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The Bass Toy Model

I The Bass model is an abstract model of social interaction,
based upon two characteristics: innovation and imitation.

I It can be used by firms to estimate the consumption behaviour
of their product demand.

I Although very abstract, it introduces in a clean manner the
following characteristics of dynamic networks:

I Time, both discrete and continuous;

I Dependence upon other individuals (as a
neighbourhood, or generally);

I Convergence to a stationary solution, or ‘steady
state’.

I The Bass model can also be used to investigate how firms
adopt their products according to their competitors, resulting
in a supply-side model of innovation vs. imitation.



The Bass Toy Model: Discrete

I The Bass model assumes that there are two different forms of
social behaviour:

I Innovation, which occurs at a rate γ̃;

I Imitation, which occurs at a rate δ̃.

I In discrete time (t = 1, 2, . . .), the law of motion for the
population of consumers is:

p(t + 1) = p(t) + γ̃(1− p(t)) + δ̃(1− p(t))p(t),

where p(t) is the fraction of the population at time t who are
currently consumers of the firm’s product.

I Thus, it is the proportion of the consumer population that is
changing over time.



The Bass Toy Model: Continuous
I Often, it is easier mathematically to investigate models where

the time interval of interaction is very much smaller than the
time interval of analysis.

I In the limit of an extremely small (actually: infinitesimal) time
interval ∆t, we assume that time is continuous.

I In continuous time, γ̃ = γ∆t, δ̃ = δ∆t and the Bass model
becomes:

p(t + ∆t) = p(t) + γ̃(1− p(t)) + δ̃(1− p(t))p(t)⇒
p(t + ∆t)− p(t) = (γ∆t + δp(t)∆t)(1− p(t))⇒

p(t + ∆t)− p(t)
∆t

= (γ + δp(t))(1− p(t)).

I Taking the limit as ∆t → 0 yields an ordinary differential
equation or ODE:

p′(t) = (γ + δp(t))(1− p(t)).



The Bass Toy Model: Solving the ODE

I Let’s solve the resulting ODE for the Bass model: this means
finding a function p(t) that depends upon γ, δ, and t.

I To do this we need an initial condition for the distribution of
product consumers–let’s assume that at time t = 0, there are
no consumers, i.e. p(t) = 0.

I Solving this ODE isn’t particularly easy, because it is
non-homogeneous and non-linear in p.

I But we can get some idea of the solutions we obtain by looking
at the implicit solution of the system–the following graphic
displays the qualitative shape of the p(t) solution using
Romberg interpolation of the ODE, for a few γ and δ values:



The Bass Toy Model: Implicit Solution
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I Note here that the shape of the implicit solution remains
essentially the same, but shifts according to the fraction δ/γ.



The Bass Toy Model: Qualitative Features

I We learn a great deal about the system even before explicitly
finding a solution.

I For example, we can see that more consumers will purchase
the product as time goes by.

I In addition, in the limit (‘infinite time’), everyone will consume
the product.

I Finally, we can see that when there is a higher rate of
imitation (δ) over innovation (γ), convergence is slower than
the opposite–it takes longer for everyone to purchase the
product. A producer, then, would like to influence consumers
to imitate more.



The Bass Toy Model: Explicit Solution

I The explicit solution of the ODE is:

p(t) =
1− e−(δ+γ)t

1+ δ
γe
−(δ+γ)t

⇔ p(t̃) =
1− e−(1+q)t̃

1+ qe−(1+q)t̃
,

where q := δ
γ is the ratio of imitation to innovation, and

t̃ := γt (we’ll just continue to call this t in what follows).
I Note that as expected from the qualitative analysis, the ratio q

is what matters–time is rescaled according to the value of γ,
but this does not affect the solution.



Convergence to a Stationary State

I Now that we have the explicit solution we can confirm what
we expected from the qualitative results–that starting from a
consumer base of zero, eventually all consumers will purchase
the product.

I We can see this by taking the limit of the explicit solution for
p(t), as time goes to infinity:

p? := lim
t→∞

p(t) =
1− e−∞

1+ δ
γe
−∞
⇒

p? = 1.

I We can also verify p? = 1 is a stationary solution in the ODE.



Stability of the Stationary State
I Let’s modify the model slightly by allowing for a very small

chance that consumers return the product immediately after
purchasing it. We call this chance η and assume that
δ,γ� η. How does this change our possible convergence to
p? = 1?

I This exercise is known as a perturbation of the dynamical
system. Perturbations are important for stability analysis in
addition to understanding the impact of using a model as an
approximation to a more complicated environment.
Perturbation analysis is used extensively in the natural and
social sciences.

I We modify the Bass model appropriately:

p′(t) = (γ + δp(t))(1− p(t))− ηp(t)⇒
p′(t) = γ + (δ− γ− η)p(t)− δ(p(t))2. (1)



Stability of the Stationary State

I Note that the effect of a small perturbation is to (in effect)
slightly decrease the impact of both innovation and imitation.
Part of the existing consumer base decides to return the
product and hence ‘undo’ the positive effect of consumer
adoption, but there is a continuing second-order impact of
imitation that is unaffected.

I The explicit solution of the resulting ODE is actually
significantly more complicated. We also see from the ODE
that that the stationary state p? = 1 only exists when η → 0,
as p′(t) = −η.



Stability of the Stationary State

I The perturbation could equally be called another trajectory
η(t) := p(t)− p? = p(t)− 1. Key: If p? is stable, then η(t)
goes to zero as t → ∞.

I Taking the derivative dη(t)/dt leads to a condition on the
derivative of the original ODE system, namely:

The stationary state p? = 1 is stable if f ′(p?) < 0,
where

f (p) := γ + (δ− γ)p − δ(p(t))2

I But we know that

f ′(p?) = (δ− γ)− 2δp? = −γ− δ < 0.



Social Interaction and Rules

I The Bass Model is a simple, yet powerful abstraction of real
social interactions. Its main weakness is that it does not allow
for individuals to interact–rather, the population acts ‘on
average’ to describe the behaviours of innovation and
imitation.

I By contrast, agent-based models (ABMs) are designed from
the beginning to facilitate strategic interactions between
individuals, known as agents.

I ABMs are useful across a wide spectrum of social phenomena,
but can also be used as expert systems, classifiers, and even
symbolic computers.

I This is because the agents in ABMs exhibit rules-based
behaviour–if a condition (or conditions) are met, a rule (or
rules) are executed. Rules can be both deterministic or
random.



Rules-based Behaviour: The Prisoner’s Dilemma

I Consider a set of agents with only two actions: cooperate and
defect. Agents select one of these actions every time they
meet another agent (agents only meet pairwise).

I An agent receives a payoff based upon their action and the
action of the opposing agent.

I The highest payoff occurs when the agent selects defect when
the other agent selects cooperate.

I But the agent receives the worst payoff when selecting defect
while the other agent selects defect.

I Somewhere in the middle is the payoff when both agents select
cooperate.



The Prisoner’s Dilemma

I This action-to-payoff mapping can be summarised in a payoff
matrix–the following is a representative example:

Agent 1

Agent 2
C D

C 8, 8 −10, 16
D 16,−10 −5,−5

I So if e.g. Agent 1 selects “[C]ooperate” and Agent 2 selects
“[D]efect”, then Agent 1 receives a payoff of -10 (the first
entry in the top right box) while Agent 2 receives a payoff of
16 (the second entry in that box).



The Prisoner’s Dilemma–Static

I If the agents met only once, and selected their actions only
once, then there is an equilibrium concept known as a Nash
equilibrium which allows one to predict what the agents will
do.

The driving force behind the Nash equilibrium is that
agents will do as well as they can, conditional upon
what other agents do.

I Thus, for example, Agent 1 will select defect conditional upon
Agent 2 selecting cooperate, because this is better than
choosing cooperate when Agent 2 selects cooperate.

I The Nash equilibrium criterion selects only one set of actions
as the equilibrium of the agent’s interaction: defect for both
agents! From our payoff matrix, each agent will receive a
payoff of −5.



The Prisoner’s Dilemma–Cooperate?

I The outcome of the static case seems artificial
somehow–couldn’t the agents figure out a way to cooperate
instead?

I Indeed, there is a wealth of evidence that agents do just that:
in the real world, somehow agents decide to cooperate.

I A large research agenda on e.g. trust, fairness, etc. focuses on
these additional attributes of agents as a way to foster (or
explain) cooperation.

I Other research has focused on allowing agent interaction to be
dynamic.



Repeated Interaction and Cooperation

I Consider a network of agents who meet other agents randomly.
We can think of this as an agent interacting with someone in
their neighbourhood randomly, and engaging in the Prisoner’s
Dilemma game.

I Then the payoff of the interaction can be seen as affecting an
attribute (such as wealth). The “sugarscape” model of Axtell
and Epstein (Brookings Institution) is one such
wealth-attribute network environment.

I In a similar vein as the sugarscape model, suppose that agents
can “die” if their wealth falls below a threshold value.

I Will agents still select defection as the Nash equilibrium?



Repeated Interaction and Cooperation

I To answer this question we need a rule for our ABM,
specifying the condition(s) under which an action is taken.

I Let the rule be:

“An agent in a period t will cooperate if in period t− 1
the opposing agent cooperated. But if in period t − 1
the other agent defected, then in period t the agent
will defect."

I This is known as the “tit-for-tat” rule and was first
implemented by Anatol Rapaport.



Tit-For-Tat

I Let’s see how this rule affects a simulated network created by
50 agents, where agents are coloured by strategy (orange for
defect, blue for cooperate) and the first action is random.

I Each agent has an initial wealth of 50–if their wealth falls
below zero at any time, they die and stop participating. We
use our payoff matrix given earlier for each simulation.

I The following film shows 100 periods of interaction for a
complete network, i.e. a network where every agent is
connected to every other agent. Agents who have died are
coloured black.

I Agents meet randomly through their neighbourhoods, and
their initial wealth level is augmented (or diminished)
according to their fortunes in the game. Run film



Tit-For-Tat

I As another example, consider a preferential attachment
network (still 50 agents for 100 periods, initial wealth 50).
Run film

I The results are about the same, although the preferential
attachment characteristic of the network makes it more likely
for agents to cooperate than to defect (why?).

I Let’s keep the preferential attachment model, but only have
one cooperator in a sea of defectors. Will we get a
“cooperation infection”? A little thought will lead you to
conclude that a single cooperator is very unlikely to survive.
Run film

I How about a small group of defectors? A single defector will
spawn a single defector indefinitely (why?), but will a group of,
say, 10% of the total population increase, decrease, or stay the
same? Run film



Mathematical Epidemiology

I Networks describe interactions, and it was realised in the
mid-20th-century that valuable insight can be gained from
studying the transmission of an attribute from one node to
another, when an interaction is assumed to take place.

I Perhaps the earliest systematic study was in epidemiology, in
which networks were (and are) used to describe the pathways
for the spread of an infection, or a disease.

I Current research on e.g. SARS, MERS-CoV, HIV/AIDS,
tuberculosis and malaria all rely heavily upon the specification
of how diseases spread from person to person (or from person
to animal to person).

I In turn, network models of mathematical epidemiology have
proven valuable in advertising and marketing (for product
information dissemination, product adoption etc.), online
“meme” diffusion (from e.g. YouTube etc.), and financial
contagion (e.g. the banking crisis of 2008-2012).



The SIR Model

I Consider a population of agents that are susceptible to a
particular infection. If an agent is infected , they are
contagious for some time and may spread the infection to
others. Eventually, the agent either 1) recovers and is no
longer infected, is no longer contagious, and cannot become
infected again, or 2) dies and is removed .

Such an environment is described by the Susceptible -
Infected - Removed/Recovered (SIR) Model.

I The driving question that the SIR model can help answer is:
given an initial infection, will there be a ‘pandemic’, i.e. an
infection which is widespread?



The SIR Model: Definitions

I Consider a network N with N nodes {1, . . . ,N} and an edge
set E . Time t is discrete.

I Each node i at time t has a state st
i , with st

i ∈ {S , I ,R},
denoting [S]usceptible, [I]nfected and [R]emoved, respectively
(here we treat recovered and removed nodes identically).

I An edge eij ∈ E indicates that nodes i and j are connected in
a fashion that makes infection possible from one to the other
(the edges are undirected).

I If a possible edge eij 6∈ E then i cannot directly infect j , and
vice-versa.



The SIR Model: Definitions

I For simplicity we assume that the probabilities of making a
transition from one state to another are independent of the
topology of the network.

I This is an abstraction and is not usually true.
I Given an edge eij ∈ E and st

i = I , i.e. node i is infected, there
is a probability that node j will become infected which depends
upon the current state st

j :

P(st+1
j = I | st

j , s
t
i = I ) =


0 if st

j = R,
χ if st

j = I ,
φ if st

j = S .

I χ and φ are both positive and constant–the relationship
between the two drives the dynamics, much as the relationship
between γ and δ in the Bass Model defined its dynamics.



The SIR Model: Definitions

I To close the model we must specify other transitions from the
states S , I and R , formalising the intuition that S → I → R .
1. First, we denote the probability of removal once infected by

P(st+1
j = R |st

j = I ) = 1− χ.

2. This implies that P(st+1
j = S |st

j = I ) = 0, i.e. an infected
node does not spontaneously become susceptible [this is the
main distinguishing feature separating the SIR model from the
Susceptible-Infected-Susceptible (SIS) model, discussed
shortly].

3. We assume that spontaneous infection is impossible, i.e.
P(st+1

j = I |st
j = S , st

i ∈ {S ,R}) = 0, ∀i .
4. Next, P(st+1

j = R |st
j = R) = 1, i.e. a removed node stays

removed.
5. Finally, P(st+1

j = R |st
j = S) = 0, i.e. a susceptible node is

not removed unless it has been infected first.



The SIR Model: Dynamics

I The network N is initialised with a random assignment of one
infected node (“patient zero”).

I Each time step:
1. All edges eij with one infected node are checked to see if the

other node is susceptible–if it is, then it is infected with
probability φ.

2. All infected nodes are checked to see if they remain infected,
with probability χ, or if they are removed, with probability
1− χ.

I The model can be analysed analytically and numerically via
simulation.



Simulating the SIR Model

I The SIR Model is simulated by creating a network of
relationships and then infecting one individual.

I The propagation of the illness depends upon the probabilities
χ and φ.

I Let’s examine an SIR model using a built-in social network
from networkx, the Karate Club Graph, with χ = 0.9,
φ = 0.1. Run film

I By contrast, let’s look at a more highly connected random
graph, the Newman-Watts-Strogatz small world graph, with
the same χ and φ values. Run film



The SIS Model

I A richer characterisation of many infectious diseases, such as
the common cold or influenza, can be obtained by relaxing the
assumption of a removed state.

I Rather, there are only two states, infectious (I ) and susceptible
(S). Nodes which have been infected in the past but are now
susceptible may be re-infected.

This is known as the Susceptible - Infected - Susceptible
(SIS) Model.

I To investigate this richer environment we will be more formal
than our treatment of the SIR model and examine the model
analytically.



The SIS Model: Definitions

I As a first approximation, assume that the probability of
infection is dependent upon the degree di = d of a node i :

P(st+1
i = I |st

i = S) = φdp,

where φ is, as before, the probability of becoming infected
conditional upon meeting an infected node, and p is the
probability of meeting an infected node (so that the product
dp is the fraction of nodes connected to i which are infected).

I For dp to make sense it must be the case that (on average)
nodes are highly connected, so that d � 0.

I Note also that φmaxi{di} ⇔ φdmax < 1 must hold, otherwise
P(st+1

i = I |st
i = S) may not be a probability.



The SIS Model: Definitions

I To derive p it is necessary to examine the characteristics of the
network N . We need the degree distribution P(d), and the
fraction of nodes of degree d who are infected, i(d).

I Then the probability of meeting an infected individual is simply
the probability of meeting an infected node of degree d ,
summed over all degrees in the population:

p := ∑d i(d)P(d)d
d

,

where the average degree d := ∑d P(d)d .
I To close the model, we assume that individuals recover from

being infected with a probability

P(st
i = S |st

i = I ) := µ.



The SIS Model: Dynamics

I The model has many interesting analytical features which can
be addressed using network analysis.

I Question: is there a steady-state level of infection in the
population? Assume the number of nodes is finite.

Answer: The only steady-state for infection is 0, i.e.
everyone is healthy.

I Question: Now suppose we have an infinite number of agents.
Is there a steady-state level of infection now?

Answer: This depends upon the relative impact of φ
vs. µ.



The SIS Model: Steady State Dynamics

I Assuming an infinite number of agents, we can use an
equilibrium condition to estimate the fraction of nodes that are
infected, i(d), for a steady state:

i(d)µ = (1− i(d))φdp ⇒

i?(d) =
βpd

βpd + 1
,

where β := φ/µ.



The SIS Model: Steady State Dynamics

I Using what we already know about p, we find the following:

p? = ∑
d

p?P(d)βd2

d(p?βd + 1)
.

I This is a nonlinear equation with solutions which depend upon
β. For a given degree distribution, this equation can have zero,
one or more steady-state levels of infection.

I For example, consider a regular network Nr , where the degree
of every node is the average degree of the network, d .

I Then the steady state infection rate p? has two possible values:

p? ∈ {1− 1
dβ

, 0}.



The SIS Model: Steady State

I One steady state solution is the ‘trivial’ solution, where the
infection rate is zero and hence never deviates from that point.

I The other steady state connects the average degree d to the
ratio of the transmission-to-recovery ratio β. Note that p? > 0
only when

d >
1
β
=

µ

φ
,

i.e. when the number of connections for each individual is
sufficiently high that it can overwhelm the relative (to
transmission) recovery rate.

I Otherwise, the relative recovery rate is too high to sustain an
infection, and it dies out. This is demonstrated in the
following numerical plot of p? vs. β:



The SIS Model: Steady State
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The SIS Model: Simulation

I To simulate the SIS model we use a large power law graph of
500 nodes, with an average degree d = 50. We start with
phi = 0.6 and µ = 0.6, implying that β = 1 and hence that
p? = 1− 1/ < d >' 0.98, which in turn implies
i?(d) = 0.98. Hence around 490 nodes should be infected in
the steady-state. Run film

I As seen from the simulation, the steady-state prediction is
largely confirmed– there are around 460 infected nodes.

I Note that this is not proof! Simulations are suggestive but not
conclusive to study steady state properties of dynamical
systems.



The SIS Model: Degree Distribution

I In order to get a steady state solution, we assumed that the
network was regular.

I In addition, the transmission rate φ was assumed to be much
smaller than the largest degree value dmax.

I Neither assumption is particularly realistic, and as a final
example they will be relaxed.

I First, let us suppose that there is a simple degree distribution
P(d), with two degree categories: d1 and d2.

I Half of the nodes have degree d1 and half d2, i.e.
P(d1) = P(d2) = 0.5.

I Finally, let d1 � d2.



The SIS Model: Degree Distribution

I Next, we relax the assumption that φdmax ≤ 1 and replace the
probability of infection defined earlier by:

P(st+1
i = I |st

1) = φdp +
1
2
(φp)2d(d − 1).

I Although this is rather mysterious, it is in fact just the next
term in the expansion of the general Binomial distribution of
meeting an infected individual, conditional upon a degree d .

I This now allows for two degrees of freedom, i.e. pairs of
numbers (φ, d) can be selected to satisfy this probability.



The SIS Model: Non-Steady-State

I Armed with these relaxed assumptions, we can rewrite the law
of motion for the infected proportions of the population.

I In actuality the system is now coupled for i(d1) and i(d2), but
we will abstract away from i(d2) for the sake of exposition and
focus only upon i(d1):

∆i t(d1) :=i t+1(d1)− i t(d1) ' (1− i t(d1))φd1i t(d1)+

1
2
(φ)2d1(d1 − 1)(i t(d1))

2 − µi t(d1).

I This is the non-steady-state law of motion for i(d1). Like the
steady state equilibrium equation, it specifies inflows to and
outflows from the infected population.



The SIS Model: Chaotic Dynamics

I We can reduce the complexity of the system by looking at one
specific set of parameter values (recall we have two degrees of
freedom to choose from).

I The reduced form of the law of motion becomes:

i t+1(d1) = 3.5(1− i t(d1))i t(d1) + 0.1(i t(d1))
2 + 0.19i t(d1).

I This has a very interesting form. The first term is a so-called
“logistic” equation and describes, among other things, the
interaction between predator and prey species. The second and
third terms are the nonlinear and linear, respectively, “forcing”
terms–changes in i(d2) are actually propagated here (although
they are not written).



The SIS Model: Chaotic Dynamics
I How does this system behave? We can plot the sequence of

infected proportions i0(d1), i1(d1), . . . , i t(d1), i t+1(d1), . . .
and see if there appears to be any convergence:
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The SIS Model: Chaotic Dynamics
I There is no convergence. Rather, the trajectory of the infected

population appears to wander within a subset of the (0, 1)
interval, never quite wiping out the population (where
i(d)→ 1) but never dying out, either–in fact, around one
third of the population is always infected.

I The trajectory is chaotic, and the SIS system described here
exhibits chaotic dynamics.

Chaotic systems exhibit a lack of stationary state, ran-
dom trajectories, and sensitive dependence on initial
conditions.

I For continuous time systems at least three degrees of freedom
are required, but for discrete time systems one or two is often
enough.

I Note that we have said nothing about the “reasonableness” of
the parameters chosen to exhibit chaos.



The Banking Crisis

I The banking crisis of 2008-2012 highlighted how
interconnected global financial markets really are.

I In this case, the interconnectedness resulted from mutual
indebtedness of financial institutions to each other.

I Such indebtedness was due to banks borrowing from each
other, using (in many cases) loans to home owners as
collateral.

I When the value of these loans fell–the so-called “subprime
mortgage crisis”–the value of bank debt collateral also
collapsed.

I This collapse sent ‘shock waves’ through the network of
financial institutions, creating contagion as many banks
became worth less than the debt they owed, and in turn
requested that other banks pay back what they were owed.



The Banking Network

I We can create an abstract network representation of the
banking sector by assuming, first, that banks are nodes.

I Each bank has an attribute, its balance sheet, showing the
excess of assets over liabilities. If a bank’s debt is called by
another bank, it is distressed. Otherwise it is either healthy, or
it is bankrupt, i.e. in default–the sum of the debt calls exceeds
the assets of the bank.

I Each weighted edge between nodes is a measure of
indebtedness: eij ∈ E if bank i is in debt to bank j . We
assume for simplicity that each bank owes the same amount
on their debt.

I Finally, each node has a set of probabilities: the probability of
becoming distressed, and the probability of going into default,
conditional upon being distressed. Bankrupt banks do not
participate further.



The Banking Network

I In this way we have modelled the banking sector as an SIR
model–a healthy bank is Susceptible to becoming distressed,
i.e. Infected. And when a bank defaults, it is Removed from
the network.

I The economics is contained in how banks transmit
distress–when a bank becomes distressed it ‘calls in’ their
loans, i.e. it requires that those banks who are indebted to it
must pay their debts.

I Given an initial distribution of banks and their indebtedness,
the dynamic network can be simulated.



Banking Network Simulation

I First consider a scale-free directed network with 100 nodes.
When a single node is distressed, the contagion spreads to
other nodes far removed from the original location. Ironically,
the first distressed node is likely to survive as it calls in its
loans before the panic begins. Run film

I Another scale-free example demonstrates how a core nucleus
of nodes cannot sustain the multiple requests to call in their
debt, and they go bankrupt. Survivors include banks on the
periphery. Run film

I As a final example, consider a directed ‘growing graph’ with
the same number of agents. A growing graph is similar to
preferential attachment in that nodes are added sequentially
with an edge formed randomly based upon degree. There are
few pathways between clusters of financial institutions: one
solvent bank is enough to prevent the contagion from
spreading to an entire sub-cluster of the graph. Run film



Meme Diffusion

I A meme is a small amount of media content which propagates
via social networks, usually connecting to that network’s social
self-perception or embedded social norms, traditions, etc.

I Although memes have always existed, the rise of social media
in the mid-2000s has greatly increased their scope and
diffusion.

I As two well-known examples we have rick-rolling, the
surreptitious hyperlinking to a 1980s pop tune rather than the
link’s stated destination, and the subtitling of a clip from the
film Der Untergang, during a particularly intense scene
depicting Adolf Hitler.

I In all cases, a meme is characterised by its speed of
transmission and its network penetration–it rapidly diffuses
through a network and is known by a large fraction of the
network.

http://www.youtube.com/watch?v=dQw4w9WgXcQ
http://www.youtube.com/watch?v=vWK5MITJ1p4


The Meme Diffusion Network

I We can create a network to examine memes by assuming, first,
that individuals are nodes.

I Each node has an attribute, its knowledge of one (and only
one) meme. If a meme A is known, the node’s attribute is A.
Otherwise it is considered to be uninterested in the memes it is
exposed to.

I Each edge between nodes denotes a relationship between
individuals–e.g. linked as friends on Facebook, joint followers
on Twitter, etc.

I We assume for simplicity that the graph is undirected, but a
richer model would assume that friends/followers are directed
and hence individuals with ‘meme influence’ could be
identified.



The Meme Diffusion Network

I Finally, we associate a rule to each node–given a
neighbourhood Ni of node i , node i will on occasion transmit
the most popular meme in N . The ‘on occasion’ part means
we allow for a 1− µ chance that agent i is uninterested in
passing on any of the memes listed in N , for a parameter µ.

I This is a network similar to the models of strategic interaction
discussed earlier–the rule is in place to allow the individual (i.e.
the agent) to respond to conditions as they arise in their social
setting (here, their neighbourhood).

I Given an initial distribution of individuals and their social
relationships, the dynamic network can be simulated and the
ABM analysed.



Meme Diffusion: Simulations

I For example, here is a simulated Barábasi - Albert network of
100 agents, when an agent passes on the most popular meme
in their neighbourhood with probability µ = 0.5. Run film

I And here is a Newman-Watts-Strogatz network of 200 agents,
where µ = 0.1. The lower value of µ can ‘stem the tide’ of a
popular meme, giving lesser memes more time to propagate,
but in the end ‘there can be only one’. Run film

I Finally, here is an Erdős - Rényi random graph with 200
agents, with an edge creation probability of 0.1. With
relatively few edges, the first meme to meet a well-connected
node has an early-mover advantage. Run film



The Bass Toy Model: Implicit Solution
<1><2>(1cm, 4cm)(0.5cm, 2cm)
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Bass Toy Model

I Note here that the shape of the implicit solution remains
essentially the same, but shifts according to the fraction δ/γ.
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