

Text processing and machine learning

Working with words:

Natural language processing
Information retrieval

Machine learning

Reminder of yesterday

 Foundations of network analysis
 Representing and describing networks
 Network measures
 Community detection
 Network visualisation
 Tools
 Projects: do you have one?

Working with words

 What are people talking about?
 How do people interact?
 What sort of language do they use?
 What are people happy about? Sad? Upset?
 Where are there disagreements?

Outline of today

 Natural language processing (NLP)
 Information retrieval (IR)
 Machine learning (ML)
 Practical session with NTLK and Python

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua

菈虭夼蕁嵲錉伢一喎蛁珔抮阞柧丌，搋鈃兀炂郅塛怙犮兀
弣褆泚气旼。紻一洝啵喣鉦丌蜺褢勼，悿乇哅莇寪蜅屮膉
气仝。絜旼伎縚鄖嬓奿一愖啀挩抰仡峟丌，睒椑兀杽姡煲
祅肊屮狘滶竑仉呿。腇彽伀餤嵲濋囟一塍淝庪沶忉殄亍，
綅渫乇杬咺廌岠阞丌刵嫙砑爿侗。釫一峎朘湹楯乜蒩墽
仉，淐乇胇晙棸鉯丌褘丮圣。夃勍呯淴枲鱣蒏筸阠朹柆弝
侚构岊粲屮厔僬楜。卬秜匊殑盻攭颬葸屺彴疧抁旻攽尪硹
乇迖滵塏。卬豗岝陫恛鸉瑗跰奾尥俜邞甿矼妦塕丌厒髧
椹。圠烋炅捽苨鑫煡椽犴奼侺吥坶枍戺楴兀玬愨閛。

Natural language processing

Overview

 What is natural language processing?
 Basics
 Segmentation
 Morphology
 Lexical normalisation
 Collocations and statistical models
 Part-of-speech tagging

What is NLP?

Computer processing of natural languages: the
languages written or spoken by people.
 Messy; ambiguous; varied; changing
 We will focus on NLP for social media and

social science questions

Text

Electronic text comes from lots of sources:
 Newswires, the web, chat rooms, business

documents, email…
 Needs to be cleaned

In many formats:
 OCR, PDF, XML, HTML, binary formats, …

Word, token, term, lexeme

Part of speech (POS)

Tokenisation

We want to reduce text to words for processing.
i am pleased to be in beijing

I am pleased,i am in BJ

don't won't I'll he'd

O'Connor

New York

+61 (0) 2 6216 7065

:)

22.50元

H2O

Segmentation

严守一把手机丢了
ภาษาเขียน
ພາສາລາວ

tiếng Việt
arbeidsongeschiktheidsverzekering

Donaudampfschiffahrtselektrizitätenhauptbetriebswerkbauunterbeamtengesellschaft

Segmentation

 严守一 / 把 / 手机 / 丢了
(Yan Shouyi lost his mobile phone)

 严守 / 一把 / 手机 / 丢了
(*It strictly adheres to a lost mobile phone)

 严守 / 一把手 / 机丢了
(*Strictly number one machine lost)

How can we do this?

 Treat every character as a word
 Always take the longest match
 Conditional random fields

Iterate over all characters, finding most likely break
points

Probability of a break is determined by a weighted
sum of “features”

Features can include character identity and some
amount of history

This is a probabilistic method.

Morphology and stemming

We need to recognise different forms of words:

love this restaurant

loved this restaurant

loving these restaurants

 Not such a problem in Chinese(?)
 Sometimes a problem in English
 A real problem in some other languages

Stemming and lemmatisation

Stemming turns words into stems, which are the
same regardless of inflection

 Stems need not be real words!, e.g. Porter
stemmer:

Lemmatisation turns words into lemmas, which
are dictionary entries

sses → ss caresses → caress

ies → i ponies → poni

s → <empty> cares → care

(m > 1) ation → ate predication → predicate
nation → nate

Collocations

Two or more words that act as a unit, syntactically
and semantically:

mobile phone, weapons of mass
destruction, broad daylight, kick the

bucket, to run out, James Bond

 Non-compositional
 Non-substitutable
 Non-modifiable

How to find them? (1)

 Just count?

of the

in the

to the

on the

for the

How to find them? (2)

 Just count?
 Count, but filter by POS?

New York (AN)

United States (AN)

Los Angeles (NN)

last year (AN)

Saudi Arabia (NN)

How to find them? (3)

 Just count?
 Count, but filter by POS?
 Mean and variance of relative position?

… previous fifteen games … (d=2)

… previous games were lost … (d=1)

… games in previous times … (d=-2)

Mean and variance

New York (d≈1)

previous games (d≈2)

minus points (d≈3)

hundreds dollars (d≈4)

Probability

P(X) is the probability of some event X. X=“not X”

P(X|Y) is the conditional probability of event X,
given that the event Y occurs:

P(X|Y) = P(X and Y) / P(Y)

Two events are independent iff

P(X and Y) = P(X) P(Y)

…and therefore P(X|Y) = P(X) unless P(Y) = 0

How to find them? (4)

Statistical hypothesis testing:

 Have H
0
, the null hypothesis: “no difference”

 Calculate P(X | H
0
)

 If this is less than e.g. 5%, reject H
0

H
0
: Words w

1
 and w

2
 are independent

 P(w
1
,w

2
) = P(w

1
) P(w

2
)

Part-of-speech tagging

We might also want to “tag” words with their part
of speech (POS). Why?

 Disambiguation
 Extracting noun phrases (subjects and objects)
 Information extraction
 Units of indexing and retrieval

How to tag?

 Static, most common class
 Hand-written rules
 Again, use probabilistic techniques

Markov Models (background)

We have:

 S = {S
1
 … S

k
}, a set of states

 A, a transition matrix, a
ij
=P(X

t+1
=j | X

t
=i)

 Π, the initial state vector

 X = (X
1
 … X

t
), a sequence of values from S

Models have limited horizon and are stationary.

Markov Models are NFAs

Hidden Markov Models

Now a twist: emit outputs as we leave a state,
but do this probabilistically.
 Output is from a set K
 B describes the output from each edge:

b
ijk
 = P(O

t
=k | X

t
=s

i
, X

t+1
=s

j
)

A Hidden Markov Model = (S, K, Π, A, B)
 We can't see the states (X), just the output (O)

HMMs for POS tagging

 States (S) = parts of speech
 Output (O) = sequence of words

Question: given O, what is the most likely X?
 The Viterbi algorithm effectively computes this

We can get A and B from training data

Named entities

HMMs (and CRFs) can also be used to find
named entities, e.g. the names of people,
places, or corporations.

Features include:
 In English: orthography, sequences, prefixes
 In Chinese: lists of family names (and rules),

marker words like 公司 or 市 , bigrams

Some example code (1)

>>> import nltk

>>> from nltk.book import *

>>> text4.collocations()

Building collocations list

United States; fellow citizens; four years;
years ago; Federal Government; General
Government; American people; Vice President;
Old World; Almighty God; Fellow citizens;
Chief Magistrate; Chief Justice; God bless;
every citizen; Indian tribes; public debt;
one another; foreign nations; political
parties

See the nltk collocations module: http://nltk.org/api/nltk.html

Some example code (2)

>>> import nltk

>>> text = nltk.word_tokenize("once upon a
time in a hole in the ground there lived a
hobbit.")

>>> nltk.pos_tag(text)

[('once', 'RB'), ('upon', 'IN'), ('a', 'DT'),
('time', 'NN'), ('in', 'IN'), ('a', 'DT'),
('hole', 'NN'), ('in', 'IN'), ('the', 'DT'),
('ground', 'NN'), ('there', 'RB'), ('lived',
'VBN'), ('a', 'DT'), ('hobbit', 'NN'), ('.',
'.')]

See the nltk tag package: http://nltk.org/api/nltk.tag.html

Some example code (3)

>>> s="Germany's representative to the
European Union is Herr Smith."

>>> tokenised = nltk.word_tokenize(s)

>>> tagged = nltk.pos_tag(tokenised)

>>> print nltk.ne_chunk(tagged)

Tree('S', [Tree('GPE', [('Germany', 'NNP')]),
("'s", 'POS'), ('representative', 'NN'),
('to', 'TO'), ('the', 'DT'),
Tree('ORGANIZATION', [('European', 'NNP'),
('Union', 'NNP')]), ('is', 'VBZ'),
Tree('PERSON', [('Herr', 'NNP'), ('Smith',
'NNP')]), ('.', '.')])

Summary

 To get from bytes to “meaning” we can use a
variety of tools: we need to extract the text,
tokenise, segment, and we might want to deal
with morphology.

 We can find parts of speech and named
entities.

 Statistical and probabilistic techniques help us
deal with the noisy and changing nature of
natural language.

Information retrieval

Overview

 What is information retrieval?
 Term occorrence matrix
 Ranked retrieval
 The vector-space model and tf.idf
 External evidence

What is information retrieval (IR)?

...finding material (usually documents)
of an unstructured nature (usually text)

that satisfies an information need
from within large collections

(usually stored on computers)
(Manning et al.)

What is information retrieval (IR)?

...in response to
an underspecified information need

What is information retrieval (IR)?

Information needs and queries

“I'm going to be in Beijing for a
few days in July and I'd like to
find something to do in my spare
time. Ideally it'd be walking
distance from my hotel (at …)
and I don't want to spend much
more than $50 although if it's at
the theatre or something like that
I might spend more. Also, I've
already seen Tiananmen Square,
the Forbidden City, and the
Confucius Temple. Oh!, and I
enjoy discovering local food and

beijing attractions

How can we search?

To find documents with certain keywords, we
can try:

 full text scanning
 document signatures
 term occurrence matrix

These are all ways to represent documents.

Term occurrence matrix

Antony and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 0 1

wowser 1 0 1 1 0 0

...

Term occurrence matrix

Antony and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 0 1

wowser 1 0 1 1 0 0

Antony
AND Caesar

1 1 0 0 0 1

Term occurrence matrix

Antony and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 0 1

wowser 1 0 1 1 0 0

Brutus AND Caesar AND
NOT Calpurnia

Ranked retrieval

We can rank documents according to some
scoring function and put the “best” at the top

Coordination level
Term weights

Vector space model

Scoring by coordination level

 initialise scores array to all 0
 for each query term t in the query q:

 for each document d which includes t:
 scores[d] += 1

 return top k entries of scores

Scoring with term weights

 initialise scores array to all 0
 for each query term t in the query q:

 for each document d which includes t:
 scores[d] += weight of t

 return top k entries of scores

Term frequency

Step 1: We treat the query as a “bag of words”.

Step 2: We assume terms that occur more often
capture a more important idea.

The term frequency of term t in document d,

tf
t,d

is the number of times t appears in d.

i

did
enactjulius

was
capitol

brutus

killed

me

i

killed

Document frequency

tf gives us one measure of importance, but not all
terms are the same — not even all common ones.

Step 3. We assume that terms which appear in
fewer documents are more discriminating.

The document frequency of term t,

df
t

is the number of documents t appears in.

Inverse document frequency

Then the inverse document frequency of term t
is based on the reciprocal of df

t
:

idf
t
 = log(N / df

t
)

tf.idf

tf.idf
t,d

 = tf
t,d

× idf
t

▲High when t occurs many times in few
documents.

▼Low when t occurs in many documents.

►In between when t occurs a few times, and/or
in many documents.

tf.idf weights
Antony and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Antony 81 15.3 0 0 0 0.6

Brutus 7 8.6 0 0.3 0 0

Caesar 1 93 0 0.1 0.2 0.2

Calpurnia 0 4 0 0 0 0

Cleopatra 75 0 0 0 0 0

mercy 1.8 0 6.3 11 0 1

wowser 1 0 2 3 0 0

...

Simple scoring by tf.idf

 Initialise scores array to all 0
 For each query term t in the query q:

 For each document d which includes t:

 Calculate tf.idf
t,d

 Scores[d] += tf.idf
t,d

 Return top k entries of scores

Coffee break (30min)

tf.idf weights
Antony and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Antony 81 15.3 0 0 0 0.6

Brutus 7 8.6 0 0.3 0 0

Caesar 1 93 0 0.1 0.2 0.2

Calpurnia 0 4 0 0 0 0

Cleopatra 75 0 0 0 0 0

mercy 1.8 0 6.3 11 0 1

wowser 1 0 2 3 0 0

...

Vectors

vector x = x1 , x2 , x 3 ,

document vector d = w t1 ,d , w t2 ,d , w t3 ,d ,

AC = 81,7,1,0,75,1.8,1,

Documents as vectors

(5, 8)(5, 8)

(10, 3)

(11, 2)

angle diffe
rence

∝

distance difference?∝

Cosine

Cosine similarity

Vector dot product:

Length normalisation:

Similarity follows:
simx , y = cos =

x⋅y
∥x∥∥y∥

= x⋅y

x⋅y =∑i
x i y i

x =
x

∥x∥
 and y =

y
∥y∥

Scoring by cosine similarity

 Initialise scores array to all 0
 For each query term t in the query q:

 Calculate query weight w
t,q

 For each document d which includes t:

 Calculate term weight w
t,d

 Scores[d] += w
t,d
w
t,q

 Return top k entries of scores

Cluster hypothesis

Documents that are similar to each other are likely
to be relevant to the same information need

→ Documents which are close in vector space are
 likely to describe the same topic

→ Documents which are close to a query are
likely to be relevant to that query

Centrality

Incorporating centrality

Centrality is query-independent evidence: it is
the same for any query.

Can simply combine this with query-dependent
evidence such as probability of relevance, cosine
distance, term counts, …

score(d,q) = α PageRank(d) + (1-α) similarity(d,q)

Other forms of evidence

 Trust in or authority of the host (or domain, or
domain owner, or network block)

 Frequency or recency of updates
 URLs
 Language
 Centrality or other graph measures
 …

Summary

 We often want to find a subset of documents
according to topic, which we assume means
word(s).

 We can use Boolean models …
 … but vector-space models tend to work better
 We can weight terms, use similarity functions
 And we can mix in other forms of evidence

Practical session: get the data

Get a copy of reuters.zip
 Linux or Mac: put it in
/usr/share/nltk_data/corpora or in
~/nltk_data/corpora

 Windows: put it in c:\nltk_data\corpora

Test it: run python and type

>>> from nltk.corpus import reuters

>>> len(reuters.words())

1720901

Lunch break (90min)

Machine learning

Overview

 What is machine learning?
 Supervised and unsupervised methods
 Classification
 Clustering
 Dealing with high-dimensional data

What is machine learning?

Getting machines to learn from data:
 Finding patterns
 Recognising objects (or documents or…)

We will look at two common problems:
classification and clustering.

(Un)supervised learning

 Supervised learning: Given some examples,
with the “right answers” provided, learn how to
generalise.

 Unsupervised learning: Given some
examples (only), find some patterns in the data.

Classification

 We want to learn to classify documents.
 For example by topic, or language, or

viewpoint, or…
 This is a supervised problem.

Classification methods

Manually? Doesn't scale!

Instead we will look at
 Naïve Bayes
 k-NN
 Support vector machines

Given a document space X, classes C, training
set D ⟨d,c⟩ ∈ D×C, learn a classifier γ: X→C

Training set D:
⟨(sunny, warm), soccer⟩
⟨(wet, cold), chess⟩

Classifier:
γ((sunny, warm))=?

Training set D:
⟨“I am happy”, positive⟩
⟨“Hate Mondays”, negative⟩

Classifier:
γ(“Happy it's a Monday”)=?

Probability (a reminder)

P(X) is the probability of some event X. X=“not X”

P(X|Y) is the conditional probability of event X,
given that the event Y occurs.

Bayes's rule: P(X |Y) =
P(Y | X) P(X)

P (Y)
.

Bayes's rule in action

We want:

ĉ =argmax
c∈C

P(c |d)

=argmax
c∈C

P(d |c) P(c)

P(d)

=argmax
c∈C

P(d |c) P(c)

Conditional independence

We need to estimate P(d | c) , the probability of
document d given class c. But how can we do
this?

Assume features/terms are independent:

P(d |c) =P(〈 t1, t2,…〉 |c)

=∏i=1. .n
P(t i |c)

Independent: P(X and Y) = P(X) P(Y)

Most likely class

Now we know the maximum a prosteriori (MAP)
estimate for a document.

γ(d) =ĉ

=argmax
c∈C

P(c |d)

=argmax
c∈C

P(c) ∏i=1. . n
P(t i |c)

=argmax
c∈C

log(P(c))+∑i=1. .n
log(P(t i |c))

Naïve Bayes classifier

Where:

 Each P(t
i
 | c) tells us what evidence t

i
 provides

for class c
 P(c) tells us the relative frequency of c
 And we choose the class with the best

evidence.

γ(d)=argmax
c∈C

log(P(c))+∑i=1. .n
log(P(t i |c))

Parameters

How do we estimate all these probabilities?

Maximum likelihood estimates (MLEs):

P̂(c)=
Nc

N

P̂(t |c)=
T t ,c

∑t '∈V
T t ' , c

Number of c

Number of examples

Number of times t
appears in class c

Whole vocabulary

“I like vegetables” → “healthy”
“I like ice-cream and sauce” → “unhealthy”
“I like vegetables and rice” → ???

 (“rice” | healthy) = ???P̂

Zero!

For any word we haven't seen before, T
t,c

=0

Therefore we will get zero probabilities P(c | d), for
every class!

We are saying “the probability of seeing term t in
class c is zero”. Is this sensible?

We should allow this and “set aside” some of the
probability space. “Add-one smoothing”:

P̂(t |c)=
T t ,c+1

∑t '∈V
(T t ' , c+1)

Some example code (1)

>>> from nltk.corpus import movie_reviews

>>> import random

>>> documents = [(list(movie_reviews.words(fileid)), category)

... for category in movie_reviews.categories()

... for fileid in movie_reviews.fileids(category)]

>>> random.shuffle(documents)

For each category …
… get all the file IDs

For each file ID, list all the
words and make a pair
(list-of-words, category)

Some example code (2)

>>> all_words = nltk.FreqDist(w.lower()

... for w in movie_reviews.words())

>>> word_features = all_words.keys()[:2000]

>>> def document_features(document):

... document_words = set(document)

... features = {}

... for word in word_features:

... features['contains(%s)' % word] = (word in document_words)

... return features

Load all the words in all
the reviews, but only use
the top 2000

For each word in our top
2000, make a feature

Some example code (3)

>>> featuresets = [(document_features(d), c)

... for (d,c) in documents]

>>> train_set, test_set = featuresets[100:], featuresets[:100]

>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> nltk.classify.accuracy(classifier, test_set)

0.8 For each document, use
our new function to make
a pair
(features, category)

Split into test & training
sets, train, then report
accuracy

Classification in vector space

 Assume that documents in the same class form
a region in vector space,

 …and that these regions don't overlap.

(This is the contiguity hypothesis.)

Rocchio

 Get the centroid of
each class (mean
value of each feature)

 Assign a new
document d to the
class of its closest
centroid.

 Problems?

1-NN

 Assign each new
document to the
same class as its
nearest neighbour.

 Problems?

k-NN

 Assign each new
document to the
majority class
amongst its nearest k
neighbours.

 k-NN tends to be a
good choice.

Other choices

 Support vector machines (SVMs)

Try to find a separating hyperplane

 Logistic regression

Linear regression, but with response variable
mapped to binary via logit function

More than two classes?

 One-of-n: an object is in exactly one class

Run a classifier for each class and take the most
probable

 Any-of-n: classes are independent

Just run a classifier for each class

Evaluation

If we do have labelled data, we can hold some
back: have a training set and a testing set.

Then we can compare our predictions with the
true labels and ask: how often do we get it right?
 Can use a “confusion matrix”:

Actual
Predict Yes No
Yes tp fp
No fn tn

Measures

 Accuracy: (tp+tn) / (tp+fp+fn+tn)
 Precision, P: tp / (tp+fp)
 Recall, R: tp / (tp+fn)
 F1: (2PR) / (P+R)

Actual
Predict Yes No
Yes tp fp
No fn tn

Overfitting

A word of caution: never evaluate on the same
data you trained on!
 We want to know how well it works on new

data (how well it predicts outcomes)
 It is very easy to overfit, i.e. learn quirks of the

training set instead of general rules

Typically we take about 10% as a testing set:
don't look at it!

Can even repeat this (“cross-validation”).

Clustering

We have a lot of unlabelled data; are there natural
groups?
 Are there animals that tend to live together?
 Are there countries with similar economies?
 Are there people who talk about the same

things?

This is an unsupervised problem.

k-means

We need to know how many clusters we want.
Then:
 Choose starting points (centroids) for the

clusters, randomly
 Assign each object to the nearest centroid
 Recalculate the centroids
 Repeat until convergence

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

k-means

Dimensionality reduction

Our data can have lots of dimensions (e.g. tens
or hundreds of thousands). Reducing this:
 Makes processing easier;
 Helps discover hidden or “latent” structure and

common elements

We get “similar” lower-dimension data. This is
similar to e.g. principal component analysis.

Overall aims

Reduce dimensions:
 1st dimension explains the most variation
 2nd the next most
 And so on for k dimensions

Control error:
 Minimise error, as distance: ∥A – Â∥
 So that points close in original space are close

in reduced space

Singular value decomposition

SVD is a projection onto a lower-dimensional
space.

A
t×d

 = T
t×n

 S
n×n

 D
d×n

T

 T and D are orthonormal
 The SVD is unique
 Then just take the first k of n entries (they carry

the most information)

Term-topic matrix

Document-topic matrix

Singular value decomposition

SVD is a projection onto a lower-dimensional
space.

Â
t×d

 = T
t×k Sk×k Dd×k

T

An example (1)

A
t×d

 = T
t×n

 S
n×n

 D
d×n

T

From Manning and Schütze

A = (
d 1 d2 d3 d 4 d 5 d6

cosmonaut 1 0 1 0 0 0
astronaut 0 1 0 0 0 0
moon 1 1 0 0 0 0
car 1 0 0 1 1 0
truck 0 0 0 1 0 1

)

An example (2)

A
t×d

 = T
t×n

 S
n×n

 D
d×n

T, n=5

From Manning and Schütze

S = (
2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

)

An example (3)

A
t×d

 = T
t×n

 S
n×n

 D
d×n

T, n=5, set k=2

From Manning and Schütze

T = (
dim 1 dim 2 dim 3 dim 4 dim 5

cosmonaut −0.4 −0.3 0.6 0.6 0.3
astronaut −0.1 −0.3 −0.6 0.0 0.7
moon −0.5 −0.5 −0.4 0.0 −0.6
car −0.7 0.4 0.2 −0.6 0.2
truck −0.3 0.7 −0.4 0.6 −0.1

)

An example (4)

A
t×d

 = T
t×n

 S
n×n

 D
d×n

T, n=5, set k=2

From Manning and Schütze

S2×2 D2×5 =

(
d1 d 2 d3 d 4 d 5 d 6

dim 1 −1.62 −0.60 −0.04 −0.97 −0.71 −0.26
dim 2 −0.46 −0.84 −0.30 1.00 0.35 0.65)

Uses of SVD

 Reduce computation
 Latent semantic indexing: use SVD to find a

small number of topics, then index those (not
words) for better retrieval

 Document similarity: let B=S
k×k Dd×k, then BBT

is document similarity on topics (not words)
 Word similarity: can do the same thing for

words to find those which appear in the same
places

Summary

 It's possible to use machine learning to find
patterns behind data sets, including text data.

 Classification (supervised): k-NN or SVM are
good choices.

 Clustering (unsupervised): k-means is a good
choice.

 There are also unsupervised methods to
reduce the dimension of your data and reveal
hidden structure.

Summary of today

 Natural language processing
 Segmentation, normalisation, stemming
 Part-of-speech tagging, named entities

 Information retrieval
 Term occurrence matrix
 Term weights, tf.idf, vector space model

 Machine learning
 Supervised/unsupervised, classification/clustering
 Evaluation

Summary of today

 Natural language processing
 Bag-of-words
 Term weights
 Vector representations and dimensionality
 Independence, sparsity, and smoothing
 Probabilistic models and algorithms

Reminder of next three days

 Day 3: statistical network models
 Day 4: dynamic networks
 Day 5: hackathon and project showcase

Practical session: get the data

Get a copy of reuters.zip
 Linux or Mac: put it in
/usr/share/nltk_data/corpora or in
~/nltk_data/corpora

 Windows: put it in c:\nltk_data\corpora

Test it: run python and type

>>> from nltk.corpus import reuters

>>> len(reuters.words())

1720901

Coffee break

Thanks: Wray Buntine, Hanna Suominen, Hinrich Schütze

Practical session

Using python and nltk:
 Load the reuters corpus

 Build a classifier, e.g. Naïve Bayes, with words
as binary features (see the slides)

 Just look at 'grain', 'crude', and 'livestock' categories

 Evaluate it and look at the “best” features

Practical session

Now try other ideas for features, e.g.:
 Removing stopwords (use
nltk.corpus.stopwords.words('english'))

 Stems, not words (use nltk.stem.porter)

 Only nouns or only named entities, not all
words (use a POS tagger or a NE recogniser)

Do they help?

Look at the most informative features each time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123

