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Abstract—In this paper, we develop low-complexity iterative
channel estimation techniques for emerging IDMA systems. The
channel estimators make use of pilots as well as soft decoded data
information. We derive a lower bound for channel estimation
error that reflects the reliability of soft decoded data. We
show that the estimators perform close to a minimum variance
unbiased estimator as the mean square error (MSE) approaches
the lower bound. Numerical results on the MSE and BER
performance also show that the proposed channel estimators are
able to track the time-varying channel states.

I. INTRODUCTION

Recently, a spread-spectrum multiple access scheme named
interleave-division multiple-access (IDMA) has been pro-
posed [1] [2]. Unlike code-division multiple-access (CDMA)
which uses orthogonal or near-orthogonal spreading sequences
to achieve bandwidth expansion and user separation, IDMA
devotes the entire bandwidth expansion to low-rate channel
FEC coding. Each user in an IDMA system is assigned
a unique interleaver to separate user transmissions. Recent
studies have shown that low-rate coded IDMA approaches
the multiple access channel capacity even with equal power
allocation [3]. Furthermore IDMA is able to reach the channel
capacity [4] and maximum spatial efficiency [5] if optimal
power allocation scheme is applied.
Low-complexity iterative multiuser detection (MUD) has

been extensively studied since the advent of turbo codes. This
detection approach has been applied to CDMA [6], trellis-code
multiple-access (TCMA) [7] and to IDMA as well [1] [2]. For
coded IDMA systems, an iterative partial decoding scheme is
proposed to further reduce the receiver complexity and still
guarantee fast decoding convergence [8].
For a coherent receiver, robust channel estimation is crucial

for detection. In IDMA, channel estimation is performed
at chip level where the signal-to-noise ratio (SNR) is very
low. This challenging situation requires sophisticated channel
estimation. On the other hand, the complexity of the channel
estimator needs to be kept low in an iterative receiver. Pilot-
aided channel estimation is first studied in [9], where the
pilot sequence is superimposed on the data sequence to allow
channel estimation and detection to be done at the same
time instant. Therefore, this approach can be adopted in fast
fading channels. For pilot-aided channel estimation, semi-blind
techniques are studied to improve performance over blind
channel estimation techniques. Choi proposes a method that

combines pilots and traffic channel information to perform
channel estimation in CDMA [10]. Schoeneich and Hoeher
develop semiblind channel estimation methods for IDMA
systems that outperform training-based estimation [11] [12].
However, the computational complexity of their methods is
high due to the inverse performed on matrices of long blocks
of chips. In this paper, we develop two low-complexity channel
estimation algorithms which are based on the least square (LS)
approach and the maximal ratio combining (MRC) approach
respectively. Both methods use pilots as well as decoded data
to perform iterative channel estimation for multipath fading
channels. In particular, the MRC method weighs channel
estimates from pilot and data decoding information w.r.t. their
respective reliability to generate a new estimate in an optimal
way. We analyze the mean square error (MSE) of the estimated
parameters using a modified lower bound that is adaptive to
the soft decoding information.
The rest of this paper is organized as follows. In Section II

the IDMA transmitter and receiver structure are presented.
In Section III low-complexity channel estimation methods
are derived and their MSE performances are analyzed. In
Section IV the iterative MUD is outlined. In Section V
simulation results are reported. Finally, conclusions are drawn
in Section VI.

II. IDMA SYSTEM MODEL

We consider an asynchronous IDMA system with K users
transmitting with equal power over a multipath fading channel
using QPSK modulation for simplicity, i.e. a single data
layer as the in-phase component and a single pilot layer as
the quadrature component. Note that our channel estimation
methods can be directly applied to multilayer IDMA systems
as well.

A. Transmitter Structure
Fig. 1(a) shows the transmitter structure of an IDMA

system for user k. The input bit sequence bk of user k is
encoded using a low-rate code, producing a coded sequence
ck = {ck[1], ..., ck[m], ..., ck[M ]}, where M is the length of
the data frame. The coded sequence ck is then permutated
by an interleaver to generate the transmitted data sequence
dk = {dk[1], ..., dk[m], ..., dk[M ]}. A pilot sequence pk =
{pk[1], ..., pk[m], ..., pk[M ]} is generated separately. Finally
dk and pk are in-phase and quadrature modulated respectively,
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Fig. 1. IDMA transmitter and receiver structure

and multiplexed together to form transmitted signals xk, given
by

xk[m] =
√

Eddk[m] +
√

Eppk[m] (1)

where Ed and Ep are the transmitting powers for data and
pilots.

B. Receiver Structure
We use a tapped delay line to model the multipath channel.

Each tap varies independently. Perfect timing is assumed. After
chip-matched filtering, the received signal can be modelled as

r[m] =
K∑

k=1

L∑
l=0

hk,l[m]xk[m − τl] + n[m]

=
K∑

k=1

L∑
l=0

hk,l[m](
√

Eddk[m − τl]

+
√

Eppk[m − τl]) + n[m] (2)

where hk,l is the channel gain of the lth path for user k, τl

represents the delay in lth path, and n is the complex Gaussian
noise with variance N0.
We consider an iterative sub-optimal receiver structure

shown in Fig. 1(b). At each decoding iteration, the multiple
access interference (MAI) and inter-symbol interference (ISI)
are firstly cancelled in the elementary signal estimator (ESE).
The partial signal of lth path for user k after interference
cancellation is given by

ŷk,l[m]=r[m]−
∑
j �=k

L∑
l=0

ỹj,l[m]−
∑
i�=l

ỹk,i[m]

=hk,l[m](
√

Eddk[m−τl]+
√

Eppk[m−τl])+I[m](3)

where ỹj,l is the estimated signal transmitted through lth path
from user j, and I denotes the residual error after interference
cancellation. In the first decoding iteration, only the pilots are
used to estimate the transmitted signals.

The signals after interference cancellation are passed into
the channel estimation module. The channel estimator updates
the estimated channel coefficients of each path for every user,
which are feedback to the ESE. The ESE then focuses on the
multiple access constraints, producing extrinsic log-likelihood
ratios (LLRs) λESE of the transmitted data sequence for each
user. Finally a bank of K single-user decoders (DECs) perform
standard a posteriori probability (APP) decoding using the
ESE outputs, and generate extrinsic LLRs of the transmitted
data. The output LLRs from the DECs produce soft decoded
data, denoted as d̃, which are feedback to the channel estimator
and ESE for the next iteration.

III. CHANNEL ESTIMATION
The channel state information (CSI) is required in MAI/ISI

reconstruction and LLR computation at every decoding itera-
tion. The accuracy of the channel estimates is therefore crucial
to the effectiveness of the iterative receiver performance. In
this section we present two channel estimation algorithms
based on pilots and soft decoded data. The first method is
similar to the semiblind joint least-square channel estimation
method (JLSCE) in [12], but has much lower computational
complexity as it does not require matrix inverse. We also
normalize the least square estimator to obtain an unbiased esti-
mator. The second method performs channel estimation using
pilots and soft decoded data separately, and uses maximal ratio
combining approach to obtain improved channel estimates. In
the first iteration where no soft decoded data are available, we
only use the pilots to perform the channel estimation.

A. Least Square (LS) Channel Estimator
The preliminary LS channel estimator is given by

ĥLS
k,l,m[m] =

1√
Edd̃k[m − τl] +

√
Eppk[m − τl]

ŷk,l[m]

=
√

Eddk[m − τl] +
√

Eppk[m − τl]√
Edd̃k[m − τl] +

√
Eppk[m − τl]

hk,l[m]

+
I[m]√

Edd̃k[m − τl] +
√

Eppk[m − τl]
(4)

where ĥLS
k,l,m[m] is the estimated channel coefficient of lth

path for kth user at sample instant m.
Since the chip rate is very high, it is reasonable to assume

that the channel does not change over a large number of chips.
Hence we apply a moving-average-window (MAW) to reduce
the estimation error, given by

ĥLS
k,l [m] =

1
N

m−1+N/2∑
i=m−N/2

ĥLS
k,l,m[m] (5)

where N is the length of the MAW.
The channel coherent time is given by [13]

Tc ≈ 1
fm

=
c

fcv
(6)

where fm denotes the maximum Doppler frequency shift, fc

is the carrier frequency, c is the speed of light and v is speed
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of the mobile user. It is required that N � Tc

T , where T is
the chip interval.
The LS channel estimator in (5) is biased as

E
(
ĥLS

k,l [m]
)

=
Ed

√
E(‖ d̃k ‖2)+Ep

EdE(‖ d̃k ‖2)+Ep

hk,l[m]≥hk,l[m] (7)

where E(.) denotes the expectation operator. Therefore we
normalize the LS estimator by Ed

√
E(‖d̃k‖2)+Ep

EdE(‖d̃k‖2)+Ep
to generate an

unbiased LS estimator. We denote the normalized LS estimator
as ĥNLS

k,l .
B. Maximal Ratio Combining (MRC) Channel Estimator
The signal after MAI/ISI cancellation is given in (3), which

can be further separated into pilot and data partial signals,
given by

ŷk,l,p[m] = ŷk,l[m] − h̃k,l[m]
√

Epd̃k[m − τl]

≈ hk,l[m]
√

Eppk[m − τl] + I[m] (8)
ŷk,l,d[m] = ŷk,l[m] − h̃k,l[m]

√
Eppk[m − τl]

≈ hk,l[m]
√

Eddk[m − τl] + I[m] (9)

Two preliminary channel estimations are performed as

ĥk,l,p[m] =
1√
Ep

p∗k[m − τl]ŷk,l,p[m]

≈ hk,l[m] +

nk,l,p︷ ︸︸ ︷
1√
Ep

p∗k[m − τl]I[m] (10)

ĥk,l,d[m] =
1√
Ed

d̃∗k[m − τl]ŷk,l,d[m]

≈
√

E
(
‖ d̃k[m − τl] ‖2

)
hk,l[m]

+

nk,l,d︷ ︸︸ ︷
1√
Ed

d̃∗k[m − τl]I[m] (11)

Although the pilot-aided estimates ĥk,l,p produce coarse chan-
nel information, their low power allocation limit the perfor-
mance. On the other hand, the data-derived estimates ĥk,l,d

suffer from bias due to the imperfect feedback information on
data, especially in the first couple of decoding iterations. In
the following we present an enhanced channel estimator by
efficiently combining preliminary statistics in (10) and (11).
We model the combined channel estimator as

ĥMRC
k,l,m [m] = w1hk,l,p[m] + w2hk,l,d[m]

=
(

w1 + w2

√
E(‖ d̃k[m − τl] ‖2)

)
hk,l[m]

+ (w1nk,l,p + w2nk,l,d) (12)

where the optimal weights, w1 and w2, can be found by
minimizing the mean square error (MSE) under the unbiased
constraint, given by

wopt = arg min
w1,w2

(
w2

1σ
2
p + w2

2σ
2
d

)
+η(w1 + w2

√
E(‖ d̃k[m − τl] ‖2) − 1) (13)

where σ2
p and σ2

d are the variance of nk,l,p and nk,l,d respec-
tively, and η is the Lagrange multiplier. Solving (13) we obtain
the optimal weights as

w1 =
1

Ed

Ep
+ 1

(14)

w2 =
Ed

Ep√
E(‖ d̃k[m − τl] ‖2)(Ed

Ep
+ 1)

(15)

Similar to LS channel estimator, we apply a MAW around the
sample instant of interest to obtain the final MRC estimator
denoted as ĥMRC

k,l .

C. MSE Analysis

The performance of channel estimation is limited by the
well known Cramer-Rao lower bound (CRLB) [14]. Given the
signal model in (3), the corresponding CRLB for estimation
over a length-N MAW is given by

MSECRLB =
1
N

N0

Ed + Ep
(16)

However, the CRLB is loose for algorithms based on soft
decoded data. In this section we take soft decoded data
into account to derive a lower bound which can reflect the
reliability of the soft decoding information. To that end, we
assume that the soft decoded data can be modelled as

d̃ = μd + e (17)

where μ = E(‖ d̃ ‖), and e is a zero-mean Gaussian random
variable with variance σ2

e = 1 − E(‖ d̃ ‖)2. This model is
accurate when the soft decoded data are relatively reliable, i.e.
σ2

e is small. Then the signal model of the channel estimator
can be written as

ŷk,l[m] =

(√
Edd̃k[m − τl]

μ
+
√

Eppk[m − τl]

)
hk,l[m]

+
√

Ede

μ
hk,l[m] + I[m] (18)

We assume the channel does not change within the MAW. The
new lower bound from N observations is given by

MSERBLB =
1
N

Edσ2
e

μ2 E
(‖ hk,l ‖2

)
+ σ2

I

Ed + Ep
(19)

where σ2
I = KEd

[
E(‖ d̃ ‖) − 1

]2
+ N0 is the variance of I

and E
(‖ hk,l ‖2

)
represents the average power in lth path

for user k. We call this lower bound the reliability-based
lower bound (RBLB). It can be shown that MSERBLB ≥
MSECRLB , i.e. the RBLB is tighter than the CRLB. The
two lower bounds are the same when the soft decoded data is
fully reliable.
We also compare the MSE between different channel es-

timators to assess their performance. Clearly the biased LS
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estimator, ĥLS
k,l , has larger MSE than the unbiased LS estima-

tor, ĥNLS
k,l . It can be shown that the MSEs of ĥNLS

k,l and ĥMRC
k,l

are given by

MSENLS =
1
N

1 + Ed

Ep
E(‖ d̃ ‖2)(

1 + Ed

Ep

√
E(‖ d̃ ‖2)

)2 σ2
p (20)

MSEMRC =
1
N

1
1 + Ed

Ep

σ2
p (21)

To compare the performance between normalized LS estimator
and MRC estimator, we calculate the ratio between their MSEs
as

β =
MSENLS

MSEMRC
=

(1 + Ed

Ep
)
(
1 + Ed

Ep
E(‖ d̃ ‖2)

)
(

1 + Ed

Ep

√
E(‖ d̃ ‖2)

)2

=
(Ed

Ep
)2E(‖ d̃ ‖2)+1+ Ed

Ep

(
E(‖ d̃ ‖2)+1

)
(Ed

Ep
)2E(‖ d̃ ‖2)+1+ Ed

Ep
2
√

E(‖ d̃ ‖2)
≥1 (22)

The ratio equals 1 when E(‖ d̃ ‖2) = 1, i.e. the soft decoded
data become fully reliable.
From the MSE analysis, we show that the MRC estimator

yields the best performance, while the biased LS estimator
performs the worst. All three estimators produce more accurate
channel estimations as the iterative decoding proceeds. The
unbiased LS estimator will eventually converges to the MRC
estimator provided the data decoding is successful.

IV. ESE AND DEC FUNCTIONS
The ESE performs MAI/ISI cancellation described in Sec-

tion II, and computes the LLRs of the transmitted data.
The DECs perform standard APP decoding using the ESE
outputs, and also generate extrinsic LLRs. We follow the
approach in [2] to compute LLRs for the coherent receiver.
Unlike [2] [12], we do not assume that the channel estimates
to be perfect. In fact we include the variance of the channel
estimation into the ESE functions.
The received signal is given in (2). We model the true

channel coefficient as

h = ĥ + eh (23)

From the central limit theorem, eh is a Gaussian random
variable with variance σ2

h, which is calculated from the channel
estimator. We re-write the received signal as

r[m + τl] = ĥk,l[m + τl]
√

Eddk[m] + ζk,l[m] (24)

where ζk,l includes the Gaussian noise, residual interference
and channel estimation error effect in the received signal from
lth path when the transmitted signal is dk. Then the ESE output
is given by

λESE(dk)[m] = (25)∑L
l=0 2‖ ĥk,l ‖2

√
Ed

Re(ĥ∗
k,l[m+τl]r[m+τl]−E(ĥ∗

k,l[m+τl]ζk,l[m]))
V ar(Re(ĥ∗

k,l[m+τl]ζk,l[m]))

where Re(.) and V ar(.) indicate the real part and the variance
operator respectively. The DECs carry out standard APP
decoding using λESE(dk). The extrinsic LLR output from
DECs, λDEC(dk) are used to generate the soft decoded data,
given by

d̃k[m] = tanh

(
λDEC(dk)[m])

2

)
(26)

V. NUMERICAL RESULTS
In this section, we simulate an IDMA system with K = 15

users and rate-1/10 repetition code only, i.e. a loading factor
of 1.5. The chip rate is 600kcps. A fading channel that
has three equal power delayed paths is used. The carrier
frequency is 5GHz and the speed of the mobile users is
chosen to be 60km/h. This overloaded system together with the
multipath fading channel place a critical condition for channel
estimation.
Fig. 2 shows the MSE performance of the iterative channel

estimators. Overall our MRC method gives the best perfor-
mance. At the start of the iterative process, there is no soft
decoded data available to the channel estimator. Therefore
the LS method, normalized LS method and the MRC method
are equivalent to each other, which leads to the same MSE
performance at the first iteration in Fig. 2(a). As the iterations
proceed, it is shown that the LS method performs much worse
than the normalized LS method and the MRC method at the
same number of iterations. The difference between normalized
LS and MRC is relatively small. For example, the MSE
difference at the 10th iteration between these two estimators
is approximately 10−3 when Eb/N0=12dB. We also include
the RBLB for the 10th iteration as well as the CRLB in the
figure. It can be seen that the RBLB is a tighter lower bound
than CRLB, which agrees with previous analysis. We see that
the MSE of the MRC method approaches the RBLB with a
gap of approximate 2dB.
Similar results are found in Fig. 2(b), where MSEs over

iterations are shown at Eb/N0=10dB. The MSEs of different
estimators are close at the first couple of iterations due to
the poor reliability of the soft decoded data, while their
performance diverges at later iterations. The MSE of MRC
method converges to the lower bounds with 10 iterations.
Fig. 3 shows the bit error rate (BER) performance of the

coherent receiver. Again, we see that the receiver using MRC
channel estimation method has the best performance. The
normalized LS method performs nearly as good as the MRC
method at large number of iterations, both of which achieve
less than 2dB difference from the BER of perfect channel
scenario at the 10th iteration.

VI. CONCLUSION
In this paper, we have developed an coherent receiver

for IDMA systems with integrated channel estimation for
multipath time-varying channels. We studied three different
low-complexity iterative channel estimation methods which
make use of both pilots and soft decoded data. In particular,
the MRC approach minimizes the MSE by assigning optimal
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Fig. 2. MSE performance of the channel estimators in a multipath fading channel
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Fig. 3. BER performance in a multipath fading channel

weights to the preliminary channel estimates from the pilot
and soft decoded data. It achieves better BER performance
compared with LS methods. We also derive a lower bound
for the channel estimator, which reflect the reliability of
soft decoded data information. We show that the MRC and
normalized LS method converge to the bound.
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