Decode-and-Forward Relaying Using a Backscatter Device: Power Allocation and BER Analysis

Xiaolun Jia and Xiangyun Zhou
Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australia
Email: {xiaolun.jia, xiangyun.zhou}@anu.edu.au

Abstract—We consider the use of a backscatter device as a relay, and examine a new decode-and-forward (DF) scheme specifically designed for backscatter relaying. In the proposed scheme, the source node transmits continuous-wave (CW) signals to power the backscatter relay in the relay-to-destination phase of the data transmission. We characterise the end-to-end bit error rate (BER) performance for on-off keying (OOK) modulation. In addition, we formulate and solve a power allocation problem at the source node, where the source is subject to a power budget constraint. Numerical results show that the relay-to-destination link is the bottleneck for the end-to-end performance; and that it is essential to allocate most of the source’s power budget to its transmission of CW signals to power the relay’s transmission.

I. INTRODUCTION

Backscatter communication has received considerable research attention in recent years as an enabler for pervasive, low-power networking under the Internet of Things paradigm. Traditionally, backscatter communication is used for the transmission of small quantities of information, such as an identifier in the case of radiofrequency identification (RFID) systems, to a reader by modulating data onto existing radiofrequency (RF) signals. In sensor networks, devices collect data on the surrounding environment and transmit the data to central entities for further processing via backscattering. Work in [1]–[3] have demonstrated the practicality of backscatter communication in terms of communication range, decoding reliability and interoperability with legacy RF signals.

A lesser studied use case for backscatter communication is where backscatter devices act as relays. It should be noted that backscatter relays differ significantly from conventional relays, in that active transmissions are not necessary, nor complex signal processing operations. As a result, the lifetime of such devices can be significantly improved, while the implementation cost is far less than deploying powered nodes.

Recently, work in [4]–[8] have examined the use of backscatter devices for relaying applications. The work in [4] considered a base-station-aided relaying protocol using multiple backscatter devices to introduce diversity into the communication between two distantly located devices. In particular, [4] modelled backscatter devices as passive reflectors without processing the incoming signal. Work in [5] presented suboptimal BER expressions and detection thresholds for a two-way backscatter communication system facilitated by a central relay capable of performing decoding. Backscatter-enabled relays with both energy harvesting and active transmission capabilities were considered in [6], [7], with throughput maximisation being the main objective for both works. Work in [8] also considers a hybrid relay, which is powered by a field of energy sources while a separate group of interferers are distributed in the field. Expressions for coverage probability with and without ambient backscatter relaying were derived. Despite recent works, we note that a detailed characterisation of the exact BER performance of decode-and-forward (DF) backscatter relaying is still lacking.

In this paper, we consider the use of a backscatter device as a relay to achieve coverage for out-of-reach nodes. This scenario is gaining relevance for sensor networks deployed in industrial environments, where nodes are required to be placed in locations where coverage may be minimal or non-existent. Under such scenarios, backscatter relays can bring about significantly lower deployment cost and longer lifetime compared to actively transmitting relays. We characterise the BER performance under exact and approximate detection methods, and provide insights into the behaviour of the system under various conditions.

The main contributions of this paper are as follows:

- We introduce a new DF backscatter relaying scheme where the source actively powers the relay’s transmission. The corresponding transmit power allocation problem at the source node is formulated, where the source is subject to a power budget constraint.
- We present the test statistics for energy-based detection of OOK-modulated signals at both the backscatter relay and destination, and derive optimal and Gaussian-approximated detectors. The Gaussian-approximated detector is shown to perform similarly compared to the optimal detector for BER up to 10^{-3}.
- We derive the analytical BER expressions for the DF relaying scheme. Numerical results show that the relay-to-destination link is the bottleneck for the end-to-end BER performance, and as a result, the source must allocate most of its power to support the relay’s transmission.

Notations: \mathbb{C} denotes the set of complex numbers and $| \cdot |$ denotes the magnitude of a complex number. $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{CN}(\mu, \sigma^2)$ represent Gaussian and complex Gaussian distributions with mean μ and variance σ^2. $\Gamma(k, \theta)$ represents a gamma distribution with shape factor k and scale factor θ; and $\text{NC}-\chi^2(k; \lambda)$ represents a noncentral chi-squared distribution with k degrees of freedom and noncentrality parameter λ.
We assume that both the source and relay utilise OOK modulation, and that both relay and destination are equipped with an energy detector. The relay’s circuit energy consumption is considered negligible to simplify analysis. We also assume that the source and relay do not utilise error correction codes.

B. Backscatter Modulation

We consider a baseband discrete-time signal model with n denoting the time index of the signal samples, and let each source symbol span N samples.

The backscatter relay is equipped with two load impedances connected to the relay’s antenna. The relay performs modulation by switching between the impedances, each resulting in a reflection coefficient that determines the energy of the backscattered signal. Denote the reflection coefficient by $\Gamma[n]$, which is constant over each symbol period. $\Gamma[n]$ takes on two values, Γ_0 and Γ_1, corresponding to the two impedances. The baseband signal at the relay is given by

$$B[n] = A - \Gamma[n],$$

where A is a term related to the structural mode of the relay antenna [1]. We assume the antenna to be non-minimum scattering [11], and that $A \in \mathbb{C}$ with $|A| < 1$. We also let $\Gamma_0, \Gamma_1 \in \mathbb{C}$ satisfying $|\Gamma_0|, |\Gamma_1| < 1$. For the rest of this paper, we assume that the relay has knowledge of the modulation at the source, and that the destination has knowledge of the bit-to-reflection-coefficient mapping at the relay. This is achieved through the use of pilot transmissions, which is outside the scope of this work.

C. Signal Model for the DF Relaying Scheme

First, we model the interference received at the relay and destination. Denote the interference signal received by node $i \in \{R, D\}$ in timeslot $j \in \{1, 2\}$ as $\sqrt{P_{i,j}}z_{i,j}[n]$, where $P_{i,j}$ is the received interference power, and the samples of $z_{i,j}[n]$ are independent and identically distributed (i.i.d.), following $CN(0, 1)$ for all n. As the interference can be a superposition of many unknown ambient signals, it is reasonable to model it using a complex Gaussian distribution [12]. We consider the case where the interference signals at the relay and destination, $z_{R,j}[n]$ and $z_{D,j}[n]$, are uncorrelated, i.e. their constituent signals are unique to each node.

The relay receives the following signal in the first timeslot:

$$y_{R}[n] = \sqrt{P_{S,1}}h_{SR}x[n] + \sqrt{P_{1,R}}z_{R,1}[n] + w_{R}[n],$$

where $P_{S,1}$ is the transmit power of the source in the first timeslot, $x[n] \in \{0, 1\}$ is the OOK baseband source signal, and $w_{R}[n] \sim CN(0, P_{w,R})$ is the noise arising at the relay from signal processing. The relay retrieves $x[n]$ by averaging the samples of $y_{R}[n]$ over each symbol period.

In the second timeslot, the carrier signal incident at the antenna of the relay consists of two components: the CW signal from the source with power $P_{S,2}$, and the interference $z_{R,2}[n]$ with power $P_{t,R}$. The relay performs backscatter modulation onto the sum of the two components as follows:

$$x_{R}[n] = \eta \left(\sqrt{P_{S,2}}h_{SR} + \sqrt{P_{t,R}}z_{R,2}[n] \right) B[n],$$

where η is a scaling factor, h_{SR} is the channel gain between nodes S and R, and $B[n]$ is the binary data symbol.
where \(\eta \in [0,1) \) is the backscatter switching loss coefficient, which is modelled as a constant, and \(B[n] \) is the demodulated version of \(x[n] \). The destination receives the following signal:

\[
y_d[n] = \sqrt{hRD} x_R[n] + \sqrt{P_{I,D}z_{D,2}[n]} + w_D[n]
\]

\[
= \eta \sqrt{hRD} \left(\sqrt{P_{S,2}h_{SR}} + \sqrt{P_{I,R}z_{R,2}[n]} \right) B[n] + \sqrt{P_{I,D}z_{D,2}[n]} + w_D[n].
\]

(4)

where \(w_D[n] \sim \mathcal{CN}(0, P_{w,D}) \) is the noise at the destination.

In the following sections, we analyse the detection process and derive detection thresholds for OOK, in addition to the BER expressions for the DF relaying scheme.

III. ENERGY-BASED DETECTION

We consider energy-based detection at the relay and destination using the two-stage thresholding circuit in [2], where the received signal energy is averaged over one symbol period (i.e., \(N \) samples). The post-averaging quantity is referred to as the test statistic throughout this paper. In this section, we derive the exact distribution of the test statistic at both the relay and destination conditioned on the bit sent, in addition to a Gaussian-approximated distribution using the central limit theorem (CLT). We subsequently derive the detection thresholds for both exact and approximated distributions.

A. Detection Statistics at the Relay

The average power of the received signal at the relay over one source symbol, namely the test statistic \(\psi^R = \frac{1}{N} \sum_{n=0}^{N-1} [y_R[n]]^2 \), takes on two values: \(\psi^R_0 \) and \(\psi^R_1 \), corresponding to \(x[n] = 0 \) and \(x[n] = 1 \), respectively. Expanding the squared magnitude of (2) in terms of its real and imaginary components for the two values of \(x[n] \) and evaluating the distribution of each component yields the following proposition.

Proposition 1. The two values of the test statistic at the relay, \(\psi^R_0 \) and \(\psi^R_1 \), can be modelled as random variables \(\psi^R_0 \sim \Gamma \left(N, \frac{\sigma^2}{N} \right) \) and \(\psi^R_1 \sim \mathcal{CN}(2N; \lambda = \frac{2NP_{S,1}h_{SR}}{\sigma^2}) \), with their exact pdfs given by

\[
f_{\psi^R_0}(x) = \frac{1}{\Gamma(N)} \left(\frac{N}{\sigma^2} \right)^N x^{N-1} \exp \left(-\frac{Nx}{\sigma^2} \right), \quad (5)
\]

\[
f_{\psi^R_1}(x) = \frac{N}{\sigma^2} \exp \left(-\frac{N}{\sigma^2} (x + P_{S,1}h_{SR}) \right) \frac{x^{N-1}}{P_{S,1}h_{SR}} \times I_{N-1} \left(\frac{2N}{\sigma^2 \sqrt{P_{S,1}h_{SR}}} x \right), \quad (6)
\]

where \(\Gamma(\cdot) \) denotes the gamma function, \(I_v(\cdot) \) denotes the modified Bessel function of the first kind with order \(v \), and \(\sigma^2 = P_{I,R} + P_{w,R} \) is common to both (5)-(6).

Proof. The derivation of (5)-(6) is similar to the steps given in [13, Appendix A] and is hence omitted here.

When \(N \) is large, we can invoke the central limit theorem (CLT) to obtain a Gaussian approximation of the test statistic \(\psi^R \), given in the following proposition.

Proposition 2. As \(N \to \infty \), the two values of the test statistic, \(\psi^R_0 \) and \(\psi^R_1 \), approximately follow Gaussian distributions as

\[
\psi^R_0 \sim \mathcal{N}(\mu_0, \sigma_0^2), \quad \psi^R_1 \sim \mathcal{N}(\mu_1, \sigma_1^2),
\]

(7)

where the mean values are

\[
\mu_0 = P_{I,R} + P_{w,R}, \quad (8)
\]

\[
\mu_1 = P_{S,1}h_{SR} + P_{I,R} + P_{w,R}, \quad (9)
\]

and the variances are

\[
\sigma_0^2 = \frac{(P_{I,R} + P_{w,R})^2}{N}, \quad (10)
\]

\[
\sigma_1^2 = \frac{2P_{S,1}h_{SR}(P_{I,R} + P_{w,R})}{N} + \sigma_0^2. \quad (11)
\]

Proof. The results in (8)-(9) can be derived by taking the expectation of the expanded signal expressions, and (10)-(11) by summing the variances of each individual term.

B. Detection Statistics at the Destination

The test statistic at the destination, denoted by \(\psi^D = \frac{1}{N} \sum_{n=0}^{N-1} [y_D[n]]^2 \), depends on the relay baseband signal \(B[n] \). Note that \(\psi^D \) takes on two values, \(\psi^D_0 \) and \(\psi^D_1 \), corresponding to the cases where the relay transmits bit 0 and 1, respectively:

\[
\psi^D_0 = \frac{1}{N} \sum_{n=0}^{N-1} [\alpha_0 + \beta_0 z_{R,2}[n] + \sqrt{P_{I,D}z_{D,2}[n]} + w_D[n]]^2, \quad (12a)
\]

\[
\psi^D_1 = \frac{1}{N} \sum_{n=0}^{N-1} [\alpha_1 + \beta_1 z_{R,2}[n] + \sqrt{P_{I,D}z_{D,2}[n]} + w_D[n]]^2, \quad (12b)
\]

where \(\alpha_i = \eta \sqrt{P_{S,2}h_{SR}h_{RD}}B[n] \), and \(\beta_i = \eta \sqrt{P_{I,R}h_{RD}}B[n] \) for \(x[n] = i \in \{0, 1\} \). Expanding (12a) and (12b) in terms of its real and imaginary components yields the following expressions for the pdf of \(\psi^D_0 \) and \(\psi^D_1 \).

Proposition 3. The two values of the test statistic at the destination, \(\psi^D_0 \) and \(\psi^D_1 \), can be modelled as random variables \(\psi^D_0 \sim \mathcal{NC}(2N; \lambda = \frac{2NP_{S,1}h_{SR}}{\sigma^2}) \), with pdfs

\[
f_{\psi^D_0}(x) = \frac{N}{\sigma_i^2} \exp \left(-\frac{N}{\sigma_i^2} \left(x + \frac{2NP_{S,1}h_{SR}}{\sigma^2} \right) \right) \frac{N}{\sigma_i^2} \exp \left(-\frac{N}{\sigma_i^2} \left(x + \frac{2NP_{S,1}h_{SR}}{\sigma^2} \right) \right) \times I_{N-1} \left(\frac{2N}{\sigma_i^2 \sqrt{P_{S,1}h_{SR}}} x \right), \quad (13)
\]

where \(\sigma_i^2 = |\beta_i|^2 + P_{I,D} + P_{w,D} \).

Again, we can invoke the CLT to obtain the Gaussian approximation of the test statistic \(\psi^D \), given as follows.

Proposition 4. As \(N \to \infty \), we have

\[
\psi^D_0 \sim \mathcal{N}(\mu_0, \sigma_0^2), \quad \psi^D_1 \sim \mathcal{N}(\mu_1, \sigma_1^2),
\]

(14)

where, for \(i \in \{0, 1\} \), the mean values are

\[
\mu_i = |\alpha_i|^2 + |\beta_i|^2 + P_{I,D} + P_{w,D}, \quad (15)
\]

and the variances are

\[
\sigma_i^2 = \frac{(|\beta_i|^2 + P_{I,D} + P_{w,D})^2 + 2|\alpha_i|^2(|\beta_i|^2 + P_{I,D} + P_{w,D})}{N}. \quad (16)
\]
Note that μ_0, μ_1 denote mean values for both the exact characterisation and Gaussian approximation of the test statistic distributions. Moreover, σ, σ_0, σ_1 denote certain second-order statistics for the exact test statistic distributions; but σ_0, σ_1 correspond to the Gaussian approximations. These parameters have different expressions at the relay and destination.

C. Detection Threshold

The detection rule at the relay or destination is as follows:

$$\hat{x}[n] = \begin{cases}
1, & \psi > T \\
0, & \psi < T,
\end{cases}$$

(17)

where $\hat{x}[n]$ is the detected bit, with ψ being a test statistic from Sec. III-A to III-B, and T being a threshold.

The optimal detection thresholds at the relay and destination are derived by equating $f_{\psi_0}(x)$ and $f_{\psi_1}(x)$ in Propositions 1 and 3, respectively, and are summarised as follows.

Proposition 5. The optimal detection thresholds at the relay (denoted by T^*_R) and at the destination (T^*_D), are the solutions to the following equations, respectively:

$$\pi \Gamma(n) \left(\frac{N \sqrt{P_{S,1} h_{SR} r_T}}{\sigma^2} \right)^{N-1} \exp \left(\frac{N P_{S,1} h_{SR} r_T}{\sigma^2} \right) = \int_0^\infty \exp \left(\frac{2N}{\sigma^2} \sqrt{P_{S,1} h_{SR} r_T} \cos(\theta) \right) \cos((N-1)\theta) \, d\theta,$$

(18)

$$\frac{\sigma^2}{\sigma_0^2} \exp \left(\frac{N}{\sigma_0^2} - \frac{N}{\sigma_1^2} \right) T^*_D + \left(N |\alpha_1|^2 - N |\alpha_2|^2 \right) \left(\frac{P_{B,1}}{P_{B,2}} \right)^{N-1} \times \int_0^\pi \exp \left(\frac{2N |\alpha_2|}{\sigma_0^2} \sqrt{T^*_D} \cos(\theta) \right) \cos((N-1)\theta) \, d\theta$$

$$= \int_0^\pi \exp \left(\frac{2N |\alpha_1|}{\sigma_1^2} \sqrt{T^*_D} \cos(\theta) \right) \cos((N-1)\theta) \, d\theta,$$

(19)

with B_0 and B_1 being the two values of $B[n]$ when $x[n] = \{0, 1\}$ respectively, and σ^2, σ_0^2, σ_1^2, $|\alpha_0|$ and $|\alpha_1|$ given above.

Proof. The complete proof can be found in the full version of this paper [14, Appendix B].

The Gaussian approximation thresholds are obtained by solving the equation of the pdfs of the two random variables in (7) and (14), and is summarised in the following result.

Proposition 6. For either source-to-relay or relay-to-destination links, the Gaussian-approximated detection threshold T_G takes on two possible values:

$$T_G = \frac{\sigma_0^2 \mu_1 - \sigma_1^2 \mu_0}{\sigma_0^2 - \sigma_1^2} \pm \sqrt{\frac{\sigma_0^2 \sigma_1^2}{\sigma_0^2 - \sigma_1^2} \left((\mu_0 - \mu_1)^2 + 2(\sigma_0^2 - \sigma_1^2) \ln \left(\frac{\sigma_2}{\sigma_1} \right) \right)}.$$

(20)

Specifically, T_G takes the value with the + sign when $\mu_1 > \mu_0$, and the value with the – sign otherwise.

Proof. The complete proof can be found in the full version of this paper [14, Appendix C].

In the worst-case scenario, where no statistical knowledge of the test statistic is available at the relay or destination, we propose a simple threshold derived by averaging over the entire set of test statistic values corresponding to all received symbols, which mathematically equates to

$$T_S = \frac{\mu_0 + \mu_1}{2}.$$

IV. BER PERFORMANCE AND SOURCE POWER ALLOCATION

A. BER Performance

The end-to-end BER, denoted by p_b, is given by

$$p_b = p_b^{(1)} + p_b^{(2)} - 2p_b^{(1)} p_b^{(2)},$$

(22)

where $p_b^{(1)}$ and $p_b^{(2)}$ are the source-to-relay and relay-to-destination BERs, respectively.

For each link, two expressions for the BER exist, corresponding to $\mu_0 < \mu_1$ and $\mu_0 > \mu_1$. We denote the two cases using superscripts a and b in the following equations.

The exact BER expressions for the source-to-relay link using the optimal detection threshold can be written as

$$p_b^{(1a)} = \frac{1}{2} \left[\frac{1}{\Gamma(N)} \gamma \left(N, \frac{N T^*_R}{\sigma^2} \right) - Q_N \left(\sqrt{\frac{2N P_{S,1}}{\sigma^2}}, \sqrt{\frac{2N T^*_R}{\sigma^2}} \right) \right],$$

(23a)

$$p_b^{(1b)} = \frac{1}{2} \left[\frac{1}{\Gamma(N)} \gamma \left(N, \frac{N T^*_R}{\sigma^2} \right) + Q_N \left(\sqrt{\frac{2N P_{S,1}}{\sigma^2}}, \sqrt{\frac{2N T^*_R}{\sigma^2}} \right) \right],$$

(23b)

where $\gamma(a, x) = \int_0^x t^{a-1} e^{-t} \, dt$ is the lower incomplete gamma function, and $Q_M(a, b) = \int_x^\infty x \left(\frac{x}{2} \right)^{M-1} \times \exp \left(- \frac{x^2 + a^2}{2} \right) I_{M-1}(ax) \, dx$ is the Marcum Q-function.

Similarly, for the relay-to-destination link, we have

$$p_b^{(2a)} = \frac{1}{2} \left[1 + Q_N \left(\sqrt{\frac{2N |\alpha_1|^2}{\sigma_0^2}}, \sqrt{\frac{2N T^*_D}{\sigma_0^2}} \right) - Q_N \left(\sqrt{\frac{2N |\alpha_1|^2}{\sigma_1^2}}, \sqrt{\frac{2N T^*_D}{\sigma_1^2}} \right) \right],$$

(24a)

$$p_b^{(2b)} = \frac{1}{2} \left[1 + Q_N \left(\sqrt{\frac{2N |\alpha_2|^2}{\sigma_0^2}}, \sqrt{\frac{2N T^*_D}{\sigma_0^2}} \right) - Q_N \left(\sqrt{\frac{2N |\alpha_2|^2}{\sigma_1^2}}, \sqrt{\frac{2N T^*_D}{\sigma_1^2}} \right) \right].$$

(24b)

The exact BER expressions under the Gaussian-approximated and simple thresholds can be readily obtained by substituting the solutions of (20) and (21) into the above BER equations for the respective links.
B. Source Power Allocation

Due to the passive nature of the backscatter relay, it is expected that the performance of the DF scheme is limited by the relay-to-destination link. Therefore, a key question to be answered is whether optimal relaying performance is best achieved by employing the source with all available power, or whether some of the power should be allocated to each timeslot when subject to a power budget constraint.

We denote the total power budget of the source by \(P_S = P_{S,1} + P_{S,2} \). The power allocation problem can be written as

\[
\begin{align*}
\min_{P_{S,1}, P_{S,2}} & \quad p_b \\
\text{s.t.} & \quad P_{S,1} + P_{S,2} = P_S.
\end{align*}
\]

(25)

Intuitively, there exists an optimal power allocation arising when the two individual link BERs are roughly equal. By setting \(P_{S,2} = P_S - P_{S,1} \), the optimal allocation can be determined by taking the first derivative of \(p_b \) with respect to \(P_{S,1} \). Although (25) has no closed-form solution, we present the first approximation of (25) with respect to \(P_{S,1} \) for completeness, using an approximation to (22) with \(p_b \approx p_b^{(1)} + p_b^{(2)} \).

Proposition 7. An approximation of the optimal power allocated to the first timeslot, \(P_{S,1} \), is the solution to

\[
N \frac{|\alpha_1|^2}{\sigma_1^2} Q_{N+1}^{-1} \left(\frac{\sqrt{2N|\alpha_1|^2(P_S - P_{S,1})}}{\sigma_1^2}, \sqrt{2N\tau_D^2} \right) - \frac{|\alpha_0|^2}{\sigma_0^2} Q_{N+1}^{-1} \left(\frac{\sqrt{2N|\alpha_0|^2(P_S - P_{S,1})}}{\sigma_0^2}, \sqrt{2N\tau_D^2} \right) - \frac{1}{\sigma^2} Q_{N+1}^{-1} \left(\frac{2NP_{S,1}}{\sigma^2}, \sqrt{2N\tau_R^2} \right) = 0
\]

(26)

where we have defined \(Q_M(a,b) \triangleq Q_M(a,b) - Q_{M-1}(a,b) \), and \(\alpha_i = \eta \sqrt{h_{SR}h_{RD}} B[n] \) for \(i \in \{0,1\} \).

V. Numerical Results

In this section, we numerically evaluate the performance of the proposed DF backscatter relaying scheme. The system parameters used to obtain the numerical results are provided in Table I. Based on works such as [15], [16], we consider a BER in the range of \(10^{-3} \) to \(10^{-5} \) to be acceptable performance. We also conducted simulations and found that our simulation results match theoretical results; therefore, only the results are presented here.

Fig. 2 shows the end-to-end BER performance comparison for the exact, Gaussian-approximated and simple thresholds with optimal power allocation. The baseline interference power of \(-75 \text{ dBm}\) is used at both relay and destination. Under optimal power allocation, the Gaussian approximation shows good agreement with the exact threshold up to a BER of \(10^{-3} \). However, at the maximum allowed power budget, the performance improvement of the exact threshold on the Gaussian threshold is evident, with up to \(1 \text{ dB} \) advantage. The simple threshold performs similarly with the other two thresholds up to a BER of \(10^{-2} \). As the Gaussian approximation presents a reasonable trade-off between performance

and receiver complexity at the destination, we present the remaining results using the Gaussian threshold.

To demonstrate the benefit of optimal source power allocation, we compare the BER obtained using optimal allocation to that obtained using fixed power transmission (i.e. \(P_{S,1} = P_{S,2} = \frac{1}{2} P_S \)). Notably, a significant performance degradation of around \(3 \text{ dB} \) is observed throughout the range of allowed power budgets when comparing the BER of fixed power transmission with that of optimal power allocation. This indicates that improper power allocation can result in highly suboptimal performance.

![Fig. 2. BER comparison of different detection thresholds.](image)

Fig. 3 plots the optimal source power allocation where the interference power received at one of the relay or the destination is varied, holding the other constant at \(-75 \text{ dBm}\). We observe that under all scenarios, nearly all of the source power budget is allocated to the second timeslot. When the interference power at the relay is large, more power is allocated to the first timeslot; however, the additional allocation is still relatively small compared to the overall power budget. As the interference power at the destination decreases, more power is allocated to the first timeslot; although the changes in power allocation percentage are negligible.

Fig. 4 shows the BER performance of the DF relaying scheme with optimal power allocation, where the interference power at one of the relay or the destination is varied, holding

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency, (f_c)</td>
<td>915 MHz</td>
</tr>
<tr>
<td>Source-to-relay distance, (d_{SR})</td>
<td>6 m</td>
</tr>
<tr>
<td>Relay-to-destination distance, (d_{RD})</td>
<td>6 m</td>
</tr>
<tr>
<td>Path loss exponent, (\gamma)</td>
<td>2.5</td>
</tr>
<tr>
<td>Noise powers, ({P_{w,R}, P_{w,D}})</td>
<td>([-100, -100] \text{ dBm})</td>
</tr>
<tr>
<td>Relay antenna structural mode, (A)</td>
<td>0.6047 + j0.5042 [1]</td>
</tr>
<tr>
<td>Relay reflection coefficients, ({\alpha_0, \alpha_1})</td>
<td>([0.993, -0.7080] \text{ to } [0.6494, -0.1364] \text{ dB})</td>
</tr>
<tr>
<td>Relay switching loss coefficient, (\eta)</td>
<td>(-1.1 \text{ dB}) [15]</td>
</tr>
<tr>
<td>Samples per source symbol, (N)</td>
<td>20</td>
</tr>
</tbody>
</table>
the relay-to-destination communication. It was shown that the interference at the destination is a major determinant of end-to-end performance; and as a result, almost all source power should be allocated to the relay-to-destination link to achieve acceptable BER performance. Moreover, improper power allocation can significantly degrade system performance. For future work, there is scope to examine the system performance when multiple backscatter relays are introduced.

ACKNOWLEDGEMENT

This work was supported by the Australian Research Council’s Discovery Project Funding Scheme under Project DP170100939.

REFERENCES

VI. CONCLUSION

In this paper, the BER performance of a new DF backscatter relaying scheme was examined. The optimal power allocation problem at the source node was also studied to determine the power of the CW signal transmitted by the source to support