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What are networks?

 Networks are sets of nodes
connected by edges.

“Network” = “Graph”
)) — node
.— edge
points lines
vertices | edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations | sociology

Slide by Lada Adamic, U Michigan




The attached image shows 5 streets (A and B streets, and 1st, 2nd, and 3rd Avenue). How can a
network be constructed from these streets?
(Check all that apply)

Roads (A St., B St., 1st Ave, ...) are nodes and
__| an edge is drawn between every pair of roads
that intersect.

Intersections are nodes (e.g. A St. and 1st Ave,
B St. and 2nd Ave), and an edge is drawn

__| between any two intersections that are directly
connected by a segment of street with no
intervening intersections.

Street blocks are nodes (e.g. the block between

[] A and B, and 2nd and 3rd), and blocks that are
adjacent (i.e. across the street from each other)
have edges.

https://www.coursera.org/course/sna



Topics for this 1.5 hours

Are nodes connected through the network?

How far apart are they?

Are some nodes more important due to their
position in the network?

Is the network composed of communities?



Network elements: edges

* Directed (also called arcs, links)
—A->B
* Alikes B, A gave a gift to B, Ais B’ s child
* Undirected

—A<->BorA-B
* A and B like each other
* A and B are siblings
* A and B are co-authors

by Lada Adamic, U Michigan



Edge attributes

 Examples
— weight (e.g. frequency of communication)
— ranking (best friend, second best friend...)
— type (friend, relative, co-worker)

— properties depending on the structure of the rest
of the graph: e.g. betweenness

by Lada Adamic, U Michigan



Directed networks

« girls’ school dormitory dining-table partners, 15t and 2" choices
(Moreno, The sociometry reader, 1960)

Louise

Ada Lena
Adele

Marion

ora

Eva Mary
. Edna Ruth
Robin Martha 7N
Je Laura
Alice _
Helen Hazel Hilda
Ellen
Ella

Irene
by Lada Adamic, U Michigan



Positive and negative weights
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dC
eC

dC

Data representation

jacency matrix
gelist
jacency list

by Lada Adamic, U Michigan



Adjacency matrices

* Representing edges (who is adjacent to
whom) as a matrix

—A; = 1if node /i has an edge to node j —>
=0 if node i does not have an edge to |

— A, = 0 unless the network has self-loops

— A; = A, if the network is undirected, —
or if i and j share a reciprocated edge

by Lada Adamic, U Michigan



Example adjacency matrix

2
O 0 0 0 0
1 \03 O 0 1 1
Q / A= 0 1 0 1
\) 0 0 0 O
5 04 _1 1 0 0

by Lada Adamic, U Michigan




Edge list

* Edge list

—-2,3 2

— 2,4 1 0\3
@,

~3,2 Q /\

N/

—4,5 5 —0O4

—5,2

—5,1

by Lada Adamic, U Michigan



Adjacency lists

* Adjacency list
— is easier to work with if
network is
* large
¢ Sparse
— quickly retrieve all neighbors

for a node
e 1:

e 2:34

e 3:214

e 4:5

e 5:12

by Lada Adamic, U Michigan



Computing metrics

* degree & degree distribution
e connected components

by Lada Adamic, U Michigan



Degree: which node has the most edges?
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Node degrees

* Node network properties

— from immediate connections
* indegree O indegree=3

how many directed edges (arcs) are incident on a node

¢ OUtdegree outdegree=2
how many directed edges (arcs) originate at a node

* degree (in or out) degree=5
number of edges incident on a node

— from the entire graph
e centrality (betweenness, closeness)

by Lada Adamic, U Michigan



* Node degree from matrix values

5 * : 0 0 0 0 07
« Outdegree = E Al.j O 0 1 1 0
& AT |01 010!
example: outdegree for node 3 is 2, which o 0 0 0 1
we obtain by summing the number of non- 1 1 0 0 O
zero entries in the 39 row  » - 7
$4,
- o
; / "0 010 0 0
Indegree = E Al.j O 0 1 i 1 0
=] Al o 11001 0
example: the indegree for node 3 is 1, 0 0 0 : 0 1
which we obtain by summing the number of | :
non-zero entries in the 3 column .1 1:0. 0 0

n
A4,
= by Lada Adamic, U Michigan



Network metrics: degree sequence and degree distribution

Degree sequence: An ordered list of the (in,out) degree of each node

B In-degree sequence:
m[222111,1,0]

B Out-degree sequence:
m[2,222,11,1,0] O

B (undirected) degree sequence:
W [3332211,1] O O

Degree distribution: A frequency count of the occurrence of

each degree
B In-degree distribution:

= [(2,3) (1,4) (0,1)]

B Out-degree distribution:
= [(2,4) (1,3) (0,1)]

B (undirected) distribution:
= [(3,3) (2,2) (1,3)]

frequency

indegree

by Lada Adamic, U Michigan



Is everything connected?

® o
by Lada Adamic, U Michigan



Distances in a Network

Path: a walk (i1,i2,... iK) with each node ik
distinct

Cycle: a walk where il = iK

Geodesic: a shortest path between two nodes
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Paths, Walks, Cycles...

Path (and a walk) from 1 to 7: Walk from 1 to 7 that is not a path:
1,2,3,4,5,6,7 1,2,3,4,5,3,7

Simple Cycle (and a walk) Cycle (and a walk) from 1 to 1:

from1to1: 1,2, 3,1 1,2,3,4,5, 3,1

Slide by Matthew Jackson, Stanford



Connected components

* Strongly connected components

— Each node within the component can be reached from every other
node in the component by following directed links

B
F
B Strongly connected components C G

B BCDE A %
m A OIO
mGH H
mF D

E

Weakly connected components: every node can be reached from
every other node by following links in either direction

B Weakly connected components

B
m ABCDE F G
c
B GHF A C%’o
H
D
E

In undirected networks one talks simply

about ‘connected components’
by Lada Adamic, U Michigan



Strongly Connected Component (SCC)

Fact:

(1) SCCs partitions the nodes of G
= Each node is in exactly one SCC

(2) If we build a graph G’ whose nodes are SCCs, and
with an edge between nodes of G’ if there is an edge
between corresponding SCCs in G, then G’ is a DAG

(1) Strongly connected components
of graph G: {A,B,C,G}, {D}, {E}, {F}
(2) G’isaDAG:

{E}
{F}

{A,B,C,G}
)
{D} G

9/27/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 53



Proof (*)

Why is (1) true? SCCs partitions the nodes of G.

* Suppose node v is a member of 2 SCCs Sand §".
* Then SUS" is one large SCC:

SM S’

Why is (2) true? G’ (graph of SCCs) is a DAG

“ If G’ is not a DAG, then we have a © G’
directed cycle.
“ Now all nodes on the cycle are .
{A,B,C,G}

mutually reachable, and all are

part of the same SCC. {0}
Now {A,B,C,G,E,F} is a SCC

9/27/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 54



Giant component

if the largest component encompasses a significant fraction of the
graph, it is called the giant component
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There is a giant SCC
There won't be 2 giant SCCs:  why not? (*)

= Just takes 1 page from one SCC to link to the
other SCC

“ If the components have millions of pages the
likelihood of this is very large

‘f“>.
o—°

Giant SCCa Giant SCC2

'011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis




Bow-Tie Structure of the Web

Tendsi
/44 Million
nexdes

IN

SCC
36 Mitliem nexdes

ouT

- -
44 Milliem nexdes

-
44 Milliens nexle s

\\
O =——— Disconnected components

250 million pages, 1.5 billion links
Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata,

Andrew Tomkins, and Janet Wiener. 2000. Graph structure in the Web. Comput. Netw. 33, 1-6 (June
2000), 309-320.



Not Everyone Asks/Replies

Others Oithers
| O
2n1.2% g.';.';% 21@2% In Core Out
54.9% 12.3% 13.0%
The Web is a bow tie The Java Forum network is

an uneven bow tie

» Core: A strongly connected component, in which everyone asks and answers
 IN: Mostly askers.
e OUT: Mostly Helpers

Jun Zhang, Mark S. Ackerman, and Lada Adamic. 2007. Expertise networks in online communities:
structure and algorithms. In Proceedings of the 16th international conference on World Wide Web
(WWW '07)., 221-230.



Event Media as “Skewed Bowtie”

100%

20%

10%

0%

LsCC

m Blog
' SNS
m News

IN OUT  TUBES TENDRILS OTHERS

Proportions of users by media types

~285K news, blog and social media users,
authoring ~2M documents on the events
in Jan-Feb 2011.

SCC:4.3%

OUT 3.7%

IN: 55%

Tendrils: 24.2%

Tube: 0.53%
Disc: 12.3%

Moreover, 1% of the users, consisting of
the reciprocal core of SCC, authored 43%
of all documents.

Minkyoung Kim, Lexing Xie, Peter Christen, Event Diffusion Patterns in Social Media (2012)
Intl. Conf. on Weblogs and Social Media (ICWSM), 8 pages, Dublin, Ireland, June 2012



Macroscopic Mesoscopic Microscopic

A A
.$
> &
Connected components Hop-plots Zipf's law
Jellyfish structure Link-based ranking Degree distributions
Bow-tie structure Clusters, communities

Figure 11.5: Levels of link-based analysis [92].

Modern Information Retrieval: The Concepts and Technology behind Search
Ricardo Baeza-Yates, Berthier Ribeiro-Neto
Addison-Wesley Professional; 2 edition (February 10, 2011)



Recap

* Networks can be represented as matrices

e Useful network metrics:
— degree and degree distribution
— connected components

e strong
e weak
* Giant

e After the break: distance and centrality



Who is the Center of a network?

WAITER @
VAN JIID)Y
TEDDY TATODIST
MRS@ANKIS
@—LE RBD-
BORT

LEON WIFE



Is counting the edges enough?

by Lada Adamic, U Michigan



Stanford Social Web (ca. 1999)
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network of personal homepages at Stanford
by Lada Adamic, U Michigan



different notions of centrality

In each of the following networks, X has higher
centrality than Y according to a particular measure

Y
y y % Oam®,
X
Y Y

iIndegree outdegree  betweenness closeness

x O
< O
O

by Lada Adamic, U Michigan



review: indegree

by Lada Adamic, U Michigan



Which countries have high indegree (import petroleum and petroleum products from

many others)

| | Saudi Arabia

__| Japan

L_| lrag
L USA

|| Venezuela

Malfysiaaus@alia
China 8K SAR
lnd&esm
SoutHiAfrica
‘ Sinﬁore c'.‘a
ROP 24
Ofian
Pofind 2 ThaGand
Saud abja ~ Untd A¥ab Em
Russi@n FQ Slin Kl.alt
Nethdflands .
o Franc’donac
Belgiﬁ‘-L | 4 Nid@ria
Ge y
Uk |
No‘ay
Ald@ria
Swiltlen Ca co
VendRuela
Gdbon Coldinbia
An@ola

trade in petroleum and
petroleum products, 1998,
source: NBER-United Nations
Trade Data

by Lada Adamic, U Michigan



review: outdegree

by Lada Adamic, U Michigan



Which country has low outdegree but exports a significant quantity (thickness of the
edges represents $$ value of export) of petroleum products

| | Saudi Arabia

|_] Japan Australia
p Taiwan nei
SouthCAfrica diland
| Iraq
Malaysia
|| USA
China 8K SAR
Venezuela

trade in petroleum and
petroleum products, 1998,
source: NBER-United Nations
Trade Data

by Lada Adamic, U Michigan



Chile

Thailand

Audltralia
Untd m  Yel@en
Oman
Inddbesia
Ecu@dor > f- ~China
Cole
Venézuela
Derark 3 trade in crude

petroleum and

Fed Data

RorGania
Firfand Uk(@ine
Czedh Rep Bulgaria
SloGakia Hagery Gt

: Kazakhstan
Glb@lta( LithGania

Russ

by Lada Adamic, U Michigan

petroleum products,
1998, source: NBER-
United Nations Trade



putting numbers to it

Undirected degree, e.g. nodes with more friends are more

central.

®

& ©

®

®

®

Assumption: the connections that your friend has don't
matter, it is what they can do directly that does (e.g. go
have a beer with you, help you build a deck...)

by Lada Adamic, U Michigan



normalization

divide degree by the max. possible, i.e. (N-1)

by Lada Adamic, U Michigan



centralization: skew in distribution

How much variation is there in the centrality scores among
the nodes?

Freeman’ s general formula for centralization (can use other
metrics, e.g. gini coefficient or standard deviation):

/ maximum value in the network

2. [Con)-Co@)]
[(N =N -2)]

C, =

by Lada Adamic, U Michigan



degree centralization examples

®
®
®
® ® ® o ® ®
®
@ C, = 0.167
C,=1.0
©, @
®o0
© @

C,=0.167

by Lada Adamic, U Michigan



real-world examples

example financial trading networks

high in-centralization: low in-centralization:
one node buying from buying is more evenly
many others distributed

by Lada Adamic, U Michigan



what does degree not capture?

In what ways does degree fail to capture centrality in the
following graphs?

o ® ®



Stanford Social Web (ca. 1999)
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Brokerage not captured by degree

by Lada Adamic, U Michigan



Review: shortest path in a network

Shortest path network: (V,E, s, t, c).
. Directed graph (V, E).
. Sourcesc< V,sinkte V.

. Arc costs c(v, w).
. Cost of path = sum of arc costs in path.

Costof paths-2-3-5-1
=9+23+2+16
=48.

1
3
15 5
20
7 44

o 9
18
6
0 1
6

-
<

by Wayne Wolf, Princeton University



betweenness: capturing brokerage

* intuition: how many pairs of individuals
would have to go through you in order to
reach one another in the minimum number

of hops?

O—0O

x O

O0—0O
Y

by Lada Adamic, U Michigan



betweenness: definition

Cp(i)= Y g,()/g,

j<k

Where g, = the number of shortest paths connecting jk
gi(i) = the number that actor i is on.

Usually normalized by:

Cyp(i)=Cy(i)/[(n-1)(n-2)/2] |

\

number of pairs of vertices
excluding the vertex itself

by Lada Adamic, U Michigan



betweeness on toy network

e non-normalized version:

0 ©

:

O,

by Lada Adamic, U Michigan



betweeness on toy networks
* non-normalized version:

@ ©® » 0o o

A B C D E

A lies between no two other vertices
B lies between A and 3 other vertices: C, D, and E
C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)

note that there are no alternate paths for these pairs to
take, so C gets full credit

by Lada Adamic, U Michigan



betweenness on toy networks
* non-normalized version:

© ©

by Lada Adamic, U Michigan



betweenness on toy networks
 non-normalized version:

®

C

why do C and D each have
betweenness 1?
They are both on shortest
paths for pairs (A,E), and (B,E),
and so must share credit:

O Yokl = 1

m

by Lada Adamic, U Michigan



Quiz Question
e What is the betweenness of node E?

a) 0.5
b) 1
® () O
E c) 1.5
d) 2

by Lada Adamic, U Michigan



O Find a node that has high betweenness but
low degree

by Lada Adamic, U Michigan



O Find a node that has low betweenness but
high degree

by Lada Adamic, U Michigan



closeness

* What if it’s not so important to have many
direct friends?

e Or be “between” others

 But one still wants to be in the “middle” of
things, not too far from the center

by Lada Adamic, U Michigan



need not be in a brokerage position

by Lada Adamic, U Michigan



closeness: definition

Closeness is based on the length of the average shortest
path between a node and all other nodes in the network

Closeness Centrality:

C.(i)=| > d(i.j)

Normalized Closeness Centrality

Ce(i)=(Co()* (N -1)

by Lada Adamic, U Michigan



closeness: toy example

id(A’j)

C.(A) =+

_[1+2+3+4r_l@

-1
] _04
4 4

by Lada Adamic, U Michigan



closeness: more toy examples

by Lada Adamic, U Michigan



Which node has ?

relatively high degree 0’—’@

but low closeness?

a) | G

/m
) By
o/é \GW

by Lada Adamic, U Michigan



What else can shortest-path be used
for?

e What is the radius of a network?
e Define the diameter of a network?

e ...you will see this in the lab session this
afternoon.



Transitivity, triadic closure, clustering

O Transitivity:
if A'is connected to B and B is connected to C
what is the probability that A is connected to C?

my friends’ friends are likely to be my friends

by Lada Adamic, U Michigan



Clustering

* Global clustering coefficient
3 x number of triangles in the graph
number of connected triples of vertices

3 x number of triangles in the graph

number of connected triples

Question: How long will be a naive algorithm take to compute clustering coefficient?
O(n), O(nlogn), O(n"2), O(n"3), ... ?

by Lada Adamic, U Michigan



Local clustering coefficient (Watts&Strogatz 1998)

e For avertex |

— The fraction pairs of neighbors of the node that
are themselves connected

— Let n, be the number of neighbors of vertex i

# of connections between i’s neighbors

Ci =  max#of possible connections between i’s neighbors
o _ # directed connections between i’s neighbors
Ci directed = n = (ni 1)
Ciund _ # undirected connections between i’s neighbors
i undirected = n = (ni 1)/2

by Lada Adamic, U Michigan



Local clustering coefficient (Watts&Strogatz 1998)

* Average over all n vertices
1
C=—)C,
n Z

n=4

max number of connections:
4*3/2 =6

3 connections present
C.=3/6=0.5

— ||nk present
------- link absent

by Lada Adamic, U Michigan



Quiz Q:

* The clustering coefficient for vertex A is:

by Lada Adamic, U Michigan



Explanation

*n, =3
* there are 2 connections present out of max of
3 possible

¢ C,=2/3

by Lada Adamic, U Michigan



Network Description: so far

Representing a network as a graph

Connected components: strong, wealk, ...

Centrality: degree, betweeness, closeness, ... (and
many more)

Clustering coefficient and triadic closure

Up next: Is the network composed of
communities?
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Finding Communities

Research School of Computer Science

Lecture slides credit: Lada Adamic, Univ. Michigan
Jure Leskovec, Stanford University



Outline

 why do we look for community structure?
 we need to define it in order to find it
e approaches to finding it



Why do it?

* Discover communities of practice
 Measure isolation of groups

e Understand opinion dynamics / adoption

by Lada Adamic, U Michigan



Why look for community structure?
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Zachary Karate Club

(a) Karate club network (b) After a split into two clubs

source:Easley/Kleinberg
by Lada Adamic, U Michigan



Why look for community structure?

Key, H = hispanic, E = english
P = planing, M = milling, Y = yard

Sawmill network: source Exploratory Social Network Analysis with Pajek
by Lada Adamic, U Michigan



Quiz Q:

* The management at the sawmill was having
difficulty persuading the workers to adopt a new
plan, even though everyone would benefit. In
particular the Hispanic workers (H) were
reluctant to agree. The management called in a
sociologist who mapped out who talked to whom
regularly. Then they suggested that the
management talk to Juan and have him talk to
the Hispanic workers. It was a success, promptly
everyone was on board with the new plan. Why?

by Lada Adamic, U Michigan



Why did getting Juan on board with the plan help resolve the conflict?

Juan is a broker between the Spanish and English speaking

L communities.

Strong community structure can impede information flow and enable

- opinions to stay rooted within groups.

Juan has more social ties with the workers than the management

L does.

|| Juan's ego network has high constraint.



What makes a community?

O mutuality of ties
O everybody in the group knows everybody else

O frequency of ties among members

O everybody in the group has links to at least k
others in the group

O closeness or reachability of subgroup
members

O individuals are separated by at most n hops

Orelative frequency of ties among subgroup
members compared to nonmembers

by Lada Adamic, U Michigan



Affiliation Networks

O otherwise known as
O membership network
O e.g. board of directors
O hypernetwork or hypergraph
O bipartite graphs
O interlocks

by Lada Adamic, U Michigan



Cliques

O Every member of the group has links to
every other member

O Cliques can overlap

overlapping cliques of size 3 clique of size 4



Cliques

O Nof robust
O one missing link can disqualify a clique

O Noft interesting
O everybody is connected to everybody else
O no core-periphery structure
O no centrality measures apply

O How cliques overlap can be more
iInteresting than that they exist



k-cores: similar idea, less stringent

O Each node within a group is connected
to k other nodes in the group




O Whatis the “k" for the core circled in red?

O What is the “k" for the core circled in blue@¢




® Each node within a group is connected to k other
nodes in the group

® but even this is foo stringent of a requirement for
identifying natural communities




Use reachability and diameter?

O n - cligues
O maximal distance between any two nodes in subgroup is n

2-cliques

m theoretical justification
m information flow through intermediaries



O problem
O diameter may be greater than n

O n-cligue may be disconnected (paths go through
nodes not in subgroup)

2 —clique
diameter =3

path outside the 2-clique

m fix
B n-club: maximal subgraph of diameter 2



p-clique: fraction of in-group ties

O partition the network into clusters where
vertices have at least a proportion p
(humber between 0 and 1) of neighbors
inside the cluster.

within-group fies
ties from group to nodes external to the group



cohesion in directed & weighted

networks

Odsomething we've already learned how
to do:

O find strongly connected components

Dkeep only a subset of ties before finding
connected components
O reciprocal ties
O edge weight above a threshold



(A)

(8)

1 Digbys Blog

2 James Walcott

3 Pandago n

4 blog.johnkerry.com

5 Oliver Willis

6 America Blog

7 Crooked Timber

8 Daily Kos

9 American Prospect
10 Eschaton

11 Wonkette

12 Talk Left

13 Political Wire

14 Talking Points Memo
15 Matthew Yglesia s

16 Washing ton Monthly
17 MyDD

18 Juan Cole

19 Left Coaster

20 Bradford DelLong

21 JawaReport

22 Voka Pundit

23 Roger L Simon

24 Tim Blair

25 Andrew Sullivan
26 Instapundit

27 Blogs for Bush

28 Little Green Footballs
25 Belmont Club

30 Captain’s Quarters
31 Powerline

32 Hugh Hewitt

33 INDC Journal

34 Real Clear Politics
35 Winds of Change
36 Allahpundit

37 Michelle Malkin
38 WizBang

39 Dean’s World

40 Volokh

Example: political

blogs
(Aug 29" — Nov 15™, 2004)

A) all citations between A-
list blogs in 2 months

preceding the 2004
election

B) citations between A-list
blogs with at least 5
citations in both
directions

C) edges further limited to
those exceeding 25
combined citations

only 15% of the
citations bridge
communities

source: Adamic & Glance, LinkKkDD200



Community finding vs. other
approaches

e Social and other networks have a natural community structure

* We want to discover this structure rather than impose a certain size
of community or fix the number of communities

7 O

* Without “looking”, can we discover community structure in an
automated way?

by Lada Adamic, U Michigan



betweenness clustering

e Algorithm
— compute the betweenness of all edges

— while (betweenness of any edge > threshold):
* remove edge with highest betweenness
* recalculate betweenness

 Betweenness needs to be recalculated at each step
— removal of an edge can impact the betweenness of another
edge
— very expensive: all pairs shortest path — O(N3)
— may need to repeat up to N times

— does not scale to more than a few hundred nodes, even with
the fastest algorithms

by Lada Adamic, U Michigan



betweenness clustering algorithm

i)

by Lada Adamic, U Michigan



betweenness clustering:

* successively remove edges of highest betweenness (the bridges, or local
bridges), breaking up the network into separate components

-
A
R
(14)
(a) Step 1 (b) Step 2
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betweenness clustering algorithm & the karate club data set
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source: Girvan and Newman, PNAS June 11, 2002 99(12):7821-7826



Modularity

e Consider edges that fall within a community or

between a community and
* Define modularity:

the rest of the network

if vertices are in the same

| | / community
Q=2m;' 5(Cv9cw)
/

adjacency matrix

For a random network, Q=0

probability of an edge between
two vertices is proportional to their
degrees

B the number of edges within a community is no different from what

you would expect

Finding community structure in very large networks

Authors: Aaron Clauset, M. E. J. M@%Q%%

onherMoore 2004




Modularity

e Algorithm
— start with all vertices as isolates
— follow a greedy strategy:

* successively join clusters with the greatest increase AQ in modularity
e stop when the maximum possible AQ <=0 from joining any two

— successfully used to find community structure in a graph
with > 400,000 nodes with > 2 million edges

* Amazon’s people who bought this also bought that...

— alternatives to achieving optimum AQ:
* simulated annealing rather than greedy search

by Lada Adamic, U Michigan



modularity, Q

OYTo5 1 15 2 25 3 35 4 45
xth join x 10°

FIG. 1: The modularity Q over the course of the algorithm
(the z axis shows the number of joins). Its maximum value is
Q@ = 0.745, where the partition consists of 1684 communities.

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only

to them (top, lower left, lower right). Also, some pairs of ma-

Finding community structure in Very Iarge netwo’pk@mmunities have sets of smaller communities|that act

as “bridges” between them (e.g., between the lower left and

Authors: Aaron Clauset, M. E. J. Newman, Cristopher Mooxe:t,2004e center).




modularity
can help us
visualize large
networks
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What if communities overlap?

Recent research has found that for
communities such as Orkut and FlickR,

community finding algorithms cannot identify
communities of more than ~100 nodes

Statistical Properties of Community Structure

in Large Social and Information Networks by J.

Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
International World Wide Web Conference
(WWW), 2008. [Video]

by Lada Adamic, U Michigan



Cligue finder
* http://cfinder.org

Uncovering the overlapping
community structure of
complex networks in nature and
society G. Palla, I. Derényji, .
Farkas, and T. Vicsek: Nature
435, 814—-818 (2005)
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If you were to run a clique-percolation algorithm on this network using 3-cliques
(triangles), you would find how many communities?




high-res maps of science

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004803
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high-res maps of science

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004803
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high-res maps of science

http://www.plosone. org/artlcle/mfo%BAdm%ZF10 1371%2Fjournal.pone.0004803

Art and Architecture

Mathematics

Classical Studies

Folore
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Community Finding: wrap up

— community structure is a way of ‘x-raying’ the
network, finding out what it’'s made of

— you can look for specific structures
* k-cliques, k-cores, etc.

— but most popular is to discover the “natural”
community boundaries

by Lada Adamic, U Michigan



