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Abstract—For a sensor based machine-type communication
(MTC) device, transmission is a power hungry operation and
blindly applying too much data compression may even exceed the
cost of transmitting raw data, thus losing its purpose. Hence, it is
important to investigate the trade-off between data compression
and transmission energy costs. We consider a system that is
composed of an energy constrained sensor based MTC device
and a sink node, and devise an optimal data compression and
transmission policy with an objective to maximize the lifetime of
the sensor based MTC device whilst satisfying specific delay and
bit error rate (BER) constraints when statistical channel gain is
known at the sensor node. Our results show that a jointly opti-
mized compression-transmission policy achieves 100% to 1500%
better performance as compared to optimizing transmission only
without compression under given BER and delay constraints.
Importantly, the gain is most profound in the low latency regime.

Index Terms—Machine-type communication, lifetime, data
compression, data transmission, energy efficiency.

I. INTRODUCTION

The Internet of things (IoT) has the potential to transform
the way we live and work. However, the limited lifetime of
battery operated machine-type communication (MTC) devices
is holding back the potential of IoT [1]. Delivering power
wirelessly to MTC devices is one possible solution, which is
currently being researched [2], [3]. Another solution, which
is the focus of this work and is an important complementary
solution to wireless power transfer, is to intelligently design
the operation of the sensor based MTC devices in order to
maximize their lifetime.

The node-lifetime is defined as the time taken by the MTC
device to deplete all of its energy. The existing literature pro-
poses power-rate adaptation [4–8] as a solution to maximize
the node-lifetime. These works consider transmission energy
as a monotonically increasing function of the transmission rate.
Therefore, these schemes propose to transmit data at lower
transmission rates under given delay constraint to achieve
energy efficiency. These schemes assume the distance between
communicating devices is large, thus the transmit power dom-
inates the circuit power [9], [10]. However, in many practical
sensor networks, e.g., body area networks, the distance is
fairly small and the circuit power cost cannot be ignored. This
is the case particularly for smaller modulation constellation
sizes, which are more common in sensor networks. Therefore,
simply decreasing the transmission rate may not necessarily
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improve energy efficiency in practical sensor networks.
In many future IoT applications, e.g., based on multimedia

monitoring [11], the amount of sensed data (raw data) can
sometimes be very large, resulting in high transmission cost.
In this regard, data compression schemes have been proposed
[12–15], which decrease the amount of data to be transmitted
and thus alleviate the transmission energy cost.

Design Challenge: The transmission energy cost depends
upon the compressed data size and transmission rate [9].
Furthermore, blindly applying too much compression may
even exceed the cost of transmitting raw data, thereby losing its
purpose [16]. Hence, it is interesting to investigate this trade-
off, between data compression and transmission energy costs,
to optimally utilize the energy resources in order to maximize
the node-lifetime for sensor based MTC devices.

Paper contributions: We consider a monitoring system in
which an energy constrained sensor node performs three oper-
ations: (i) data sensing, (ii) compression, and (iii) transmission
to sink node. The sensor node devises an optimal compression
and transmission policy with an objective to extend its lifetime.
In this regard, we investigate the following important problem:

Problem: What is the optimal compression and transmission
policy that minimizes the compression and transmission energy
cost under specific delay and bit error rate (BER) constraints?

We study this problem in the scenario when only the
statistical channel gain is known at the sensor node. Our
results show that a jointly optimized compression-transmission
policy performs much better than optimizing transmission
only without compression under any given BER and delay
constraints, particularly when the delay constraint is stringent.
The optimal level of compression is insensitive to the change
in the BER requirement. However, the optimal transmission
rate increases as the BER constraint gets less stringent.

II. SYSTEM MODEL

We consider a system consisting of a sensor node transmit-
ting its sensed data to a sink node, as illustrated in Fig. 1.
The sensor node is battery operated and energy constrained,
whereas the sink node has no energy constraint. The system
follows a block-wise operation with a block of duration T , as
shown in Fig. 2. Within each time block the sensor node per-
forms three main functions, i.e., (i) sensing, (ii) compression,
and (iii) transmission, each having individual completion time
and energy cost.
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Fig. 1: Illustration of the considered system model.

For energy efficient operation, we employ radio duty cycling
(RDC), i.e., the radio is kept in the sleep state except dur-
ing the transmission process. Moreover, the micro-controller
unit (MCU) is kept in the inactive state, when it is neither
compressing nor transmitting data, usually referred to as deep
sleep. The transition periods from sleep to active states and
vice versa are fast enough to be negligible for both radio and
MCU. We assume the power consumed by the radio and MCU
is negligible during inactive states.1

Sensing: We consider that the data sensing can be done
in parallel with the compression and transmission processes.
The sensed data during a given time block, is available for
transmission at the start of next time block, which is in line
with prior works [5–8]. We assume that the periodic data
sensing, to acquire a fixed amount of data, consumes a constant
time and energy [17]. Let the time and power spent by the
sensor node to sense data of size D bits be denoted by Tsen
and Psen, respectively.

Compression: Before transmission, the sensed data of size
D bits is compressed into Dcp bits as per the given compres-
sion ratio Dcp

D . Let the compression time be denoted by Tcp.
In this work, we adopt a non-linear compression cost model
given in [18] to compute the compression time as a function
of the compression ratio, Dcp

D , which is given as

Tcp = τD
(
DβD−βcp − 1

)
, (1)

where β is the compression algorithm dependent parameter
and τ is the per bit processing time. In general, β is pro-
portional to the compression algorithm’s complexity and it
determines the time cost for achieving a given compression
ratio for given hardware resources. β can be calculated off-line
for any specified compression algorithm and given hardware
resources. τ depends upon the MCU processing resources and
the number of program instructions executed to process 1 bit
of data. Note that τ does not represent the compression time
per bit. It can be given as

τ =
instructions

program︸ ︷︷ ︸
(i)

× clocks
instruction︸ ︷︷ ︸

(ii)

× seconds
clock︸ ︷︷ ︸
(iii)

× 1

reg︸︷︷︸
(iv)

, (2)

The explanation for the terms in (2) is as follows:
(i) We assume a single-instruction program that is able

to process 1 bit of information.

1The inactive states power cost may affect the lifetime if T is large but
won’t change the compression and transmission design as shown in this work.
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Fig. 2: Timing diagram for compression and transmission
processes and corresponding radio and MCU activity cycles.

(ii) Most instructions in a typical sensor mote’s MCU
are executed in 1 clock cycle. We assume a single
instruction is executed in 1 clock cycle.

(iii) Seconds per clock represents the clock speed, i.e.,
the inverse of the MCU operational frequency which
typically is between few MHz to hundreds of MHz.

(iv) reg represents MCU register size. Typical sensor
mote’s reg is 8-bit, 16-bit or 32-bit. For a 8-bit
processor, the execution time to process 1 bit or up to
8 bits is the same. We assume D is large (thousands
of bits) and it will be processed in chunks of 8 bits.

Let Pcp denote the power consumed by the sensor node
during data compression process. Pcp is the same as the power
consumed by the MCU while processing information, which
is predefined for a given sensor mote.

Transmission: Once the compression process is complete,
the sensor node needs to transmit the compressed data, Dcp,
within the next T − Tcp seconds. The sensed data needs to be
compressed and transmitted within each time block, hence the
delay constraint is T seconds. Let the transmission time be
denoted by Ttx. We consider the sensor node uses M -QAM
modulation scheme with constellation size equal to M = 2l,
where l = 1, 2, 3, .., L. Thereby, Ttx is given as

Ttx =
Dcp

r
, (3)

where

r =
log2

(
M
)

Ts
, (4)

where Ts is the symbol period.
To compute the data transmission power cost, denoted by

Ptx, we adopt a practical model as given in [9]

Ptx =
ε

µ
Pt + Po, (5)

where Pt is the average transmit power level, Po is the commu-
nication module circuitry power, µ is the drain efficiency of the
power amplifier and ε is the peak-to-average ratio (PAR) which
depends upon the modulation scheme and its order. Since, we
consider M -QAM modulation, ε is given as [19]

ε = 3

√
M − 1√
M + 1

. (6)



We assume that the battery used for sensor node possesses a
limited charge storage capacity as well as a maximum current
withdrawal limit. Thus, instantaneous power of any process
at any state should not exceed the maximum allowable limit
in order to ensure the feasibility of the system for practical
systems.

Channel model: The sensor node is located at a distance d
from the sink node. The channel between the two nodes is
composed of a large-scale path loss, with path loss exponent α,
and small-scale quasi-static flat Rayleigh fading channel, i.e.,
the fading channel coefficient h remains constant over a time
block and is independently and identically distributed from
one time block to the next. The additive noise is assumed to
be AWGN with zero mean and variance σ2.

The probability distribution function of the instantaneous
channel gain, |h|2, is exponentially distributed and is given as

f
(
|h|2
)
,

1

ς
exp

(
− |h|

2

ς

)
, |h|2 > 0, (7)

where ς represents the scale parameter of the probability
distribution. We assume the sink node has perfect estimate of
the channel but no instantaneous feedback is available. Only
the statistical channel information is available at the sensor
node.

Bit error rate (BER) expression: Various BER expressions
exist in the literature for M -QAM. Here, we use the following
BER bound defined for M -QAM [20], since it is easy to invert
in order to obtain M as a function of the required BER

BER 6 ω2 exp
(
− ω1

(M − 1)
γ

)
, (8)

where ω1, ω2 are constants and γ represents the received
signal-to-noise ratio (SNR) which is defined as follows [21]

γ = κ
Pt|h|2

σ2dα
, (9)

where κ =
(
λ
4π

)2
is the attenuation factor and λ is the

wavelength. For M > 4 and 0 6 γ 6 20 dB, the bound
in (8) with ω1 = 1.5 and ω2 = 0.2, is tight to within 1 dB of
the exact result in [21].

Node Lifetime We assume that the sensor node’s battery
is initially fully charged. The node lifetime, denoted by TNL,
is defined as the time taken by the node to deplete all of its
battery energy. TNL can be given as

TNL =
BcapVop

Pavg
, (10)

where Bcap is the battery capacity that is the measure of the
charge stored by the battery, Vop is the operating voltage, and
Pavg is the average power consumed during time block T and
is given as

Pavg =
TsenPsen + Ψ

T
, (11)

where Ψ is the energy consumed by the compression and
transmission processes within a time block which is given as

Ψ = TcpPcp + TtxPtx. (12)

III. NODE-LIFETIME MAXIMIZATION PROBLEM

To guarantee reliable data transmission performance as per
the desired QoS requirements, we specify two constraints:

1) Both compression and transmission processes are re-
quired to be completed within a delay deadline.

2) Transmission scheme is required to meet certain BER
performance.

Hence, the goal is to prolong the node-lifetime, TNL, for the
given energy resources and QoS requirements.

In this work, the main problem we want to address is to
determine the optimal compression and transmission policy
which will maximize TNL under given delay constraint and
BER performance. From (10), we can see that TNL is cal-
culated using a predefined initial energy level, BcapVop, and
the controllable rate of energy consumption, Pavg, which is
a function of Ψ. TNL is inversely proportional to Ψ, i.e.,
maximizing TNL is equivalent to minimizing Ψ, which inherits
the tradeoff between data compression and transmission.

Since only statistical channel information is available at
the sensor node, thus the sensor node cannot adapt compres-
sion and transmission policy to varying channel conditions
in different time blocks. Instead the sensor node needs to
determine a constant compression ratio and transmission rate,
and subsequently use it in each time block.

Given the fading power gain distribution, f(|h|2), the node-
lifetime maximization problem can be expressed as follows

minimize
M,Pt,Dcp

Ψ(M,Pt, Dcp)

subject to Tcp + Ttx 6 T, P{BER 6 φ} > ϑ,

M > 2, Pt > 0, Dcp > 0, Dcp 6 D.

(13)

where the first constraint in (13) defines the delay constraint
for the data delivery, i.e., both compression and transmission
processes should be completed within the deadline, and the
second constraint in (13) mandates that the probability of
having as acceptable level of BER should be greater than
certain percentage. Specifically, φ denote the maximum ac-
ceptable BER and ϑ denote the required minimum probability
of achieving the acceptable BER performance. Note that an
alternative way of constraining the BER performance is to put
an upper bound on the average BER over all time blocks.
But we do not adopt it because it gives minimal control
over the BER performance in each time block. The remaining
constraints reflect practical range of values for M,Pt, Dcp.

In order to solve (13), we first present Proposition 1, which
allows the solution to (13) to be given by Theorem 1.

Proposition 1. The optimal Pt to minimize Ψ(M,Pt, Dcp) for
given values of M and Dcp while satisfying the constraints in
(13) is given by

Pt = (M − 1)
Ω

ς ln(ϑ)
. (14)

where

Ω =
σ2dα ln(φ/ω2)

ω1κ
. (15)

Proof: The proof is provided in Appendix A.



Using the result in Proposition 1, substituting Tcp, Ttx, r,
Ptx, ε and Pt from (1), (3), (4), (5), (6) and (14), respectively,
in (12) yields Ψ as a function of M and Dcp, which can be
expressed as follows

Ψ(M,Dcp) = τDβ+1D−βcp Pcp − τDPcp

+
DcpTs ln(2)

ln(M)

(
3Ω(M

1
2 − 1)2

µς ln(ϑ)
+ Po

)
. (16)

Now a simpler equivalent optimization problem with only
two design parameters, i.e., M,Dcp, needs to be solved and
the third parameter Pt can be obtained using the result in
Proposition 1. Accordingly, the solution to the optimization
problem in (13) is given by the following theorem.

Theorem 1. In solving the optimization problem in (13), the
optimal constellation size is given by

M∗ =

{
M̃, if Q(M̃, D̃cp) < T.

M̂, otherwise.
(17)

where M̃ and M̂ are given by the solution of the following
equations which can be solved numerically using VPA method

3Ω
(
M̃

1
2 − 1

)(
(ln(M̃)− 1)M̃

1
2 + 1

)
= µςPo ln(ϑ), (18)(

T + τD − τDξ
−β
β+1

)
ln
(
M̂
)

= DTsξ
1

β+1 ln(2), (19)

where

ξ =
Pcp−Po+ 3Ω

µς ln(ϑ)

(
M̂

1
2−1

)(
(ln(M̂)−1)M̂

1
2 +1

)
− 3Ω
ςτβµ ln(ϑ)

(
M̂

1
2 − M̂

) , (20)

respectively,

Q(M̃, D̃cp) , τDβ+1D̃−βcp − τD +
D̃cpTs

log2

(
M̃
) , (21)

and

D̃cp

D
=

(
τβPcp ln(M̃)

− 3ΩTs ln(2)
µς ln(ϑ)

(
M̃

1
2 − 1

)2
+ PoTs ln(2)

) 1
β+1

, (22)

and the optimal transmit power is given by

P ∗t =
(
M∗ − 1

) Ω

ς ln(ϑ)
, (23)

and the optimal compression ratio is given by

D∗cp

D
=

{
D̃cp

D , if Q(M̃, D̃cp) < T.
D̂cp

D , otherwise.
(24)

where D̂cp

D = ξ
1

β+1 .

Proof: The proof is provided in Appendix B.

Remark 1. M̃ and D̃cp provide a lower bound on the
optimization problem in (13). M̃ and D̃cp are optimal de-
sign parameters when the first constraint in (13) is slack,
i.e., Q(M̃, D̃cp) < T , and the other constraints are also
slack. M̂ and D̂cp are optimal design parameters when all
constraints in (13) are slack except for the first constraint.

TABLE I: System Parameter Values

Symbol Value Symbol Value Symbol Value
µ 0.35 Vop 3 V D 20kb
ς 1 Bcap 9000 As τ 0.35 ns/b
Pcp 24 mW Ts 16 µs β 5
Psyn 50 mW ω2 0.2 σ2 -174 dBm
Pfil 2.5 mW ω1 1.5 φ 10−3

Pmix 30.3 mW d 20 m T 50 ms

Remark 2. The classical works [5], [6] and other related
studies, which do not consider data compression, advocate
that using lower transmission rates is the most energy efficient
strategy. However, in our case the combined data compression
and transmission rate strategy suggests that there exists a
lower bound on the total energy cost of compression and
transmission. In this regard, the corresponding optimal design
parameters cost a finite delay, Q. Therefore, if the required
delay constraint is higher than this delay then these design
parameters will maximize the lifetime and are optimal.

Remark 3. The optimal constellation size given by (17) is
real valued. Thus, for practical admissibility, the transmission
policy should opt to select the closest value from the available
set of modulation order values. If a lower value is closer
then it can only be selected if the first constraint in (13) is
slack, else a higher value should be selected which will surely
satisfy the first constraint in (13). This optimal practical value,
denoted by M∗pr, is subsequently used to determine P ∗t and

D∗
cp

D .
M∗pr can be given by the following conditional expression

M∗pr =


min

(
2L, υ1

)
, if |M∗ − υ1| 6 |M∗ − υ2|

andQ(υ1, D̆cp) < T.

min
(
2L, υ2

)
, otherwise.

(25)

where min(·) is the min operation, | · | represents the absolute
value, 2L is the maximum modulation order supported by the
system, υ1 = 2blog2(M∗)c, υ2 = 2dlog2(M∗)e, Q is defined in
(21), b·c and d·e is the floor and ceil operations, respectively.
Note, the compressed data size D̆cp, is a function of the
constellation size 2blog2(M∗)c.

IV. RESULTS

In this section, we present the numerical results to observe
the performance of the proposed scheme. Unless specified
otherwise, the values adopted for the system parameters are
shown in Table I. To illustrate the advantage of joint opti-
mization of data compression and transmission rate, we also
consider a baseline scheme as follows. The baseline scheme
considers the same system model except data compression is
not employed and it maximizes the node-lifetime by optimiz-
ing transmission rate only while meeting the delay and BER
constraints. The strategy followed to optimize the transmission
rate policy for the baseline scheme is essentially the same as
in the state of the art [4], [6], [7]. This problem can be given
as in (13) by substituting Dcp = D. The optimal constellation
size for this scheme, denoted by M∗nc, can be obtained using
Proposition 2.
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Fig. 3: Lifetime vs. BER (a) and delay constraints (b), when T = 50 ms for (a) and φ = 10−3 for (b), and ϑ = 0.95.

Proposition 2. The optimal constellation size to maximize
lifetime without performing compression while satisfying con-
straints in (13) is given by the following conditional expression

M∗nc =

M̃, if DTs

log2

(
M̃
) < T.

exp
(
DTs ln(2)

T

)
, otherwise.

(26)

where M̃ is given by the solution of the following equation
which can be solved numerically using the VPA method

3Ω
(
M̃

1
2 − 1

)(
(ln(M̃)− 1)M̃

1
2 + 1

)
= µςPo ln(ϑ), (27)

and the optimal transmit power is given by

P ∗t =
(
M∗nc − 1

) Ω

ς ln(ϑ)
. (28)

Proof: The proof follows similar steps as the proof of
Proposition 1 and Theorem 1, by substituting Dcp = D.
Hence, it is omitted for brevity.

Advantage of Proposed Scheme: Fig. 3a plots the node
lifetime, TNL (days), versus the BER constraint, φ, for system
parameters in Table I. The lifetime is plotted with the optimal
(real valued) M∗ in (17), the practical (quantized value) Mpr

∗

in (25) and the baseline scheme in Mnc
∗ in (26) in Fig. 3a.

We can see that the gain compared to the baseline scheme is
significant - between 190% to 400% for the considered range
of BER constraint. This shows the advantage of joint optimal
compression and transmission rate control. In addition, we
can see that the node-lifetime is not so significantly affected
by the BER constraint. As the BER constraint is relaxed, the
lifetime slightly increases. For instance, as BER constraint is
varied from stringent BER requirement, i.e., 10−6, to loose
BER requirement, i.e., 10−2, the lifetime only changes by
around 40%. Finally, the performance with practical modu-
lation scheme is very close to the optimal performance.

Fig. 3b plots the node lifetime, TNL (days), versus the delay
constraint, T (ms), for system parameters in Table I. The
lifetime is plotted with the optimal (real valued) M∗ in (17),
the practical (quantized value) Mpr

∗ in (25) and the baseline
scheme in Mnc

∗ in (26) in Fig. 3b. It can be seen from the
figure that the lifetime is significantly affected by the delay
constraint. Note that T = 10 ms corresponds to low latency
applications, while T = 100 ms corresponds to application

scenarios with relatively less stringent delay requirements. As
before, the performance of practical modulation scheme is very
close to the optimal performance.

From Fig. 3a and 3b we can say that joint optimization is
much better than no compression under any BER and delay
constraints. In addition, the gain is relatively larger when the
delay constraint is stringent, i.e., in the low latency regime.

Impact of BER and Delay Constraints: Fig. 4a plots that for
a given BER constraint, φ, as ϑ increases both the transmission
rate and the level of compression decrease. However, in the
case of stringent BER requirement, i.e., ϑ = 0.99, both
the level of compression and transmission rate remain almost
constant for different values of φ. For a given value of ϑ, the
level of compression increases with φ.

Fig. 4b shows that for a given delay constraint, as ϑ
increases, the transmission rate decreases. This is because the
value of the upper bound Q in (21) increases as ϑ increases.
Thus, the level of compression increases until this upper bound
value is reached and afterwards it remains almost constant.

V. CONCLUSION

We investigated the joint optimization of compression and
transmission strategy for an energy-constrained sensor node,
and illustrated their tradeoff. The joint optimization performs
much better than only optimizing transmission rate without
compression under any BER and delay constraints. The gain
is relatively large when the delay constraint is stringent, i.e.,
in the low latency regime. It is best to reduce compression and
increase the transmission rate when the delay constraint gets
stringent and vice versa. The optimal level of compression has
an inverse relationship with severity of BER requirement when
the delay constraint is stringent and vice versa.

APPENDIX A
PROOF OF PROPOSITION 1

Substituting BER constraint (8) and SNR expression (9) in
second constraint in (13) yields

P

{
ω2 exp

(
− ω1

(M − 1)

κPt|h|2

σ2dα

)
6 φ

}
> ϑ. (29)



10−6 10−5 10−4 10−3 10−2
1.2

1.5

1.8

2.1

2.4

2.7

3

BER constraint: φR
ec
ip
ro
ca

l
o
f
co

m
p
re
ss
io
n
ra
ti
o
:

D
D

∗ cp

D
D∗

cp

0.2

0.3

0.4

R
a
te
:

lo
g
2
M

∗
T
s

(M
b
p
s)ϑ = 0.90

ϑ = 0.95

ϑ = 0.99

rate

(a)

10 20 30 40 50 60 70 80 90 100
1.2

1.5

1.8

2.1

2.4

2.7

3

Delay constraint: T (ms)R
ec
ip
ro
ca

l
o
f
co

m
p
re
ss
io
n
ra
ti
o
:

D
D

∗ cp

D
D∗

cp

0.1

0.4

0.7

1

1.3

1.6

R
a
te
:

lo
g
2
M

∗
T
s

(M
b
p
s)ϑ = 0.90

ϑ = 0.95

ϑ = 0.99

rate

(b)
Fig. 4: Optimal compression and transmission rate vs. BER (a) and delay constraints (b) for different values of ϑ, when
T = 50 ms for (a) and (b) and φ = 10−3 for (c).

Solving (29) for fading power gain, |h|2, yields

P

{
|h|2 > (1−M)

σ2dα ln(φ/ω2)

ω1κPt

}
> ϑ. (30)

The left hand side of (30) represents the complimentary
cumulative distribution function (ccdf) for |h|2. Since, f

(
|h|2
)

is exponentially distributed, thus (30) can be given as

1−

[
1− 1

ς
exp

(
(M − 1)

σ2dα ln(φ/ω2)

ςω1κPt

)]
> ϑ. (31)

Solving (31) for Pt yields

Pt > (M − 1)
σ2dα ln(φ/ω2)

ςω1κ ln(ςϑ)
. (32)

Ψ is an increasing function of Ptx which is an increasing
function of Pt. Hence, the best choice of Pt to minimize Ψ
while satisfying the constraint in (32) is the minimum value
obtained by setting (32) with equality. Thus, Pt can be given
as a function of the constellation size, M , as expressed in (14).

APPENDIX B
PROOF OF THEOREM 1

It can be shown that (16) is not convex in M . By substituting
M = exp(z) in (16), Ψ can be equivalently defined as

Ψ̃(z,Dcp) = τDβ+1D−βcp Pcp − τDPcp

+
DcpTs ln(2)

z

(
3Ω(exp(z/2)− 1)2

µς ln(ϑ)
+ Po

)
. (33)

Now, the problem in (13) can be equivalently given as

minimize
z,Dcp

Ψ̃(z,Dcp)

subject to τ
Dβ+1

Dβ
cp
− τD +

DcpTs ln(2)

z
− T 6 0,

2− ez 6 0, −Dcp 6 0, Dcp −D 6 0.

(34)

For brevity we omit the proof, however using basic calculus
and with some algebraic manipulation, it can be shown that the

problem in (34) is a convex optimization problem. Lagrangian
function for (34) can be given as in (35) shown at the top
of the next page, where Λi ∈ Λ = {Λ1,Λ2,Λ3,Λ4} is the
Lagrangian multiplier associated with the ith constraint.

The Karush-Kuhn-Tucker (KKT) conditions for (34) are:

τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T 6 0,

2− exp(z) 6 0, −Dcp 6 0, Dcp −D 6 0,
(36a)

Λ1 > 0, Λ2 > 0, Λ3 > 0, Λ4 > 0, (36b)

Λ1

(
τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T

)
= 0,

Λ2(2−exp(z)) = 0, Λ3(−Dcp) = 0, Λ4(Dcp−D) = 0,
(36c)[∂L

∂z

∂L
∂Dcp

]>
= [0 0]>. (36d)

where [·]> is the transpose operator.
Taking partial derivative of (35) with respect to z and by

setting ∂L
∂z = 0 and after some simplification we get

− 3ΩTs

µς ln(ϑ)

(
exp
(
z/2
)
− 1
)(

(z − 1)exp
(
z/2
)

+ 1
)

+ TsPo

+ Λ1Ts +
Λ2z

2exp(z)

Dcp ln(2)
= 0. (37)

Taking partial derivative of (35) with respect to Dcp and
setting ∂L

∂Dcp
= 0 and after some simplification we get

−
zτβDβ+1D−β−1

cp Pcp

ln(2)
− 3ΩTs

µς ln(ϑ)

(
exp
(
z/2
)
−1
)2

+TsPo

+ Λ1

(
Ts −

zτβDβ+1D−β−1
cp

ln(2)

)
− Λ3z

ln(2)
+

Λ4z

ln(2)
= 0. (38)

From (36c) we know either Λi is zero or the associated
constraint function is zero for any given i. First we consider
one of the possible cases that is Λ1, Λ2,Λ3,Λ4 do not exist.
Accordingly, plugging in Λ1 = 0,Λ2 = 0,Λ3 = 0,Λ4 = 0 in
(37), (38) yields following expressions, respectively,

3Ω

µς ln(ϑ)

(
exp
(
z/2
)
−1
)(

(z−1)exp
(
z/2
)
+1
)

= Po, (39)



L(z,Dcp,Λ) = τDβ+1D−βcp Pcp − τDPcp + z−1DcpTs ln(2)

(
3Ω

µς ln(ϑ)
(exp(z/2)− 1)2 + Po

)
+ Λ1

(
τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T

)
+ Λ2(2− exp(z)) + Λ3(−Dcp) + Λ4(Dcp −D),

(35)

zτβDβ+1Pcp

Dβ+1
cp Ts ln(2)

+
3Ω

µς ln(ϑ)

(
exp
(
z/2
)
− 1
)2

= Po. (40)

Solving (40) for Dcp yields

Dcp

D
=

(
zτβPcp

− 3ΩTs ln(2)
µς ln(ϑ)

(
exp(z/2)−1

)2
+PoTs ln(2)

) 1
β+1

. (41)

Numerically solving (39) for z yields its value z̃. Substitut-
ing this value of z in (41) and solving for Dcp yields its value
D̃cp. z̃ and D̃cp provide a lower bound on problem in (34). It
can be shown that z̃ and D̃cp satisfy all the KKT conditions.
Hence, the derived solution in (39) and (41) is the optimal
solution for (34), when all constraints are slack.

Now consider that Λ1 exits and Λ2,Λ3,Λ4 do not exist.
Accordingly, plugging in Λ1 6= 0,Λ2 = 0,Λ3 = 0,Λ4 = 0 in
(36c), (37), and (38) yields following expressions, respectively,

τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T = 0, (42)

−
3Ω
(
exp(z/2)− 1

)(
(z−1)exp

(
z/2
)

+ 1
)

µς ln(ϑ)
= Po + Λ1, (43)

Λ1

(
1− zτβDβ+1D−β−1

cp

Ts ln(2)

)
−
zτβDβ+1D−β−1

cp Pcp

Ts ln(2)
+ Po

− 3Ω

µς ln(ϑ)

(
exp
(
z/2
)
− 1
)2

= 0. (44)

Solving (43) for Λ1 and substituting its value in (44) yields

Dcp = Dζ
1

β+1 (45)

where

ζ =
Pcp − Po + 3Ω

µς ln(ϑ)

(
exp(z/2)−1

)(
(z−1)exp(z/2)+1

)
− 3Ω
τβµς ln(ϑ)

(
exp(z/2)− exp(z)

) .

Substituting Dcp from (45) in (42) yields

TD−1 + τ − τζ
−β
β+1 = z−1Ts ln(2)ζ

1
β+1 . (46)

Numerically solving (46) for z yields its value ẑ. Substi-
tuting this value of z in (45) and solving for Dcp yields its
value D̂cp. It can be shown that ẑ and D̂cp satisfy all the KKT
conditions. Hence, (45) and (46) is the optimal solution for
(34), when all constraints are slack except the first constraint.
All other cases violate one or more KKT conditions.

Finally, the optimal values of M and Dcp for both cases can
be obtained by substituting z = ln(M) in (39), (41) and (46),
(45), respectively, which will minimize the objective function
in (13). Finally, by substituting the optimal value of M in (14)
we can determine the optimal Pt which will minimize Ψ.
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