]). (15)

To obtain ∆n,l, we need to derive E[YjWj,D] and
E[YjWj,U] in (15). We first derive E[YjWj,D] as

E[YjWj,D] =E[YjWj,D|Bj,D]Pr(Bj,D)

+ E[YjWj,D|Lj,D]Pr(Lj,D), (16)

where Bj,D denotes the event that Pn,j is generated before
Pn,j−1 arrives at the transmission queue and Lj,D denotes

the event that Pn,j is generated after Pn,j−1 arrives at the
transmission queue. Here, Bj,D and Lj,D are two comple-
mentary events such that Pr(Bj,D) + Pr(Lj,D) = 1. When
Bj,D happens, Wj,D is calculated as

Wj,D = Xj−1,D − Yj +

Kj,y∑
κ=1

Sj,κ,D, (17)

where Kj,y is the number of packets generated for other UEs
during Yj and Sj,κ,D is the transmission time of the κth packet
among Kj,y packets. Based on (17), we obtain

E[Wj,D|Yj = y,Bj,D] =
1

µD − λ
+
λ−ny

µD
. (18)

According to (18), we calculate the first item in (16) as

E[YjWj,D|Bj,D]Pr(Bj,D)

=

∫ ∞
0

yfYj (y)Pr(Bj,D|Yj=y)E[Wj,D|Yj = y,Bj,D]dy

=
λn

(µD − λ−n)2

(
2λ−n

µD(µD − λ−n)
+

1

µD − λ

)
. (19)

We then calculate the second item in (16). When Lj,D hap-
pens, Wj,D is calculated as

Wj,D =

Kj,e∑
κ=1

Sj,κ,D, (20)

where Kj,e is the number of packets in the transmission queue
when Pn,j is generated. Based on (20), we obtain

E[Wj,D|Yj = y, Lj,D] =
λ−n

µD(µD − λ−n)
. (21)

According to (21), we calculate the second item in (16) as

E[YjWj,D|Lj,D]Pr (Lj,D)

=

∫ ∞
0

yfYj (y)Pr(Lj,D|Yj=y)E[Wj,D|Yj = y, Lj,D]dy

=
λ−n

µD(µD − λ−n)

(
1

λn
− λn

(µD − λ−n)2

)
. (22)

Combining (19) with (22), we obtain E[YjWj,D] in (16).
Next, we derive E[YjWj,U] in (15). Here, we denote Yj,D as

the time interval when Pn,j−1 and Pn,j arrive at the computa-
tion queue of the local server at Un, i.e., Yj,D = tj,D−tj−1,D.
As E[Wj,UYj] is calculated as

E[Wj,UYj] =

∫ ∞
0

yfYj
(y)E[Wj,U |Yj = y]dy

=

∫ ∞
0

∫ ∞
0

yfYj
(y)fYj,D|Yj

(y′|y)

× E[Wj,U |Yj = y, Yj,D = y′]dy′dy, (23)

we need to derive fYj,D|Yj
(y′|y) and E[Wj,U |Yj=y, Yj,D=y′]

to obtain E[YjWj,U]. Here, Wj,U only depends on the queuing
delay of Pn,j−1 at the local server, i.e.,

E[Wj,U |Yj = y, Yj,D = y′] =
exp(−(µn − λn)y′)

µn − λn
. (24)

We then derive fYj,D|Yj
(y′|y) by first calculating Yj,D as

Yj,D = Xj,D + Yj −Xj−1,D. (25)

Here, we consider two complementary events, Bj,D and Lj,D,
and derive fYj,D|Yj

(y′|y) as

fYj,D|Yj
(y′|y) = pYj,D,Bj,D|Yj

+ pYj,D,Lj,D|Yj
, (26)

where pYj,D,Bj,D|Yj
and pYj,D,Lj,D|Yj

are given by

pYj,D,Bj,D|Yj
= fYj,D|Yj ,Bj,D

(y′|y,Bj,D)Pr(Bj,D) (27)

and

pYj,D,Lj,D|Yj
= fYj,D|Yj ,Lj,D

(y′|y, Lj,D)Pr(Lj,D), (28)

respectively.
When Bj,D happens, Yj,D depends on the transmission

time of the packets generated during Yj at the edge server.
We consider that there are Kj,y = k packets generated
during Yj . As the transmission time of each packet follows
an independent and identical exponential distribution, the total
time consumed to transmit these k packets and Pn,j follows
a Gamma distribution, whose pdf is given by

fYj,D|Kj,y
(y′|k) =

y′kµk+1
D exp(−µDy′)

k!
. (29)

Thus, we calculate pYj,D,Bj,D|Yj
as

pYj,D,Bj,D|Yj
= fYj,D|Yj ,Bj,D

(y′|y,Bj,D)Pr(Bj,D)

=

∞∑
k=0

Pr(Kj,y = k|Yj = y)fYj,D|Kj,y
(y′|k)Pr(Bj,D)

= µD exp(−µD(y + y′)− λny)I0

(
2
√
λ−nµDyy′

)
, (30)

where I0(·) is the modified first-kind Bessel function of the
zeroth order.

When Lj,D happens, Yj,D depends on the time interval
Yj − Xj−1,D and Xj,D. In particular, Xj,D depends on the
number of the packets in the transmission queue when Pn,j is
generated. We consider that when Pn,j is generated, there are
Kj,e = k packets in the transmission queue. As the transmis-
sion time of each packet follows the independent and identical
exponential distribution, the total time consumed to transmit
these k packets and Pn,j follows a Gamma distribution, whose
pdf is given as

fXj,D|Kj,e
(x2|k) =

xk2µ
k+1
D exp(−µDx2)

k!
. (31)

Thus, we calculate pYj,D,Lj,D|Yj
by (28) and obtain

pYj,D,Lj,D|Yj
=

(µD−λ)(µD−λ−n)

(2µD−λ−λ−n)

(
exp(−(µD−λ)(y−y′))

− exp(−(µD − λ)y − (µD − λ−n)y′)
)
,

(32)

for y′ < y, and

pYj,D,Lj,D|Yj
=

(µD−λ)(µD−λ−n)

(2µD−λ−λ−n)
(exp(−(µD−λ−n)(y′−y))

− exp(−(µD−λ)y−(µD−λ−n)y′)), (33)

for y′ ≥ y. By substituting (30), (32), and (33) into
(26), we obtain fYj,D|Yj

(y′|y). Furthermore, by substituting
fYj,D|Yj

(y′|y) and (24) into (23), we obtain

E[Wj,UYj] =
λn(µD − λ)(µD + µn − λ−n)

µ2
n(µD − λ−n)(µn − λn)(µD + µn − λ)

+
λn(µD + µn − λn)

µD(µn − λn)(µD + µn − λ)2
. (34)

Finally, we obtain the final result in (10) by substituting the
(16) and (34) into (15).

B. Edge Computing Scheme

We then derive the closed-form expression for the average
AoI in the edge computing scheme, given in Theorem 2.

Theorem 2: In the edge computing scheme, the closed-form
expression for the average AoI of Un is given by

∆n,e =
1

λn
+

1

µB
+

1

µD
+

λ−n
µB(µB−λ−n)

+
λ2nλ−n

µB(µB−λ−n)3

+
λ2n

(µB−λ)(µB−λ−n)2
+ λn(Φe,Bj,E

+ Φe,Lj,E
), (35)

where Φe,Bj,E
and Φe,Lj,E

are given by (36) and (37),
respectively.

Proof: In this scheme, we denote Xj,B and Xj,D as the
queuing delay of Pn,j in the computation queue of the edge
server and the queuing delay of Pn,j in the transmission queue,
respectively. They are given by

Xj,B = tj,B − tj (38)

and

Xj,D = t′j − tj,B , (39)

respectively, where tj,B is the time that Pn,j arrives at the
transmission queue. By following the procedure in the proof
of Theorem 1, we calculate the average AoI of Un in the edge
computing scheme, ∆n,e, as

∆n,e =
1

λn
+ λnE[Yj(Sj,B +Wj,B + Sj,D +Wj,D)]

=
1

λn
+

1

µB
+

1

µD
+λn(E[YjWj,B]+E[YjWj,D)]), (40)

where Wj,B and Sj,B are the waiting time and the computation
time of Pn,j in the computation queue of the edge server,
respectively, and Wj,D and Sj,D are the waiting time and
the transmission time of Pn,j in the transmission queue,
respectively. To obtain ∆n,e, we need to derive E[YjWj,B]
and E[YjWj,D] in (40). Similar to the proof of Theorem 1,
we obtain

E[YjWj,B] =
λ−n

λnµB(µB−λ−n)
+

λnλ−n
µB(µB−λ−n)3

+
λn

(µB−λ)(µB−λ−n)2
. (41)

We then derive E[YjWj,D] in (40). We denote Yj,B as the
time interval when Pn,j−1 and Pn,j arrive at the transmission
queue, i.e., Yj,B = tj,B − tj−1,B . We then denote Bj,E as

Φe,Bj,E
=

λn(µB + µD − λ)

µB(µD−λ)(µB+µD−λ−λ−n)2
+
λn(µB − λ)(µB − λ−n)

(
1

(µD−λ−n)2
− 1

(µB−λ−n)2

)
(µB − µD)(µD − λ)(µD + µB − λ− λ−n)

+
λnλ−n(µB − λ)(µB − λ−n)

(
2

(µD−λ−n)3
− 2

(µB−λ−n)3

)
µD(µB − µD)(µB + µD − λ− λ−n)

+
2λnλ−n(µD + µB − λ)

µBµD(µD + µB − λ− λ−n)3
. (36)

Φe,Lj,E
=

λ−n
µD(µD−λ−n)

(
1

λn
− λn(µB + µD − λ)

µB(µB+µD−λ−λ−n)2
−
λn(µB−λ)(µB−λ−n)

(
1

(µB−λ−n)2
− 1

(µD−λ−n)2

)
(µD − µB)(µB + µD − λ− λ−n)

)
. (37)

the event that Pn,j arrives at the transmission queue before
Pn,j−1 is transmitted to Un and Lj,E as the event that Pn,j
arrives at the transmission queue after Pn,j−1 is transmitted to
Un. Based on these two complementary events, we calculate
E[YjWj,D] as

E[YjWj,D]= Φe,Bj,E
+ Φe,Lj,E

, (42)

where Φe,Bj,E
= E[YjWj,D|Bj,E]Pr(Bj,E) and Φe,Lj,E

=
E[YjWj,D|Lj,E]Pr(Lj,E). Since Φe,Bj,E

is calculated as

Φe,Bj,E
=E[Yj(Xj−1,D − Yj,B)|Bj,E]Pr(Bj,E)

+ E

Yj Kj,y∑
κ=1

Sj,κ,D

∣∣∣∣Bj,E
Pr(Bj,E), (43)

we follow the similar procedure in the Proof of Theorem 1
and obtain Φe,Bj,E

given by (36). In addition, we calculate
Φe,Lj,E

as

Φe,Lj,E
=

∫ ∞
0

∫ ∞
0

E[Wj,D|Yj = y, Lj,E]yfYj (y)

× fYj,B |Yj
(y′|y)Pr(Lj,E |Yj,B = y′)dy′dy, (44)

and obtain Φe,Lj,E
given by (37). Combining (36) and (37),

we obtain E[YjWj,D] in (42). Finally, we obtain the final result
in (35) by substituting the (41) and (42) into (40).

IV. NUMERICAL RESULTS

In this section, we present numerical results to validate
our analysis in Section III. In particular, we first present
numerical results in the homogeneous case where all the UEs
share the same packet generation rate λh and the same local
computation rate µh, i.e., λn = λh and µn = µh for ∀n. We
then present numerical results in the heterogeneous case where
the UEs have different packet generation rates and illustrate
how this difference affects the average AoI.

Fig. 3 plots the average AoI of the MEC system versus the
packet generation rate, λh. We first observe that the analytical
average AoI of the MEC system tightly matches the simulation
result, which demonstrates the correctness of our analytical
result. We then observe that for both the local computing
scheme and the edge computing scheme, the average AoI
of the MEC system first decreases and then increases when
λh increases. This observation is due to the fact that the
increase in λh has a two-fold effect on the average AoI of
the MEC system. When λh is small, this increase leads to a
high updating rate of packets, which decreases the average AoI

0.05 0.1 0.15 0.2 0.25 0.3
5

10

15

20

25

30

35

40

45

0

Fig. 3. The average AoI of the MEC system versus the packet generation
rate, λh, with N = 6 and µD = 1.8.

30
10

15

20

25

252015105

Fig. 4. The average AoI of the MEC system versus the number of UEs, N ,
with λh = 0.1 and µD = 3.

of the MEC system. When λh exceeds a certain threshold, its
increase leads to the significant increase in the waiting time of
a packet in computation queues and the transmission queue,
thereby degrading the AoI performance.

Fig. 4 plots the average AoI of the MEC system versus the
number of UEs, N . We first observe that when N increases,
the average AoI of the MEC system increases monotonically
and this increase in the edge computing scheme is faster
than in the local computing scheme. This is because that the
increase in N results in the longer waiting time of a packet
in both the transmission queue and the computation queue
of the edge server, which increases the average AoI of the
MEC system. In the edge computing scheme, the packets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

0.8

Fig. 5. The average AoI of the MEC system versus the packet generation
ratio of U1, λh1

/(λh1
+ λh2

), with N = 6, λ = 0.9, µh = 0.6, µB = 2,
and µD = 2.4.

computed by the edge server increases dramatically as N
increases, which results in a long waiting time of a packet
in the computation queue. We further observe that the edge
computing scheme has a lower average AoI than the local
computing scheme for small N , but a larger average AoI for
large N . This is because that for a small number of UEs,
compared to local computing, edge computing can provide the
higher computation rate via the powerful edge server, thereby
decreasing the average AoI of the MEC system. Differently,
for a large number of UEs, local computing can avoid the long
waiting time in the computation queue of the edge server by
allocating the packets to the local server, which decreases the
average AoI.

In Fig. 5, we consider the heterogeneous case where a half
of UEs have the packet generation probability λh1

and the
other half of UEs have the packet generation probability λh2

.
We denote U1 as a UE arbitrarily selected in the first half
of UEs and U2 as a UE arbitrarily selected in the other half
of UEs. We then define the packet generation ratio of U1 as

λh1

λh1
+λh2

. We assume that the BS generates two types of UEs’
packets with a total rate λ, i.e., λ = N

2 (λh1+λh2). From Fig. 5,
we observe that for both schemes, the average AoI of the MEC
system first decreases and then increases. This is because that
given the total packet generation rate λ, the increase in λh1

means the increase in the packet generation rate of U1 and the
decrease in the packet generation rate of U2. When λ1 is small,
the average AoI of U1 dominates the average AoI of the MEC
system. In this case, the increase in U1’s packet generation
rate significantly reduces the average AoI of U1, leading to a
reduced average AoI. When λh1

is large, the average AoI of
U2 is large due to small λh2 , which dominates the average AoI
of the MEC system. In this case, the increase in U1’s packet
generation rate significantly increases the average AoI of U2,
which results in the increase in the average AoI of the MEC
system. We further observe that the minimum average AoI of
the MEC system is obtained when the packet generation ratio
of U1 is 0.5, i.e., λh1 =λh2 = λ

N . It implies that the minimum
average AoI of an MEC system can be obtained when the BS

uniformly generates the packet for UEs.

V. CONCLUSION

We analyzed the average AoI of a multi-user MEC system
with two computing schemes, i.e., the local computing scheme
and the edge computing scheme. We derived the closed-form
expressions for the average AoI, where the packets are served
in both the computation queue and the transmission queue
according to the FCFS policy. From simulation results, we
demonstrated the accuracy of our analysis and illustrated the
impacts of different system parameters on the average AoI.
Furthermore, we considered a heterogeneous case where the
UEs have different packet generation rates and observed that
the same packet generation rate among UEs minimized the
average AoI of the MEC system.

REFERENCES

[1] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled
tactile Internet,” IEEE J. Select. Areas Commun., vol. 34, no. 3, pp. 460–
473, Mar. 2016.

[2] C. Li, N. Yang, and S. Yan, “Optimal transmission of short-packet
communications in multiple-input single-output systems,” IEEE Trans.
Veh. Technol., vol. 68, no. 7, pp. 7199–7203, Jul. 2019.

[3] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE Conf. Sensor Ad Hoc
Commun. Netw., Salt Lake City, UT, Jun. 2011, pp. 350–358.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing-A key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, Sep. 2015.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, Mar. 2017.

[7] J. Gong, S. Zhou, and Z. Niu, “Optimal power allocation for energy
harvesting and power grid coexisting wireless communication systems,”
IEEE Trans. Commun., vol. 61, no. 7, pp. 3040–3049, Jun. 2013.

[8] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, Jun.
2015.

[9] L. Zhao, J. Wang, J. Liu, and N. Kato, “Optimal edge resource allocation
in iot-based smart cities,” IEEE Netw., vol. 33, no. 2, pp. 30–35, Mar.
2019.

[10] B. Zhou and W. Saad, “Optimal sampling and updating for minimizing
age of information in the internet of things,” in Proc. IEEE Global
Commun. Conf., Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–
6.

[11] J. Gong, Q. Kuang, and X. Chen, “Joint transmission and computing
scheduling for status update with mobile edge computing,” in Proc.
IEEE Intern. Commun. Conf., Dublin, Ireland, Jun. 2020, pp. 1–6.

[12] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang, “Age based task schedul-
ing and computation offloading in mobile-edge computing systems,” in
Proc. IEEE Wireless Commun. Netw. Conf., Marrakech, Morocco, Apr.
2019, pp. 1–6.

[13] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-
intensive status update in mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4353–4366, Apr. 2020.

[14] H. Wu, H. Tian, S. Fan, and J. Ren, “Data age aware scheduling
for wireless powered mobile-edge computing in industrial internet of
things,” IEEE Trans. Industr. Inform., vol. 17, no. 1, pp. 398–408, Apr.
2020.

[15] X. Chen, C. Wu, T. Chen, Z. Liu, H. Zhang, M. Bennis, H. Liu, and Y. Ji,
“Information freshness-aware task offloading in air-ground integrated
edge computing systems,” arXiv preprint arXiv:2007.10129, Jul. 2020.

[16] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, “Compu-
tational load balancing on the edge in absence of cloud and fog,” IEEE
Trans. Mobile Comput., vol. 18, no. 7, pp. 1499–1512, Jul. 2019.

